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This study explores the integration of nanotechnology and Long Short-Term Memory (LSTM) machine 
learning algorithms to enhance the understanding and optimization of fuel spray dynamics in 
compression ignition (CI) engines with varying bowl geometries. The incorporation of nanotechnology, 
through the addition of nanoparticles to conventional fuels, improves fuel atomization, combustion 
efficiency, and emission control. Simultaneously, LSTM models are employed to analyze and predict 
the complex spray behavior under diverse operational and geometric conditions. Key parameters, 
including spray penetration, droplet size distribution, and evaporation rates, are modeled and 
validated against experimental data. The findings reveal that nanoparticle-enhanced fuels, coupled 
with LSTM-based predictive analytics, lead to superior combustion performance and lower pollutant 
formation. This interdisciplinary approach provides a robust framework for designing next-generation 
CI engines with improved efficiency and sustainability. Diesel engine performance and emissions 
were found to be influenced by variations in combustion chamber geometry, underwent validation 
through simulation using Diesel-RK. Re-entrant bowl profile in quaternary blend is found to exhibit 
31.3% higher BTE and 8.65% lowered BSFC than the conventional HCC bowl at full load condition. 
Emission wise, re-entrant bowl induced 90.16% lowered CO, 59.95% lowered HC and 15.48% lowered 
smoke owing to improved spray penetration and faster burning of soot precursors. However, the NOx 
emissions of DBOPN-TRCC were found to be higher. The simulation outcomes, derived from Diesel-
RK, were subsequently compared with empirical data obtained from real-world experiments. These 
experiments were systematically carried out under identical operating conditions, employing different 
piston bowl geometries.
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Abbreviations
ppm  Parts per million
nm  Nano metre
°CA  Degree crank angle
°C  Celsius (degrees)
nm  Nanometer
ppm  Parts per million
g  Grams
g/kWh  Gram per kilowatt hour
h  Hour
kg  Kilogram
kJ/kg  Kilo Joules per kilogram
kW  Kilowatt
lpm  Liter per minute
mg  Milligram
min  Minutes
m  Meter
mm  Millimeter
MPa  Mega Pascal
N.m  Newton meter
ηth  Thermal efficiency
CO  Carbon monoxide
NOX  Oxides of nitrogen
CO2  Carbon dioxide
HC  Hydrocarbon
GHG  Green house gases
CEEMDAN  Complete ensemble empirical mode decomposition with adaptive noise
TEM  Transmission electron microscopy
RNN  Recurrent neural network
MAPE  Mean absolute percentage error
CI  Compression ignition
TCC  Toroidal combustion chamber
TiO2  Titanium oxide
HRR  Heat release rate
DBOP  Diesel-biodiesel-oil-pentanol blends
DBOPN  DBOP with 20 ppm TiO2 nano additives
BSFC  Brake specific fuel consumption
BTE  Brake thermal efficiency
CC  Combustion chamber
BTDC  Before top dead centre
DPF  Diesel particulate filter
MAP  Mean average precision
CR  Compression ratio
CP  Cylinder pressure
RSM  Response surface methodology
ANFIS  Adaptive neuro-fuzzy inference system
IP  Injection pressure
IT  Injection timing
SEM  Scanning electron microscopy
R2  Coefficient of determination
CRDI  Common rail direct injection
CNT  Carbon nanotube
TRCC  Toroidal re-entrant combustion chamber
HCC  Hemispherical combustion chamber
SDCC  Shallow depth combustion chamber
LSTM  Long short term memory
ANN  Artificial neural network
GA  Genetic algorithm
GRU  Gated recurrent unit network
TDNN  Time delay neural network

