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According to the Centers for Disease Control and Prevention (CDC) estimates that 576 to 740 million 
people globally are infected with hookworms. It remains a significant public health threat in tropical 
and subtropical regions. Especially in low-income countries, hookworm infection continues to affect 
millions, even with the availability of modern medical advancements. The present study is based on the 
transmission dynamics of hookworm infection in a population by using the strategy of mathematical 
modeling with computational methods. The population has been categorized into the following 
subpopulations such as susceptible humans, infectious humans, infectious humans with heavy 
infection, humans recovered, worm eggs, non-infective larvae, and infectious larvae and exposed 
humans. Firstly, the fundamental properties like positivity and boundness are studied. The equilibrium 
points like hookworm-endemic equilibrium (HEE), hookworm-free equilibrium (HFE), and basic 
reproduction numbers for the model were computed. Secondly, the stochastic formation of the model 
was studied with well-known properties like positivity, and the boundedness of the hookworm model. 
The model has no analytical solution due to the highly complex nonlinearity of the stochastic delay 
differential equation (SDDEs) of the model. Methods like Euler Maruyama, stochastic Euler, stochastic 
Runge Kutta, and stochastic nonstandard finite difference are used for its solution and visualization 
of results. Also, the comparison of standard with nonstandard methods is presented to verify the 
efficiency of the computational method. Furthermore, the stochastic nonstandard finite difference 
approximation is a good agreement to restore the dynamical properties of the model like positivity, 
boundedness, and dynamical consistency. Also, it is shown as efficient, low-cost, and independent 
of the time step size. In conclusion, the theoretical and numerical results support understanding the 
transmission dynamics of hookworm infection in the population.

Keywords  Hookworm infection model, Stochastic delay differential equations (SDDE’s), Positivity and 
boundedness, Computational methods, Results

Hematophagous nematode parasites known as hookworms have infected over between 576 and 740  million 
people globally. Since anthelmintic medications are not very effective at preventing reactivation, preventive 
vaccines are highly sought after. Since whole parasite vaccines are insecure and intolerant, research into 
substitute subunit vaccines seemed appropriate1. Hamidu et al. 2024, demonstrated the beneficial effects of a 
second intervention per year in keeping hookworm infection prevalences low and lowering them even more2. 
Walker et al. 2023, constructed a unique A. ceylanicum multi-host (human and dog) transmission model and 
evaluated the efficacy of human-only and “One Health” (human plus dog) MDA techniques under various eco-
epidemiological hypotheses3. Puchner et al. 2023, examined the unique tool’s further benefit in addition to 
the vaccine’s biology and implementation viability4. Trinos et al. 2023, investigated the costs and benefits of 
mass medicine delivery in Dak Lak province, Vietnam, in comparison to school-based targeted preventative 
chemotherapy for the treatment of hookworms5. Santos et al. 2023, investigation verified a statistically 
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significant drop in the prevalence of hookworm infection between the two time periods studied6. Ramlal et al. 
2023, provided a general overview of the potential use of plant-based compounds, or botanicals, made from a 
variety of medicinal herbs to treat important parasites that cause the condition, systemic hookworm infections 
that cause the disease and infections, and ultimately death in humans. In contrast, conventional treatments 
are much less effective and have a great deal of adverse consequences7. Tiremo et al. 2023, analyzed that the 
diagnosis of unexpected parasitic infections, such as hookworms, can be made with a meticulous endoscopic 
examination of the small intestine mucosa in patients with IDA who have experienced gastrointestinal bleeding8. 
Mustapha et al. 2020, established and evaluated an analytical representation of the dynamics of hookworm 
propagation involving two independent infection categories and stages of parasite development9. Qureshi et al. 
2020, constructed and investigated a model utilizing the Caputo fractional order differential operator to simulate 
the dynamics of Hookworm passing on infection in a human individual10. Sangari et al. 2020, provided an 
analytical study and modeling of the fluctuations of hookworm transmission in the Obi Local Government Area 
of Nasarawa State, Nigeria. In an attempt to control the disease, a numerical model of hookworm transmission 
was created11. Malizia et al. 2024, created a structure-based statistical approach that took into consideration 
low hemoglobin levels resulting from different sources to simulate individual hemoglobin concentrations in 
hookworm infections12. Ajjampur et al. 2021, observed that it is necessary for a community-based strategy to 
address the high prevalence of hookworm in adults in the present scenario13. Grolimund et al. 2022, recognized 
the uncertainty of the suggested Kato-Katz thick smear diagnostic procedure, a Bayesian model was created to 
compare the “true” CR and egg reduction rate of various treatment regimens for infections with hookworms14. 
Clements et al. 2022, conducted two comprehensive evaluations of research on the distribution of hookworms 
separated by species and genus across different parts of the globe, as well as the relationships between infections 
caused by hookworm species and clinical results, especially severe anemia15. Haldeman et al. 2020, analyzed that 
mostly affecting the world’s impoverished communities, human hookworm is an essential cause of mortality 
worldwide and is a soil-transmitted helminth (STH) ailment triggered by either Nectar americanus duodenale16. 
İlhan et al. 2022, utilized the fractional derivative and integral operator proposed by Caputo and Fabrizio, and the 
Hookworm infection model is analyzed17. Koopman et al. 2021, operated human infections with Schistosoma and 
hookworm are an important tool in the production of vaccines18. Colella et al. 2021, determined and compared, 
particularly to a species remission and egg diminution incidences of single-dose albendazole (400 mg) versus 
hookworm infections at the household level employing standard fecal flotation (SFF) and a multiplex qPCR 
technique19. The authors studied backward bifurcation and control in transmission dynamics of arboviral 
diseases in20. The authors made a comparative study of machine learning and deep learning methods for flood 
forecasting in the Far-North region, Cameroon, and fractional dynamics of a Chikungunya transmission model 
in21,22 respectively. The authors studied projections and fractional dynamics of typhoid fever: a case study of 
Mbandjock in the Centre Region of Cameroon23. Chazuka et al. studied strategic approaches to mitigating 
Hookworm infection: an optimal control and cost-effectiveness analysis in24.

Stochastic analysis in epidemiology incorporates randomness into models to correctly replicate disease 
spread while accounting for human behavior variations and environmental influences. This approach improves 
prediction accuracy and informs disease management efforts.

•	 A stochastic delay model for the propagation of diseases is deduced from epidemiological assumptions.
•	 The reproductive number, and equilibria of the deterministic systems are calculated.
•	 Feasible Properties of the model are studied rigorously.
•	 An NSFD scheme to solve the stochastic delay system is proposed and theoretically analyzed.
•	 The simulations show that the scheme is epidemiologically more robust than other approaches.