Fuel has always been a critical driver of the global economy. Nevertheless, the huge dependence of various 
industries, particularly the logistics, on fossil fuel and its by-products has brought us to the edge of their 
depletion. This reliance raises concerns about the negative impacts, including pollution and contributions to 
global warming through fuel emissions. Consequently, there’s an urgent need to establish a robust framework 
to measure these harmful emissions. Addressing this challenge involves initiatives aimed at developing 
alternative fuel sources. Recent trends have witnessed a significant upsurge in Bio-fuel research due to its 
diverse advantages. Beyond reduced emission levels, the ease of manufacturing presents another notable benefit. 
Various methodologies are being utilized to improve Bio-fuel efficiency and identify the most suitable blends of 
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fossil fuels. Predictive modeling by AI-ML (Artificial Intelligence-Machine Learning) of engine emissions plays 
a pivotal role in the quest for the optimal fuel blend. Predictive modeling encompasses generating outcomes 
through statistical methods and principles of probability. To yield accurate results, this approach necessitates 
specific input data. The accuracy of a prediction increases with the quantity of test data supplied to the model. 
The precision of a prediction is a key aspect of determining the model’s precision. Additionally, this paper delves 
into recent technological innovations in the realm of Machine Learning, which synergizes with AI to create a 
successful precise and concise model.

Ghobadian et al.1  constructed an ANN trialed model aimed at focusing on the performance and engine 
emissions as the output with waste vegetable cooking oil based biofuel. The experimental procedure initiated 
with the production of biofuel after gathering used vegetable cooking oil. This biofuel was introduced to a 2 
cylinder diesel engine with emissions and performance parameters were recorded and computed. Diverse blends 
of biofuels were formulated, with each blend undergoing the same standardized testing protocol. This method 
generated a substantial volume of data utilized for training the ANN. Following the creation and evaluation of 
the model, the outcomes demonstrated that the back-propagation algorithm effectively predicted performance 
parameters. The calculated RMSE root mean error approached 0.0004, closely resembling the ideal value, 
indicating the accuracy of the predictions made.

Azeez et al.2 employed an enhanced artificial neural network model for estimating the carbon monoxide 
(CO) emissions and creating daily restricted maps of a specific area. The exhaust data used in this research 
originated from the traffic vehicles operating in the designated location. The study introduced hybrid models 
that integrated data mining and Geospatial Information System (GIS) with a focus on designing, analyzing, 
and storing various spatial data, etc. In addition, the prediction maps were generated to facilitate the analysis of 
localized CO emission levels. The model achieved an impressive accuracy rate of 86%, making it a valuable tool 
for monitoring localized emission predictions from daily traffic vehicles. This model proves highly beneficial 
in understanding emission patterns, especially when emissions peak, offering valuable insights into harmful 
emissions’ temporal trends. In 2013, a similar approach was adopted3, yielding the predictions for a turbocharged 
engine, encompassing both performance analysis and engine emissions. Similar ANN models were used by 
various researchers for predicting the performance and emission spectrums4–6.

Uslu et al.7  employed an ANN technique for evaluating the brake power and torque of a SI engine. The 
research highlighted the scarcity of information concerning the use of iso-amyl alcohol-based fuel. Test rigs were 
used in experiments to gather exhaust spectrum. Data sets were constructed using altering specific input data, 
such as throttle, speed, and adjustments in the CR (compression ratio). This dataset was further utilized to train 
the ANN. For the refinement of the ANN model’s performance, they utilized Response Surface Methodology 
(RSM). The determined correlation factor ranged from 0.94 to 0.99.

Multiple methods, including modeling and simulation, have been employed to estimate diesel engine 
emissions, broadly sorted for 4 categories: (1) PM and NOxsensor calibration8 ; (2) MAP (Mean average 
precision) -based look-up methods9 ; (3) 0 (or) 3 dimensional modeling10 ; (4) data-driven ML prediction 
techniques11. Radio frequency sensors were also appended by researchers to monitor the DPF (Diesel Particulate 
Filter), leading to enhanced DPF durability and reduced SFC12.

Nevertheless, sensor measurement techniques face challenges such as high expenses and complex 
structures13,14. The commonly used MAP method requires extensive calibration and significant experimental 
resources, particularly for obtaining precise emission characteristics during transient operations15. While 
modeling methods effectively reduce research time and expenses, they necessitate a deep understanding of 
complex theories, demanding high expertise from researchers and equipment. Among these methods, data-
driven ML approaches have attracted interest owing to benefits: shorter computation time reduced cost, high 
predictive accuracy, and robustness16,17.

This involves using diverse machine learning algorithms to create opaque models for predicting diesel engine 
emissions without considering operational mechanisms18. Machine learning methods provide a balanced 
trade-off between model accuracy and computational resources during the modeling process, significantly 
simplifying the complexity of emission prediction19. Machine learning techniques have found widespread 
application across diverse domains, including autonomous driving19, electric vehicle charging prediction20, 
language processing21,22, face recognition23, and traffic flow forecasting24. Sangharatna et al.25 utilized the 
neural networks (NN) to diagnose faults by detecting and diagnosing engine component status through fault-
related signals. Machine learning has been employed to predict diesel emissions since Atkinson26 developed a 
NN based prediction model in 1998. Due to the non-linear fitting and generalization capabilities of machine 
learning methods, they simplify efficient engine optimization16, leading to increasing interest from researchers. 
Table 1presents an extensive review of literature on the performance and emissions in engine characteristics (not 
limited to diesel engines) using ML techniques. Early studies mainly relied on data collected from lab engine 
operations during stable conditions, with the ANN algorithm being predominant26–28. Tables 2 and 3 indicate 
the significance of bowl geometries and nano additives in engine characteristics respectively.

The fuel spray characteristics study is also gaining prominence in recent years as it considers various key 
factors such that could alter the primary jet formation and atomization process48. With higher fuel density, the 
impinging inertia is improved drastically which could slow down the spray velocity along with higher surface 
tension which induces cohesive forces and larger Sauter Mean Diameter (SMD) of fuel droplets49. Some studies 
also reveals that, higher fuel viscosity has significant effect on hampering the aerodynamic thrust of the fuel 
surface and could cause much dawdle in break-up of fuel spray48. Highly viscous fuels such as B50 and above 
could eventually result in higher surface tension and become tough to break up on interaction with air/gas 
followed by higher STP, lowered SCA and increased SMD50. In general, biofuels were blended with volatile 
fuels to improve the spray properties51. Geng et al.52 found that pure biofuel had a 33.59% higher smoke point 
(STP) and a 33.08% larger droplet size (SMD) compared to diesel (B0). The addition of 30% ethanol to biodiesel 
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resulted in a substantial decrease in its kinematic viscosity and surface tension, leading to a notable improvement 
in the spray breakup. Hence, the B70E30 exhibited a decrease of 22.05% in its STP and a decrease of 20.88% 
in its SMD, when compared to B100. Multiple studies have shown that biodiesel has ↑STP, ↓SCA, ↑SMD, and 
less velocity of fuel injection with respect to mineral diesel53,54. For instance, Raghu et al.55 examined spray 
properties of biofuels and verified that biofuels have ↑STP and ↓SCA compared to diesel55.

Novelty of the current research
In spite of several investigations delved into alternative fuel with machine learning, this particular study aims 
to explore quaternary fuel as the primary fuel doped with nano particle with various bowl geometries. With 
limited prior research delving into the combination of biofuel and nano additives, key focus of present work is 
to analyze the impact of introducing the nano biofuel in various bowl geometries on diesel engine behavior and 
performance. Apart from standard hemispherical bowl, toroidal, shallow depth and toroidal re-entrant profiles 
were evaluated. The gathered data underwent analysis using a machine learning approach that utilized the 
Long Short-Term Memory (LSTM) model within an artificial neural network framework across various engine 
loading conditions. Also, using Diesel-RK combustion simulation software, the fuel spray characteristics were 
studied for various bowl profiles and the results were compared.