The paper is structured as follows: A brief analysis of hookworm infections Sect. 1 provides a thorough overview 
of the literature. Section 2 focuses on developing the delayed model and doing the subsequent mathematical 
analysis. In addition, reproduction numbers and equilibria are investigated. Sections  3 and 4 describe the 
stochastic conceptualization processes. The numerical approach to the NSFD technique is provided in Sect. 5. 
Section 6 focuses explicitly on numerical simulations and the presentation of results. The final opinions provide 
a comprehensive summary of the work in Sect. 7.

Formulation of model
The model is based on monitoring the dynamics of hookworm and human populations at any time t of S (t) 
susceptible humans, E (t) exposed humans, I1 (t) infectious humans, I2 (t) infectious humans with heavy 
infection, R (t) humans recovered and F (t) worm eggs, L1 (t) non-infective larvae, and L2 (t) infectious 
larvae. (See Fig. 1)10.

The human population is being recruited at a rate of π  (by migration or birth) and a rate of γ  due to 
the progression of persons from the recovery class. When susceptible individuals S (t) come into touch with 
infectious larvae, they become infected at a rate of λ S (t) L2 (t). S (t) does not instantly become infected 
upon infection instead it enters an exposed class. Individuals who are exposed to infection proceed to the 
infectious class of either heavy infection or moderate infection at a rate of, respectively, (1 − ϵ ) σ  and ϵ σ . 
An individual with moderate infectiousness advances at a pace of τ 1 to acquire heavy illnesses. Recovery from 
a moderate infection occurs at a pace of θ 1 (awareness and improvement of personal cleanliness), whereas 
chemotherapy treatment causes a heavy infection to recover at a rate of θ 2. Eggs in feces are excreted at rates of 
α  by moderately and heavily infected people, and after ω  days, the eggs hatched to become L1 (t) and L2 (t)
, respectively. µ  and δ  represent the natural death rate of humans and the disease-induced mortality rate, 
respectively, whereas φ , v, and k represent the death rates for eggs, non-infective larvae, and infectious larvae. 
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Also, τ  is delay parameter for this particular model. Hookworm transmission dynamics in human populations 
are described by the following differential equations with artificial delay parameter e−µ τ  as follows:

	

dS(t)
dt

= π − λ S (t − τ ) L2 (t − τ ) e−µ τ − µ S (t) + γ R (t)
dE(t)

dt
= λ S (t − τ ) L2 (t − τ ) e−µ τ − µ E (t) − ϵ σ E (t) − (1 − ϵ ) σ E (t)

dI1(t)
dt

= (1 − ϵ ) σ E (t) − (τ 1 + µ + θ 1) I1 (t)
dI2(t)

dt
= ϵ σ E (t) − (δ + µ + θ 2) I2 (t)

dR(t)
dt

= θ 1I1 (t) + θ 2I2 (t) − (µ + γ ) R (t)
dF (t)

dt
= α I1 (t) + α I2 (t) − (ψ + ω ) F (t)

dL1(t)
dt

= ω F (t) − (v + φ ) L1 (t)
dL2(t)

dt
= φ L1 (t) − kL2 (t)




� (1)

with initial conditions; S (0) ≥ 0, E (0) ≥ 0, I1 (0) ≥ 0, I2 (0) ≥ 0, R (0) ≥ 0,
F (0) ≥ 0, L1 (0) ≥ 0, L2 (0) ≥ 0 for all t ≥ 0, τ < t.

Model properties
In this section, we discussed the positivity and boundedness of solutions of system (1) with initial conditions.

	
β 1 =

{
(S, E, I1, I2, R, F, L1, L2) ∈ R8

+ : N (t) ≤ π
µ

,
S (0) ≥ 0, E (0) ≥ 0, I1 (0) ≥ 0, I2 (0) ≥ 0, R (0) ≥ 0, F (0) ≥ 0, L1 (0) ≥ 0, L2 (0) ≥ 0

for all t ≥ 0, τ < t

}

For positivity and boundedness, we used the following results.

Theorem 1  For any t ≥ 0, the solutions of system (1) with initial conditions are positive.

Proof  The following can be determined from the system (1):

	

dS

dt
|S=0 = π ≥ 0 ,

dE

dt
|E=0 = λ S (t) L2 (t) e−µ τ ≥ 0 ,

dI1

dt
|I1=0 = (1 − ϵ ) σ E (t) ≥ 0 ,

dI2

dt
|I2=0 = ϵ σ E (t) ≥ 0 ,

dR

dt
|R=0 = θ 1I1 (t) + θ 2I2 (t) ≥ 0 ,

dF

dt
|F =0 = α I1 (t) + α I2 (t) ≥ 0,

dL1

dt
|L1=0 = ω F (t) ≥ 0 ,

dL2

dt
|L2=0 = φ L1 (t) ≥ 0.

as desired.

Theorem 2  Solutions of the system (1) with initial condition are bounded.

Proof  Let’s examine the function in this particular way:

	 N (t) = S (t) + E (t) + I1 (t) + I2 (t) + R (t) + F (t) + L1 (t) + L2 (t) .

	
dN (t)

dt
= dS (t)

dt
+ dE

dt
+ dI1

dt
+ dI2

dt
+ dR

dt
+ dF

dt
+ dL1

dt
+ dL2

dt
.

For detailed proof see appendix A.

Fig. 1.  Flowchart of hookworm infection with time delay.
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Model equilibria
In this section, we evaluate two different types of equilibria for the system (1), as follows:

Hookworm-free equilibrium (HFE), H0 =
(
S0, E0, I0

1 , I0
2 , R0, F 0 L0

1, L0
2
)

=
(

π
µ

, 0,0, 0,0, 0,0, 0
)

 and 
Hookworm endemic equilibrium (HEE), H∗ = (S∗, E∗, I∗

1 , I∗
2 , R∗, F ∗, L∗

1, L∗
2) where

	

S∗ = kA6A7 (π A3A4A5 + γ {θ 1A2A4 + θ 2 ((A1A3 + A2τ 1) E∗)})
A5 (φ ω E∗e−µ τ (α A2A4 + α (A1A3 + τ 1A2)) − µ kA3A4A6A7) ,

E∗ = R0 − 1
A1R0

, I∗
1 = A2E∗

A3
, I∗

2 = (A1A3 + A2τ 1) E∗

A3A4
,

R∗ = θ 1A2A4 + θ 2 (A1A3 + τ 1A2)
A3A4A5

E∗, F ∗ = α A2A4 + α (A1A3 + τ 1A2)
A3A4A6

E∗,

L∗
1 = α A2A4 + α (A1A3 + τ 1A2)

A3A4A6A7
ω E∗, L∗

2 = α A2A4 + α (A1A3 + τ 1A2)
kA3A4A6A7

φ ω E∗.

where A1 = σ + µ , A2 = (τ 1 + µ + θ 1), A3 = (δ + µ + θ 2), A4 = (ψ + ω ), A5 = (v + φ ), 
Q = (1 − ϵ ) σ .