Researcher Geometry used Fuel/experiment or simulation Parameters employed Significance

Saito et al.35 Re-entrant chamber 100% diesel (experimental) Shall depth and re-entrance CC Lowered BSFC, less emissions

Zhu et al.36 TRCC 100% diesel (experimental) Pip area, torus radius, piston bowl lip area Improved air-fuel mixing, lowered 
emission, high performance

Dolak et al.37 Stepped bowl chamber 100% diesel (simulation) Swirl, modified spray angle, fuel injection rate Lowered SFC at part and full load, less 
CO and soot precursors

Lim et al.38 Bowl-in-piston (Mexican 
hat shaped) 100% diesel (simulation) Different spray angles (70, 100 and 130 deg)

Lowered NOx emissions and soot 
(about 6.8%) for 70 deg spray angle 
with Mexican hat shaped geometry

Shi et al.39 Quiescent 100% diesel (experimental) Swirl ratio inducement, spray target with part and 
high load variation

Full load with swirl resulted in higher 
performance and minimized emissions

Wickman et al.40 Re-entrant chamber 100% diesel (simulation) EGR, Swirl ratio, SOI, injection pressure and 
compression ratio Lowered BSFC, CO, NOx and CO2

Table 2. Overview of various bowl geometries and their significances35–40

 

Researcher Model used Fuel used Input parameters Output variables/responses Test dataset and value

Atkinson et al.26 ANN 100% diesel Speed, temperature, rail pressure Brake power, SFC, emission MAPE value < 5%

He et al.28 ANN 100% diesel EGR, engine load, injection pressure, 
engine speed, SOI

Combustion characteristics, NOx 
emission profile

MSE values: Pcyl0.543, 
Tcyl28.65, NOx 58.5

Ivan et al.29 RNN 100% diesel Air-fuel ratio, speed, injection timing 
advance Emission: NOx MAPE value < 2%

Gokhan et al.30 GRU 100% diesel
Equivalence ratio, engine speed, SOI, 
fuel injection rate and quantity, pilot 
injection

Oxides of nitrogen (NOx) R2 value
> 0.75

Yang et al.31 LSTM and 
CEEMDAN 100% diesel Throttle open rate, SFC, engine speed, 

torque Oxides of nitrogen (NOx) MAE value 29.82, RMSE 
value, 46.11, R2 value 0.98

Tran Van et al.32 ANN
Biodiesel blends 
with diesel and 
nano additives

Nano additive, engine load, blend 
composition

Hydrocarbon (HC), carbon monoxide 
(CO), NOxs emission

R2 value
HC 0.86
CO 0.81
NOx 0.99

Planakiset al.17 RNN, TDNN Pure diesel Engine speed, air fuel ratio, intake 
pressure, engine load Oxides of nitrogen (NOx)

R2 value
RNN 0.918
TDNN 0.733

Shin et al.15 ANN Pure diesel Injection pressure, injection timing, IP, 
intake flow Emission: NOx MAPE value: 9.1%

Hao et al.33 LSTM Pure diesel Air fuel ratio, relative speed, engine 
torque, oil/coolant, exhaust temperature Emission: HC, CO and NO

R2 value
HC 0.93
CO 0.81
NO 0.85

Joseba et al.34 ANN Pure diesel Engine speed, torque, rail pressure, 
ambient pressure, relative humidity

Performance: BSFC
Emission: CO, CO2, NOx

R2 value
BSFC 0.98
CO 0.76
CO2 0.89
NOx0.85

Table 1. Overview of model used along with test dataset values.
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Materials and methods
Test fuel preparation
The test fuel employed for the current experimentation is a quaternary blend of diesel/biodiesel/vegetable 
oil/pentanol and termed as DBOP blend. The DBOP blend is comprised of 50% diesel (vol%) + 5% biodiesel 
(vol%) + 5% vegetable oil (vol%) + 40% (vol%) pentanol. This combination is selected based on fuel properties 
and experimentation from previously published data56. DBOPN is prepared by blending 20ppm TiO2 nano 
additives with DBOP blend. TiO2 nano additives were chosen as specific additive due to its improved oxidation 
at higher cylinder temperatures so that it can acts as a buffer O2 for promoting oxidation. Also, the 20ppm 
concentration is opted based on experimentation and fuel property analysis. The blends were initially prepared 
using magnetic stirrer followed by ultrasonication. The blends were then checked for stability. The blends were 
initially found to be stable for 48 h. Then, surfactant Span80 + Tween 20 was added to the blend at concentration 
of 5 mg/L. After this, the blends were found to be stable for more than 120 h. The fuel properties of the test fuel 
blend, physio-chemical properties and properties of test fuel blends were displayed in Tables 4, 5 and 6. The 
above blend has been chosen owing to the fact that it has highest Brake thermal efficiency than other blend 
concentrations, lowered BSFC, HC, CO and Smoke opacity (indicated by Ref56). However, the NOx profile of 
DBOP40 is higher for which the current work employs the usage of various bowl geometries and nano additives 
and their influence is studied and validated by LSTM (Long Short Term Memory) machine learning algorithm.

Nanoparticle preparation and characterization
First, the precursor ingredient, titanium tetraisopropoxide, is neutralised with ethanol, hydrochloric acid, and 
deionised water. This was followed by thirty minutes of vigorous stirring to lower the pH of the liquid to 1.5. 

Properties ASTM method Diesel jatropha oil Jatropha biodiesel Pentanol

Density at 20 °C, kg/m3 D1298 840 940 874 814

Kinematic viscosity at 40 °C, cSt D445 2.84 24.5 4.34 2.88

Heating value, kJ/kg D240 44,705 38,650 42,673 35,164

Flash point, °C D93 68 225 130 33

Cetane number D613 48 38 53 20

Iodine value, gI2/100 g D1959 0.15 97.2 0.26 –

Carbon residue (%) D524 0.12 1.0 0.25 –

C/H ratio (by vol) D5291 6.52 6.54 6.93 4.96

Acid value, mg KOH/g D974 – 3.83 0.40 –

Elemental analysis (%wt)

 C (%) 80.12 76.99 82.22 68.12

 H (%) 12.2 11.77 11.96 13.72

 O (%) 1.21 10.58 5.74 18.15

 N (%) 1.68 0.66 0.041 –

 S (%) 4.79 – 0.038 –

Table 4. Physical properties of diesel, Jatropha vegetable oil and Jatropha biodiesel (Data sourced from56).

 

Researcher
Nano additive and surfactant 
concentration Base fuel and surfactant Engine specification Significance

Sivakumar 
et al.41

Al2O3 (50–100 ppm), Cetyltrimethyl 
ammonium
bromide

Palm oil methyl ester Single cylinder, 4 S, Kirloskar AV1, 210 bar IP 
and 23degbTDC IT, 16.5:1 CR, 1500 rpm

7% high BTE, lowered BSFC, HC, CO, 
higher NOx emissions

Ranjan et 
al.42 MgO (30 ppm), 4-chlorobenzoyl chloride Waste cooking oil 

biodiesel
Single cylinder, Kirloskar TV1, vertical, 
1500 rpm, 17:1 CR, load (4.7–18.11 kg)

Higher BP, BSFC and BTE, CO2, lowered 
HC, CO and NOx, improved combustion

Mehreganet 
al.43

Manganese oxide and cobalt oxide (25 
ppm and 50 ppm), no surfactant B20 Waste frying oil 4 cylinder, 4 stroke urea-SCR direct injection, 

CR 17.9: 1, IP210 bar, IT 23 deg bTDC
Lowered SFC at part and full load, higher 
thermal η, drastic reduction of NOx 
and CO.