Reproduction number is of vital importance for epidemiology as a critical threshold that potentially influences 
the spread of disease. It is the mean number of secondary infections transmitted by an infected person in a fully 
susceptible population. In the context of the Hookworm model, we estimate this threshold to understand and 
predict the infection behavior in the population. The reproduction number for the model system (1) is computed 
using a systematic methodology that is founded upon the next-generation matrix method as described in24. The 
transmission matrix (F) and transition matrix (G) are derived by substituting the Hookworm-free equilibrium 
and taking into account the affected classes from the system (1). The largest eigenvalue of F G−1 represents the 
reproduction number.

	

F =




0 0 0 0 0 λ Se−µ τ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 ,

	

G =




(µ + σ ) 0 0 0 0 0
− (1 − ϵ ) σ (τ 1 + µ + θ 1) 0 0 0 0

−ϵ σ −τ 1 (δ + µ + θ 2) 0 0 0
0 0 −α (ψ + ω ) 0 0
0 0 0 −ω (v + φ ) 0
0 0 0 0 −φ k




Therefore, Reproduction number is;

	
R0 = λ π e−µ τ (ϵ σ (τ 1 + µ + θ 1) + (1 − ϵ ) σ τ 1 + (1 − ϵ ) σ (δ + µ + θ 2)) φ α ω

µ k (v + φ ) (ψ + ω ) (µ + σ ) (τ 1 + µ + θ 1) (δ + µ + θ 2)

Transition probabilities of the model
Let us consider the vector A = [S (t) , E (t) , I1 (t) , I2 (t) , R (t) , F (t) , L1 (t) , L2 (t)]T  and the number of 
chances of an event is presented in Table 1. For the drift and diffusion coefficients of the system (1), we shall 
calculate the expectation and variance as follows:

	

Expectetions = E∗ [∆ U] =
∑

19
i=1Pi(∆ U)i =




π − λ S (t) L2 (t) e−µ τ − µ S (t) + γ R (t)
λ S (t) L2 (t) e−µ τ − µ E (t) − ϵ σ E (t) − (1 − ϵ ) σ E (t)

(1 − ϵ ) σ E (t) − (τ 1 + µ + θ 1) I1 (t)
ϵ σ E (t) − (δ + µ + θ 2) I2 (t)

θ 1I1 (t) + θ 2I2 (t) − (µ + γ ) R (t)
α I1 (t) + α I2 (t) − (ψ + ω ) F (t)

ω F (t) − (v + φ ) L1 (t)
φ L1 (t) − kL2 (t)




∆ t

	
Variance =

∑
19
i=1Pi(∆ U)i

[
(∆ U)i

]T

	

=




P1 + P2 + P3 + P4 −P2 0 0 −P4 0 0 0
−P2 P2 + P5 + P6 + P7 −P7 −P6 0 0 0 0

0 −P7 P7 + P8 + P9 + P10 −P8 −P9 0 0 0
0 −P6 −P8 P6 + P8 + P11 + P12 −P12 0 0 0

−P4 0 −P9 −P12 P4 + P9 + P12 + P13 0 0 0
0 0 0 0 0 P14 + P15 + P16 −P 15 0
0 0 0 0 0 −P15 P15 + P17 + P18 −P17
0 0 0 0 0 0 −P17 P14 + P19




∆ t
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Drift = G (U, t) = E∗ [∆ U]
∆ t

=




π − λ S (t) L2 (t) e−µ τ − µ S (t) + γ R (t)
λ S (t) L2 (t) e−µ τ − µ E (t) − ϵ σ E (t) − (1 − ϵ ) σ E (t)

(1 − ϵ ) σ E (t) − (τ 1 + µ + θ 1) I1 (t)
ϵ σ E (t) − (δ + µ + θ 2) I2 (t)

θ 1I1 (t) + θ 2I2 (t) − (µ + γ ) R (t)
α I1 (t) + α I2 (t) − (ψ + ω ) F (t)

ω F (t) − (v + φ ) L1 (t)
φ L1 (t) − kL2 (t)




∆ t� (2)

	
Diffusion = H (U, t) =

√
E∗

[
∆ U(∆ U)T

]
∆ t

	

=

√√√√√√√√√√√




P1 + P2 + P3 + P4 −P2 0 0 −P4 0 0 0
−P2 P2 + P5 + P6 + P7 −P7 −P6 0 0 0 0

0 −P7 P7 + P8 + P9 + P10 −P8 −P9 0 0 0
0 −P6 −P8 P6 + P8 + P11 + P12 −P12 0 0 0

−P4 0 −P9 −P12 P4 + P9 + P12 + P13 0 0 0
0 0 0 0 0 P14 + P15 + P16 −P 15 0
0 0 0 0 0 −P15 P15 + P17 + P18 −P17
0 0 0 0 0 0 −P17 P14 + P19




� (3)

Therefore,

	 dU (t) = G (U, t) + H(U, t)dB (t)� (4)

The Eq. (4), is called the stochastic delay differential equation with B (t) is the Brownian.
In this section, we use a conventional numerical technique for approximating a stochastic delayed model’s 

result of (4). In this regard, we admitted Iq = {0,1, 2,3, . . . , q} for each q ∈ N. Let N ∈ N, and with the effect 
of time ∆t divides the partition into equal intervals [0, T] with constant delay as

	 0 = to < t1 < t2 < . . . < tN = T,

for each n ∈ IN . Needless to mention tn = τ n, for each n ∈ IN . Moreover, we agreed that Un = U (tn), 
whenever n ∈ IN  and U = S, E, I1, I2, R, F, L1, L2. Also, we set

∆ Bn = B ( tn+1) − B ( tn), ∀n ∈ IN−1. The mean of each ∆ Bn follows a normal distribution with a variance 
of one and an average of zero.