El-Seesy et 
al.44

Al2O3 (50–100 ppm), 20 mg per litre, no 
surfactant Jojoba oil methyl ester Deutz F1l511, 1 cyl, 4 S, DI,1500 rpm, IP175 

bar, IT 24 deg bTDC
NOx 70%↓, CO 80%↓, HC 60%↓, and 
Smoke 35%↓, 12% drop in BSFC

Hoseini et 
al.45

Graphene oxide (30, 60 and 90 ppm), no 
surfactant

Ailanthus altissima 
biodiesel

Lombardini Diesel 3LD510, 1800 rpm, 17.9:1 
CR, 1 cyl, non-turbocharged, 32.8 Nm torque ↓HC, ↓CO, ↓BSFC, ↑NOx and ↑CO

Kumar et 
al.46

Ferrous oxide and ferrofluid (0.5%, 1% 
and 1.5%), Surfactant: 2 mol of NaOH B20 palm oil methyl ester Single cylinder, 4 S, Kirloskar TV1, 210 bar IP 

and 23degbTDC IT, 16.5:1 CR, 1500 rpm
↑ BTE (by 16.6%), ↓BSFC (by 11.1%), 
other emissions reduced simultaneously

Ashok et 
al.47

Zinc oxide (50 and 100 ppm), Ethanox 
(200 and 500 ppm) Surfactant: Alcohol

CalophyllumInophyllum 
methyl ester

Simpson S217, Two cyl 4 S, DI, vertical, IT 
23 deg bTDC, IP 200 bar 18.5:1 CR

High BTE for ZnO (29.5%) than Ethanox 
(26.8%), lowest BSFC for ZnO 50 ppm, 
18.4% and 13% less CO and HC for ZnO 
50 ppm, 17.8% less NOx for Ethanox (500 
ppm), 12.6% less NOx for ZnO100ppm.

Table 3. Overview of a variety of nano additives and their influence on characteristics of engine41–47
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The pH level was then raised to six after two hours of continuous stirring and the addition of 10 mL of deionised 
water at room temperature. Once another titration with demonized water was completed, cladigel was produced; 
its pH was 8. Next, for a whole day at 150 °C, the cladigel was dried and calcined. TiO2 nanoparticles were finally 
produced by heating the dried samples to 300 °C for two hours. The manufactured TiO2 nanoparticles’ physical 
properties are described in more detail in Table 7.

Distinct lattice fringes were revealed by HR-TEM and TEM morphology (Fig. 1a, b) using the JEM-3010 
ultra-high-resolution analytical electron microscope, showing the presence of nano crystalline TiO2 particles. 

Fig. 1. (a) HR-TEM, (b) TEM, (c) SEM of TiO2nano particles57

 

Property ASTM method Value

Colour – White

Particle size, average (nm) E3247 19–24

Purity (%) D476 96.99

Specific surface area (m2/g) C1069 372

Bulk/true density (g/cc) D7263 0.18

Microstrain (ξ) D4892 0.084

Dislocation density (δ) (line2/m2) E2208 0.5 × 1014

Table 7. TiO2 nano particle properties (Data sourced from57).

 

Fuel properties ASTM method DBOP40 DBOP40+10 ppm TiO2 DBOP40 + 20p pm TiO2 (represented as DBOPN) DBOP40+30 ppm TiO2

Density (kg/m3) D1298 834 831 830 827

Kinematic viscosity (cSt) D445 3.71 3.58 3.52 3.23

Calorific value (kJ/kg) D240 44,456 44,652 45,017 44,841

Cetane number D613 46.45 46.7 46.8 46.5

Flash point (°C) D93 73.9 75 78 77

Table 6. Properties of fuel blends with nano particle.

 

Fuel properties ASTM method D50B50 DBOP10 DBOP20 DBOP30 DBOP40 (represented as DBOP)

Density (kg/m3) D1298 859 851 846 841 834

Kinematic viscosity (cSt) D445 3.27 3.38 3.49 3.60 3.71

Calorific value (kJ/kg) D240 43,146 43,526 43,716 44,076 44,456

Cetane number D613 50.25 49.3 48.35 47.4 46.45

Flash point (°C) D93 98.7 92.5 86.3 80.1 73.9

Table 5. Physio-chemical properties of test fuels (Data sourced from56).
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An inconsistent spherical distribution of nano particles with mild aggregation was apparent in the SEM picture 
(Fig.  1c) produced using the VEGA3-TESCAN preparation. Figure  2 depicts the outcomes of the energy 
dispersive spectrum analysis (EDX) of TiO2 nano particles (Make: INCA Energy 250 micro analysis equipment), 
which verifies that the composition contains just titanium and oxygen components and does not contain any 
observable contamination.

Experimental setup
An agricultural based single-cylinder, four-stroke compression–ignition engine is used in this investigation. 
The engine configuration is depicted in Fig. 3, and the test engine’s parameters are listed in Table 8. Emission, 
performance, and combustion characteristics of the engine when running on a blend of DBOP enhanced with 
TiO2 nano additions are the primary objectives. A dynamometer is connected to the engine, and the position 
of the crank angle is continuously monitored by a crank angle encoder. Water cooling systems are installed 
in both the engine and the dynamometer. On the vertical surface of the cylinder, an in-cylinder pressure 
transducer is mounted in order to measure the maximum pressure. Furthermore, a system that incorporates 
an electronic control unit to regulate crucial engine operating parameters, such as the IT (injection timing) 
and IP (injection pressure). A high-speed Data Acquisition System (DAS) is utilized for the collection and 
recording of combustion-related data, encompassing cylinder pressure fluctuations, Heat Release Rate (HRR), 
and Cumulative Heat Release Rate (CHRR). The quantification of regulated emissions such as HC, CO, CO2, 
NOx, and smoke is conducted through AVL gas analyzers and a Bosch smoke meter.

Combustion bowl alteration
The main reason for combustion chamber geometry in the cylinder piston is to enhance the turbulence results 
in better mixing of air/fuel. During the first two strokes, suction of air takes place at a very high-pressure and 
has several motion turbulences which eventually results in a heated air. These typical erratic motions were 
widely dependent on bowl geometries as the movement of air is pretty random in topmost area of piston. At 
the end of the second stroke, only the fuel is supplied where these turbulent air mixtures uphold evaporation 
and vaporization phenomenon. For the present experimentation, different bowls were considered namely TCC, 
TRCC and SDRCC with a constant volume of 661 cc equivalent to that of standard HCC. Hence, compression 
ratio is also held constant. The different combustion chamber geometries were illustrated in Fig. 4.

LSTM network—an overview
Time series data is a frequently encountered data format. Among the various sectors and applications that LSTM 
covers are finance, health monitoring, demand and supply forecasting, and other disciplines. In the context 

Fig. 2. Energy dispersive spectrum analysis (EDX) of TiO2nano particles57
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of time series analysis, a common task involves forecasting future values by utilizing historical data, typically 
when presented with a historical array of time series values. Time series forecasting techniques branches into 
two primary domains: those that rely on machine learning models and those that adhere to traditional statistic 
methods. While the latter recurrent neural networks (RNNs), is commonly utilized to detect, classify, and 
forecast anomalies in time series data.

RNNs are purposefully crafted to improve the processing of sequential data by considering the intrinsic 
sequential structure of the dataset. Within a conventional RNN network, the calculation proceeds sequentially 
from the initial sequence element to the last one, advancing one step at a time. At each step, it takes in two inputs: 
In the context of a basic LSTM, the input consists of current succession element and the output generated by the 
preceding sequence element. These inputs may be represented as numerical values or textual descriptions. The 
LSTM layer is usually sandwiched amid input &output layers. A deep LSTM network’s LSTM layer configuration 
can be altered to meet the requirements of a given application. Deep LSTM performs well over the basic LSTM 