The Euler-Maruyama technique to simulate the outcomes of Eq. (4) as follows:

	 Un+1 = Un + G (Un, t) ∆ t + H(Un, t)dB (t)

Transition Probabilities

(∆ U)1 = [ 1 0 0 0 0 0 0 0 ]T P1 = (π ) ∆ t

(∆ U)2 = [ −1 1 0 0 0 0 0 0 ]T P2 =
(

λ SL2e−µ τ
)

∆ t

(∆ U)3 = [ −1 0 0 0 0 0 0 0 ]T P3 = (µ S (t)) ∆ t

(∆ U)4 = [ 1 0 0 0 −1 0 0 0 ]T P4 = (γ R (t)) ∆ t

(∆ U)5 = [ 0 −1 0 0 0 0 0 0 ]T P5 = (µ E) ∆ t

(∆ U)6 = [ 0 −1 0 1 0 0 0 0 ]T P6 = (ϵ σ E) ∆ t

(∆ U)7 = [ 0 −1 1 0 0 0 0 0 ]T P7 = ((1 − ϵ ) σ E) ∆ t

(∆ U)8 = [ 0 0 −1 1 0 0 0 0 ]T P8 = (τ 1I1) ∆ t

(∆ U)9 = [ 0 0 −1 0 1 0 0 0 ]T P9 = (θ 1I1) ∆ t

(∆ U)10 = [ 0 0 −1 0 0 0 0 0 ]T P10 = (µ I1) ∆ t

(∆ U)11 = [ 0 0 0 −1 0 0 0 0 ]T P11 = (δ I2) ∆ t

(∆ U)12 = [ 0 0 0 −1 1 0 0 0 ]T P12 = (θ 2I2) ∆ t

(∆ U)13 = [ 0 0 0 −1 0 0 0 0 ]T P13 = (µ I2) ∆ t

(∆ U)14 = [ 0 0 0 0 −1 0 0 0 ]T P14 = ((µ + γ ) R) ∆ t

(∆ U)15 = [ 0 0 0 0 0 −1 1 0 ]T P15 = (ω F ) ∆ t

(∆ U)16 = [ 0 0 0 0 0 −1 0 0 ]T P16 = (ψ F ) ∆ t

(∆ U)17 = [ 0 0 0 0 0 0 −1 1 ]T P17 = (φ L1) ∆ t

(∆ U)18 = [ 0 0 0 0 0 0 −1 0 ]T P18 = (vL1) ∆ t

(∆ U)19 = [ 0 0 0 0 0 0 0 −1 ]T P19 = (kL2) ∆ t

Table 1.  Illustrates latent modification to the model’s process.
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


Sn+1

En+1

In+1
1

In+1
2

Rn+1

F n+1

Ln+1
1

Ln+1
2




=




Sn

En

In
1

In
2

Rn

F n

Ln
1

Ln
2




+




π − λ S (t) L2 (t) e−µ τ − µ S (t) + γ R (t)
λ S (t) L2 (t) e−µ τ − µ E (t) − ϵ σ E (t) − (1 − ϵ ) σ E (t)

(1 − ϵ ) σ E (t) − (τ 1 + µ + θ 1) I1 (t)
ϵ σ E (t) − (δ + µ + θ 2) I2 (t)

θ 1I1 (t) + θ 2I2 (t) − (µ + γ ) R (t)
α I1 (t) + α I2 (t) − (ψ + ω ) F (t)

ω F (t) − (v + φ ) L1 (t)
φ L1 (t) − kL2 (t)




∆ t+

	

√√√√√√√√√√√




P1 + P2 + P3 + P4 −P2 0 0 −P4 0 0 0
−P2 P2 + P5 + P6 + P7 −P7 −P6 0 0 0 0

0 −P7 P7 + P8 + P9 + P10 −P8 −P9 0 0 0
0 −P6 −P8 P6 + P8 + P11 + P12 −P12 0 0 0

−P4 0 −P9 −P12 P4 + P9 + P12 + P13 0 0 0
0 0 0 0 0 P14 + P15 + P16 −P 15 0
0 0 0 0 0 −P15 P15 + P17 + P18 −P17
0 0 0 0 0 0 −P17 P14 + P19




∆ Bn

� (5)

Where the value of ∆ t indicates the discretization parameter.

Stochastic delayed model
The system of stochastic delay differential equations (SDDEs) is a mathematical model that describes the evolution 
of a set of variables over time, where the equations involve both deterministic time delays and stochastic (random) 
components. Where the stochastic term σ i : (i = 1, 2, 3, 4,5, 6,7, 8) , (B (t)) introduces randomness into 
the system of differential equations as follows:

	

dS(t)
dt

= π − λ S (t) L2 (t) e−µ τ − µ S (t) + γ R (t) + σ 1S (t) dB(t)
dt

dE(t)
dt

= λ S (t) L2 (t) e−µ τ − µ E (t) − ϵ σ E (t) − (1 − ϵ ) σ E (t) + σ 2E (t) dB(t)
dt

dI1(t)
dt

= (1 − ϵ ) σ E (t) − (τ 1 + µ + θ 1) I1 (t) + σ 3I1 (t) dB(t)
dt

dI2(t)
dt

= ϵ σ E (t) − (δ + µ + θ 2) I2 (t) + σ 4I2 (t) dB(t)
dt

dR(t)
dt

= θ 1I1 (t) + θ 2I2 (t) − (µ + γ ) R (t) + σ 5R (t) dB(t)
dt

dF (t)
dt

= α I1 (t) + α I2 (t) − (ψ + ω ) F (t) + σ 6F (t) dB(t)
dt

dL1(t)
dt

= ω F (t) − (v + φ ) L1 (t) + σ 7L1 (t) dB(t)
dt

dL2(t)
dt

= φ L1 (t) − kL2 (t) + σ 8L2 (t) dB(t)
dt




� (6)

where B (t) participation in the Brownian motion and the unpredictability of each compartment 
are indicated by σ i; i = 1,2, 3,4, 5,6, 7,8. Also, the initial conditions of the model (6) as follow: 
S (0) ≥ 0, E (0) ≥ 0, I1 (0) ≥ 0, I2 (0) ≥ 0, R (0) ≥ 0, F (0) ≥ 0, L1 (0) ≥ 0, L2 (0) ≥ 0.

For positivity and boundedness of system (6), we assume the following vector, let’s

	 V (t) = (S (t) , E (t) , I1 (t) , I2 (t) , R (t) , F (t) , L1 (t) , L2 (t))

and norm

	 |V (t)| =
√

S2 (t) + E2 (t) + I2
1 (t) + I2

2 (t) + R2 (t) + F 2 (t) + L2
1 (t) + L2

2 (t)� (7)

Moreover, let D7,1
1

(
R8x (0, ∞ ) : R+

)
 represents the set of all positive functions U1 (V, t) that are subsequently 

defined on R8x (0, ∞ ). Furthermore, in V the function is once differentiable and twice differentiable. The 
differentiable operator T1, associated with eight-dimensional stochastic delay differential equations (SDDEs), 
has been developed.

	 dV (t) = D1 (V, t) dt + k1 (V, t) dB (t)� (8)

As,

	
T1 = ∂

∂ t
+

∑
8
i=1D1i (V, t) ∂

∂ Vi
+ 1

2
∑

8
i,j=1k1

T (V, t) k1 (V, t) ∂ 2

∂ Ui∂ Uj

If T1 acts on function V ∗ ∈ D7,1
1

(
R8x (0, ∞ ) : R+

)
 then we denote

	
T1V ∗ (V, t) = V ∗

t (V, t) + V ∗
V (V, t) D1 (V, t) + 1

2T race
(
k1

T (V, t) V ∗
V V (V, t) k1 (U, t)

)

Where Transportation is represented by T.

Theorem 3  For model (6) and any given initial value (S(0), E(0), I1(0), I2(0), R(0), F (0), L1(0), L2(0)) ∈ R8
+

, there is a unique solution (S(t), E(t), I1(t), I2(t), R(t), F (t), L1(t), L2(t)) ∈ R8
+ and will remain in R8

+ 
with probability one.
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Proof  Considering that every model parameter meets the local Lipschitz constraints. Consequently, the above 
model has a positive solution locally on the interval [0, τe ]according to Ito’s formula, where τe represents the 
explosion time. When τe equals infinity, it may be demonstrated that the model has a global solution.

If n0 = 0, then a sufficiently large number is required such that S (0) , E (0) , I1 (0) , I2 (0) R (0) , F (0) ,
L1 (0) , L2 (0) fall inside the interval 

{
1

n0
, n0

}
.

For each positive integer n, let’s define a series in the following manner:

	

τ n = inf
{

t ∈ [0, τ e] : S (t) ∈
( 1

n
, n

)
, or E (t) ∈

( 1
n

, n
)

, or I1 (t) ∈
( 1

n
, n

)
, or I2 (t) ∈

( 1
n

, n
)

,

or R (t) ∈
( 1

n
, n

)
, or F (t) ∈

( 1
n

, n
)

, or L1 (t) ∈
( 1

n
, n

)
, or L2 (t) ∈

( 1
n

, n
)} � (9)

Here, ϕ  is the empty set, and we set infϕ  = ∞ . Since n approaches ∞  without reducing τ n,

	
τ ∞ = lim

n→ ∞
τ n� (10)

According to the inequality, τ ∞  is either equal to or smaller than τ e.
Our goal now is to show that, as we expected, τ ∞  equals infinity.
If this condition fails to be satisfied, then there exist values T > 0 and b1 ∈ (0, 1) that satisfy the statement.

	 U {τ n ≤ T } ≥ b1 ∀ n ≥ n1� (11)

	 Define a C7 − function f : R8
+ → R+ by

	 g (S, E, I1, I2, R, F, L1, L2) = (S − 1 − lnS) + (E − 1 − lnE) + (I1 − 1 − lnI1) + (I2 − 1 − lnI2)

	 + (R − 1 − lnR) + (F − 1 − lnF ) + (L1 − 1 − lnL1) + (L2 − 1 − lnL2)� (12)

By using Ito’s formula, we calculate

	

dg (S, E, I1, I2, R, F, L1, L2) =
(

1 − 1
S

)
dS +

(
1 − 1

E

)
dE +

(
1 − 1

I1

)
dI1 +

(
1 − 1

I2

)
dI2 +

(
1 − 1

R

)
dR

+
(

1 − 1
F

)
dF +

(
1 − 1

L1

)
dL1 +

(
1 − 1

L2

)
dL2 + σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6 + σ 2

7 + σ 2
8

2 dt

	

dg (S, E, I1, I2, R, F, L1, L2) =
(

1 − 1
S

) ((
π − λ S (t) L2 (t) e−µ τ − µ S (t) + γ R (t)

)
dt + σ 1S (t) dB (t)

)

+
(

1 − 1
E

) ((
λ S (t) L2 (t) e−µ τ − µ E (t) − ϵ σ E (t) − (1 − ϵ ) σ E (t)

)
dt + σ 2E (t) dB (t)

)

+
(

1 − 1
I1

)
(((1 − ϵ ) σ E (t) − (τ 1 + µ + θ 1) I1 (t)) dt + σ 3I1 (t) dB (t))

+
(

1 − 1
I2

)
((ϵ σ E (t) − (δ + µ + θ 2) I2 (t)) dt + σ 4I2 (t) dB (t))

+
(

1 − 1
R

)
((θ 1I1 (t) + θ 2I2 (t) − (µ + γ ) R (t)) dt + σ 5R (t) dB (t))

+
(

1 − 1
F

)
((α I1 (t) + α I2 (t) − (ψ + ω ) F (t)) dt + σ 6F (t) dB (t))

(
1 − 1

L1

)
((ω F (t) − (v + φ ) L1 (t)) dt + σ 7L1 (t) dB (t))

(
1 − 1

L2

)
((φ L1 (t) − kL2 (t)) dt + σ 8L2 (t) dB (t)) + σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6 + σ 2

7 + σ 2
8

2 dt

	

dg (S, E, I1, I2, R, F, L1, L2)

=
(

π + 5µ + σ + τ 1 + θ 1 + δ + θ 2 + γ + ψ + ω + v + φ + k + σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4 + σ 2
5 + σ 2

6 + σ 2
7 + σ 2

8

2

)

	

dt + σ 1S (t) dB (t) + σ 2E (t) dB (t) + σ 3I1 (t) dB (t) + σ 4I2 (t) dB (t)
+ σ 5R (t) dB (t) + σ 6L1 (t) dB (t) + σ 8L2 (t) dB (t)

� (13)

To simplify, we assume M1 = (π + 5µ + σ + τ 1 + θ 1 + δ + θ 2 + γ + ψ + ω + v + φ

+k + σ 2
1+σ 2

2+σ 2
3+σ 2

4+σ 2
5+σ 2

6+σ 2
7+σ 2

8
2 )

Then Eq. (13) could be written as:

	 dg (S, E, I1, I2, R, F, L1, L2) ≤ M1dt + [σ 1S (t) + σ 2E (t) + σ 3I1 (t) + σ 4I2 (t) + σ 5R (t) + σ 6L1 (t) + σ 8L2 (t)] d (B( t ))� (14)

Following the integration from 0 to τ n ∧ τ , where M1 is a positive constant,
We obtain,

	

τ n∧ τ∫

0

dg (S, E, I1, I2, R, F, L1, L2) ≤ M1dt + [σ 1S (t) + σ 2E (t) + σ 3I1 (t) + σ 4I2 (t) + σ 5R (t) + σ 6L1 (t) + σ 8L2 (t)] d (B( t ))� (15)

When τ n ∧ τ = min (τ n, T ), applying the assumptions results in
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	 EV ∗ (S (τ n ∧ τ ) , E (τ n ∧ τ ) , I1 (τ n ∧ τ ) , I2 (τ n ∧ τ ) , R (τ n ∧ τ ) , F (τ n ∧ τ ) , L1 (τ n ∧ τ ) , L2 (τ n ∧ τ ) , )

	 ≤ V ∗ (S (0) , E (0) , I1 (0) , I2 (0) , R (0) , F (0) , L1 (0) , L2 (0)) + M1T � (16)

Set Ω n = {τ n ≤ T } for n > n1 and from (11), we have X (Ω n ≥ b) .
There are certain indices such that Vi (τ n, a1) = n or 1

n  for each member a1 in the collection Ω n, where 
has the values 1, 2, 3,4,5,6,7, and 8.

Hence, V ∗((S (τ n, a1) , E (τ n, a1) , I1 (τ n, a1) , I2 (τ n, a1) , R (τ n, a1) , F (τ n, a1) ,
L1 (τ n, a1) , L2 (τ n, a1) , )) is less than min

{
n − 1 − lnn, 1

n
− 1 − ln 1

n

}
Next, we obtain

	 V ∗ (S (0) , E (0) , I1 (0) , I2 (0) , R (0) , F (0) , L1 (0) , L2 (0)) + M1T

	 ≥ E
(
IΩ m(a1)V

∗ ((S (τ n) , E (τ n) , I1 (τ n) , I2 (τ n) , R (τ n) , F (τ n) , L1 (τ n) , L2 (τ n)))
)

	
≥ min

{
n − 1 − lnn,

1
n

− 1 − ln
1
n

}
� (17)

Within the set Ω n, the indicator function is represented by the notation IΩ n(a1).
The contradiction arises when n gets closer to infinity: infinity is equivalent to 

V ∗ (S (0) , E (0) , I1 (0) , I2 (0) , R (0) , F (0) , L1 (0) , L2 (0)) + M1T , which has a finite value. as desired.

Numerical methodology
Assume that Un is the set that Ue = {0,1, 2 . . . , e} defines for every e ϵ N. In this part, we will identify 
and examine the system’s discretization (6). To accomplish our goal, we take into account the temporal 
interval when T > 0. Make a consistent division of the time interval [0, T] into n subintervals, each 
having a length of k = T

e . With ta = ak, for every a ϵIe, where Ie is the set of indices. The functions 
Sm, Em, Im

1 , Im
2 , Rm, F m, Lm

1  and Lm
2  correspond to the numerical approximations for S, E, I1, I2

, R, F, L1 and L2. 
(
S0, E0, I0

1 , I0
2 , R0, F 0 L0

1, L0
2
)

 are the discrete starting data. It is defined so that 
S0 = S (0) , E0 = E (0) , I0

1 = I1 (0) , I0
2 = I2 (0) , R0 = R (0) , F 0 = F (0) , L0

1 = L1 (0) , L0
2 = L2 (0) 

as required.

Stochastic nonstandard computational method
A stochastic non-standard finite difference methodology might be used to solve model (6) in our parametric 
perturbation model. The susceptible class from the model (6) can be expressed using an unusual computing 
method.

	 dS (t) =
(
π − λ S (t) L2 (t) e−µ τ − µ S (t) + γ R (t)

)
dt + σ 1S (t) d (B (t))

The equation for the stochastic NSFD technique looks like this:

	
Sn+1 − Sn

h
=

[
π − λ Sn+1Ln

2 e−µ τ − µ Sn+1 + γ Rn + σ 1Sn∆ Bn

]
� (18)

The stochastic NSFD process, as demonstrated in (18), may be used to decompose the system (6), and the 
resultant whole system can be expressed as follows:

	

Sn+1 = Sn+h[π +γ Rn+σ 1Sn∆ Bn]
1+h(λ Ln

2 e−µ τ +µ )
En+1 = En+h[λ SnLn

2 e−µ τ +σ 2En∆ Bn]
1+h(µ +ϵ σ +(1−ϵ )σ )

In+1
1 = In

1 +h[(1−ϵ )σ En+σ 3In
1 ∆ Bn]

1+h(τ 1+µ +θ 1)

In+1
2 = In

2 +h[ϵ σ En+σ 4In
2 ∆ Bn]

1+h(δ +µ +θ 2)

Rn+1 = Rn+h[θ 1In
1 +θ 2In

2 +σ 5Rn∆ Bn]
1+h(µ +γ )

F n+1 = F n+h[α In
1 +α In

2 +σ 6F n∆ Bn]
1+h(ψ +ω )

Ln+1
1 = Ln

1 +h[ω F n+σ 7Ln
1 ∆ Bn]

1+h(v+φ )

Ln+1
2 = Ln

2 +h[φ Ln
1 +σ 8Ln

2 ∆ Bn]
1+hk




� (19)

Here, n = 0,1, 2, . . .  and ∆ Bn = ∆ Btn+1 − ∆ Btn  represents a generic normal distribution that is, 
∆ Bn ∼ N(0, 1).

Convergence analysis of nonstandard computational method
The following theorems are stated concerning the convergence analysis.

Theorem 4  For all initially values of (S(0), E(0), I1(0), I2(0), R(0), F (0), L1(0), L2(0)) ∈ R8
+, there is only 

one positive solution (S(t), E(t), I1(t), I2(t), R(t), F (t), L1(t), L2(t)) ∈ R8
+ ∀ n > 0.
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Proof  The proof is easily demonstrable, due to the non-negative nature of the biological problems’ restriction.

Theorem 5  For the G = (Sn, En, In
1 , In

2 , Rn, F n, Ln
1 , Ln

2 ) ∈ R8
+

: Sn + En + In
1 + In

2 + Rn + F n + Ln
1 + Ln

2  = N ≤ π
µ

, Sn ≥ 0, En ≥ 0, In
1 ≥ 0, In

2 ≥ 0, Rn ≥ 0,
F n ≥ 0, Ln

1 ≥ 0, Ln
2 ≥ 0, region. For every n ≥ 0, is an area of equations that is feasible and positive invariant 

(34) to (41).

Proof  The deconstruction of the system (19) looks like this:

	
Sn+1 − Sn

h
= π − λ SnLn

2 e−µ τ − µ Sn + γ R (t) + σ 1Sn∆ Bn

	
En+1 − En

h
= λ SnLn

2 e−µ τ − µ En − ϵ σ En − (1 − ϵ ) σ En + σ 2En∆ Bn

	
In+1

1 − In
1

h
= (1 − ϵ ) σ En − (τ 1 + µ + θ 1) In

1 + σ 3In
1 ∆ Bn

	
In+1

2 − In
2

h
= (1 − ϵ ) σ En − (τ 1 + µ + θ 1) In

2 + σ 4In
2 ∆ Bn

	
Rn+1 − Rn

h
= θ 1In

1 + θ 2In
2 − (µ + γ ) R (t) + σ 5Rn∆ Bn

	
F n+1 − F n

h
= α In

1 + α In
2 − (ψ + ω ) F n + σ 6F n∆ Bn

	
Ln+1

1 − Ln
1

h
= ω F n − (v + φ ) Ln

1 + σ 7Ln
1 ∆ Bn

	
Ln+1

2 − Ln
2

h
= φ Ln

1 − kLn
2 + σ 8Ln

2 ∆ Bn

Once the aforementioned equation system is included, we obtain

	
(
Sn+1 + En+1 + In+1

1 + In+1
2 + Rn+1 + F n+1 + Ln+1

1 + Ln+1
2

)
− (Sn + En + In

1 + In
2 + Rn + F n + Ln

1 + Ln
2 )

h
≤ π − µ (Sn + En + In

1 + In
2 + Rn + F n + Ln

1 + Ln
2 )

	
(
Sn+1 + En+1 + In+1

1 + In+1
2 + Rn+1 + F n+1 + Ln+1

1 + Ln+1
2

)
− (Sn + En + In

1 + In
2 + Rn + F n + Ln

1 + Ln
2 ) ≤ hπ − hµ (Sn + En + In

1 + In
2 + Rn + F n + Ln

1 + Ln
2 )

	
(
Sn+1 + En+1 + In+1

1 + In+1
2 + Rn+1 + F n+1 + Ln+1

1 + Ln+1
2

)
− (Sn + En + In

1 + In
2 + Rn + F n + Ln

1 + Ln
2 ) ≤ hπ − hµ (Sn + En + In

1 + In
2 + Rn + F n + Ln

1 + Ln
2 )

	

(
Sn+1 + En+1 + In+1

1 + In+1
2 + Rn+1 + F n+1 + Ln+1

1 + Ln+1
2

)
≤ π

µ

Therefore, for any n > 0, the non-standard computing approach that we suggest is restricted.

Theorem 6  If the unit circle contains the eigenvalue, the computational approach that has been given is stable 
for any n > 0 with △ Bn = 0.

Proof  Assume that the functions A, B, C, D, F, G, H, and P correspond to the right-hand sides of the following 
equations: (19).

Here,
A = S+h[π +γ R]

1+h(λ L2e−µ τ +µ ) , B = E+h[λ SL2e−µ τ ]
1+h(µ +ϵ σ +(1−ϵ )σ )  , C = I1+h[(1−ϵ )σ E]

1+h(τ 1+µ +θ 1) , D = I2+h[ϵ σ E]
1+h(δ +µ +θ 2)  ,

	
F = R + h [θ 1I1 + θ 2I2]

1 + h (µ + γ ) , G = F + h [α I1 + α I2]
1 + h (ψ + ω ) , H = L1 + h [ω F ]

1 + h (v + φ ) , P = L2 + h [φ L1]
1 + hk

It is commonly understood that a system of the forms (6) converges to the model’s optimal state if and only if 
the Jacobian’s spectral radius, (J),

	

J =




∂ A
∂ S

∂ A
∂ E

∂ A
∂ I1

∂ A
∂ I2

∂ A
∂ R

∂ A
∂ F

∂ A
∂ L1

∂ A
∂ L2

∂ B
∂ S

∂ B
∂ E

∂ B
∂ I1

∂ B
∂ I2

∂ B
∂ R

∂ B
∂ F

∂ B
∂ L1

∂ B
∂ L2

∂ C
∂ S

∂ C
∂ E

∂ C
∂ I1

∂ C
∂ I2

∂ C
∂ R

∂ C
∂ F

∂ C
∂ L1

∂ C
∂ L2

∂ D
∂ S

∂ D
∂ E

∂ D
∂ I1

∂ D
∂ I2

∂ D
∂ R

∂ D
∂ F

∂ D
∂ L1

∂ D
∂ L2

∂ F
∂ S

∂ F
∂ E

∂ F
∂ I1

∂ F
∂ I2

∂ F
∂ R

∂ F
∂ F

∂ F
∂ L1

∂ F
∂ L2

∂ G
∂ S

∂ G
∂ E

∂ G
∂ I1

∂ G
∂ I2

∂ G
∂ R

∂ G
∂ F

∂ G
∂ L1

∂ G
∂ L2

∂ H
∂ S

∂ H
∂ E

∂ H
∂ I1

∂ H
∂ I2

∂ H
∂ R

∂ H
∂ F

∂ H
∂ L1

∂ H
∂ L2

∂ P
∂ S

∂ P
∂ E

∂ P
∂ I1

∂ P
∂ I2

∂ P
∂ R

∂ P
∂ F

∂ P
∂ L1

∂ P
∂ L2




� (20)
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For the model’s stability. It complies with the requirements:
The equilibrium of the model is stable for ρ (J) < 1. Whether ρ (J) > 1 determines whether the equilibria 

of the model are stable. The equilibrium states of the model are inherently stable when ρ (J) = 1.
The following is an expression for the elements of the method-related Jacobian:
Hookworm-free equilibrium (HFE), H0 =

(
S0, E0, I0

1 , I0
2 , R0, F 0 L0

1, L0
2
)

=
(

π
µ

, 0,0, 0, 0,0, 0,0
)

	

J
(
H0)

=




1
1+h(µ ) 0 0 0 hγ

1+h(µ ) 0 0 −
hλ e−µ τ

(
h
(

π
µ

)
+h[π ]

)
(1+h(µ ))2

0 1
1+h(µ +ϵ σ +(1−ϵ )σ ) 0 0 0 0 0

h
[

λ
(

π
µ

)
e−µ τ

]
1+h(µ +ϵ σ +(1−ϵ )σ )

0 h[(1−ϵ )σ ]
1+h(τ 1+µ +θ 1)

1
1+h(τ 1+µ +θ 1) 0 0 0 0 0

0 h[ϵ σ ]
1+h(δ +µ +θ 2) 0 1

1+h(δ +µ +θ 2) 0 0 0 0
0 0 h[θ 1]

1+h(µ +γ )
h[θ 2]

1+h(µ +γ )
1

1+h(µ +γ ) 0 0 0
0 0 h[α ]

1+h(ψ +ω )
h[α ]

1+h(ψ +ω ) 0 1
1+h(ψ +ω ) 0 0

0 0 0 0 0 h[ω ]
1+h(v+φ )

1
1+h(v+φ ) 0

0 0 0 0 0 0 h[φ ]
1+hk

1
1+hk




Thus, the Jacobian’s eigenvalues at H0 are as follows:
λ 1 = 1

1+h(µ ) < 1, λ 3 = 1
1+h(τ 1+µ +θ 1) , λ 4 = 1

1+h(δ +µ +θ 2) , λ 5 = 1
1+h(µ +γ ) , λ 6 = 1

1+h(ψ +ω ) , 
λ 7 = 1

1+h(v+φ ) , λ 8 = 1
1+hk  provided that R0 < 1 and λ 2 = 1

1+h(µ +ϵ σ +(1−ϵ )σ ) < 1.
Thus, all the eigenvalues lie in the unit circle at hookworms’ free equilibrium point. As desired.

Computational results
This section contrasts a non-standard computing method with established numerical methodologies (see 
Table 2).

Discussion
This section provides a discussion of the graphical presentation of the standard and nonstandard methods like 
Euler Maruyama, stochastic Euler, stochastic Runge Kutta, and nonstandard finite difference (NSFD) methods. 
Figure 2a,b present a comparative analysis of infected human populations under heavy infection scenarios using 
the Stochastic Non-Standard Finite Difference (NSFD) method and the Euler-Maruyama method. At a step size 
of h = 0.01, both methods exhibited convergence as shown in Fig. 2a. However, when the step size was increased 
to h = 1, the Euler-Maruyama method diverged while the Stochastic NSFD method-maintained convergence, 
as illustrated in Fig.  2b. Figure  3a,b analyze the population of infected humans with heavy infections using 
the Stochastic NSFD and Stochastic Euler Method. Both methods showed convergence at h = 0.01 in Fig. 3a. 
However, when the step size increased to h = 2 at the hookworm endemic point, the Stochastic Euler Method 
diverged, whereas the Stochastic NSFD method continued to converge, as depicted in Fig.  3b. Figure  4a,b 
analyze the population of infected humans under heavy infections using the Stochastic NSFD and Stochastic 
RK methods. Convergence is observed in both methods at h = 0.01 in Fig. 4a. However, at the hookworm 
endemic point, increasing the step size to h = 3 results in divergence for the Stochastic RK Method, whereas 
the Stochastic NSFD method maintains convergence, as illustrated in Fig. 4b. In Fig. 5a, the graph illustrates 
how varying delays τ = 1, 2, 3, 4, 5 affect the susceptible class of the model. Figure  5b demonstrates the 
impact of these delays on the infected class across τ values 1, 2, 3, 4, and 5, showing a gradual reduction in 

Parameter Value Source10

Π 0.5 Assumed

µ 0.5 Assumed

λ
HFE = 0.1
HEE = 1.1 Estimated

k 0.093 10

σ 0.65 Estimated

v 0.28 10

ω 0.3 Assumed

ψ 0.06 10

α 0.09237378 10

γ 0.0126 Assumed

φ 0.026 10

θ 1 0.3558 10

θ 2 0.34196 10

τ 1 0.44 Assumed

δ 0.03 10

ϵ 0.64263 10

Table 2.  Value of parameter.
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disease prevalence over time. Figure 6 compares the delay terms τ  with the basic reproduction number R0
. As τ  increases, R0 shows a decreasing trend. Specifically, at τ = 1.80 days, R0 equals 1.042, indicating a 
diminishing disease presence in the host population over time.

Conclusion
In this paper, we developed and analyzed a model for the transmission dynamics of Hookworm infection in a 
human population using stochastic delay differential equations. The feasible properties of the model like positivity 
and boundedness studied. Also, we discuss two states of the model Hookworm free equilibrium and hookworms 
endemic equilibrium. Also, the reproduction number of the delayed model is investigated. After that, we studied 
the stochastic formation of the model in two ways transition probabilities and non-parametric perturbations, 
and verified the positivity and boundedness of the model. Due to nonlinearity and nondifferentiable terms of 
Brownian motion, these stochastic systems have no analytical solutions. So, we have used some standard and 
nonstandard numerical methods for its results. The implementation of standard methods like Euler Maruyama, 

Fig. 3.  Analysis of stochastic Euler versus stochastic NSFD methods. (a) Graphical solution of infected 
humans with heavy infections at h =0.1 (b) Graphical solution of infected humans with heavy infections at 
h =2.

 

Fig. 2.  Analysis of Euler-Maruyama versus stochastic NSFD methods (a) Graphical solution of infected 
humans with heavy infections at h =0.01 (b) Graphical solution of infected humans with heavy infections at 
h =1
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Stochastic Euler, and stochastic Runge Kutta many discrepancies such as negative and unbounded results for 
the different values of time size, and did not apprehend a long-term behavior of the disease. To overcome such 
discrepancies, we used a stochastic nonstandard method for its results which restored the dynamical properties 
of the model and free of-time step size. Results from our modeling suggest that chemotherapy is administered 
to individuals infected with Hookworm, awareness campaigns of prevention methods, and well-known personal 
hygiene procedures including bathing and public toilets.

In future work, we will also seek optimal control strategies to minimize the emergence of moderate and 
severe infections in our future work. These strategies will also aim to reduce the cost of management within an 
optimally-designed Hookworm control system.

Fig. 5.  Comparison of stochastic NSFD method on time-delayed susceptible and infected humans with heavy 
infections population (a) Impact of susceptible humans for different values of delay parameter (b) Impact of 
infected humans for different values of delay parameter.

 

Fig. 4.  Analysis of stochastic Range Kutta versus stochastic NSFD methods. (a) Graphical solution of infected 
humans with heavy infections at h =0.1 (b) Graphical solution of infected humans with heavy infections at 
h =3.
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Data availability
The references for the data used to support the findings of this study are cited within the article.

Appendix A

	

dN (t)
dt

= π − λ S (t) L2 (t) e−µ τ − µ S (t) + γ R (t) + λ S (t) L2 (t) e−µ τ − µ E (t) − ϵ σ E (t) − (1 − ϵ ) σ E (t)

+ (1 − ϵ ) σ E (t) − (τ 1 + µ + θ 1) I1 (t) + ϵ σ E (t) − (δ + µ + θ 2) I2 (t) + θ 1I1 (t) + θ 2I2 (t) − (µ + γ ) R (t)
+ α I1 (t) + α I2 (t) − (ψ + ω ) F (t) + ω F (t) − (v + φ ) L1 (t) + φ L1 (t) − kL2 (t)

	
dN (t)

dt
+ µ N (t) ≤ π

	
N (t) ≤ N (0) e−µ t + π

µ

By the Gronwall’s inequality, we get

	
lim

t→ ∞
SupN (t) ≤ π

µ

It demonstrates that the system (1)’s solution is bounded and falls inside the appropriate region β 1.
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