Type Kirloskar, four stroke DI diesel engine

Bore × stroke 87.5 mm × 110 mm

Number of nozzle holes 3

Stroke volume 661 cc

Geometry of piston Hemispherical

Injection timing 23° bTDC

Injection pressure 200 bar

Cone angle of fuel spray 120°

Compression ratio 17.5:1

Nozzle spray hole diameter 0.3 mm

Inlet valve open 4.5° before TDC

Inlet valve close 35.5° after BDC

Rated power 4.4 kW

Rated speed 1500 rpm

Exhaust valve open 35.5° before BDC

Exhaust valve close 4.5° after TDC

Table 8. Test engine specification.

 

Fig. 3. Schematic of the experimental setup.

 

Scientific Reports |          (2025) 15:983 8| https://doi.org/10.1038/s41598-024-83211-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


due to the fact that it can process input values through time in a single LSTM cell as well as across numerous 
LSTM layers.

Thus, each time step’s inputs undergo a thorough processing due to the layers’ equitable distribution of the 
input variables. Recurrent Forecast Layer (RFL) is a subset of LSTM. To address the computational complexity 
issues associated with employing a conventional LSTM RNN at each time step, this novel architectural design 
was created. The final design (Deep LSTM with a Recurrent Projection Layer) has some LSTM layers with 
separate projection layers for each LSTM layer. Due to its ability to progress the model’s efficiency with greater 
depth, this arrangement is quite advantageous when handling excess storage demands. Increased depth also acts 
as a safeguard against over-fitting in models since it necessitates inputs to pass through a variety of non-linear 
functions in these networks.

LSTM models require intensive training by related datasets before they are suitable for use in real-world 
applications. Word sequences can be processed for purposes such as language modeling and text production. 
Linguistic models can operate effectively about multiple levels and even entire page. Also, noteworthy use 
pertains to processing of characters/images, where an input image undergoes analysis to create captions and 
sentences customized to that image. This entails the utilization of a dataset containing a multitude of images for 
training a specially crafted LSTM model, in conjunction with its associated descriptive captions. Following this, 
when new sets of images are presented to the model, it generates captions for these images. The model’s accuracy 
is contingent upon a range of parameters, encompassing the quantity of secreted layers, duration of training 
epoch and solver optimization.

LSTMs find another application akin to their role in text generation, and this pertains to the domain of music 
generation. In this scenario, LSTM networks predict musical notes by scrutinizing combinations of input notes. 
When it comes to language translation, LSTM’s facilitate the mapping of the sequence order of phrases from one 
language to its corresponding order in another language. Model training involves using a refined subset of the 
dataset that includes phrases and their translations after data cleaning. Before being produced as a transformed 
version, the input data undergoes conversion into a vector representation through an LSTM model. Generally, 
RNNs employ multiple layers, each encompassing functions like sigmoid, multiplication, and addition.

Within this architecture, data moves sequentially, transitioning from Ct−1till Ct, and this process involves 
the utilization of various parameters such as tan h, the sigma function, the value 1 (which allows data to pass 
through a sigmoid layer), and the value 0 (which prevents data transfer between consecutive stages). LSTM, as 
a subtype of recurrent neural networks, relies on long-term memory and has garnered substantial popularity 
across diverse fields when related with alternative models. In an ideal scenario, RNN incorporates multiple 
layers, each containing a 1 layer sigmoid function, multiplication, and subtraction. The math-model is displayed 
following the guidelines outlined in Ref59.

The LSTM architecture is shown clearly in Fig. 4. Within an LSTM, there are three gates which are controlled 
by the sigmoid activation function, functioning within a range from 0 to 1. In this range, a value of 0 acts as 

Fig. 4. Pictorial representations of modified piston bowl geometries58
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a barrier preventing incoming data, while a value of 1 allows data to pass freely. This function is purposefully 
crafted to generate a positive output, ensuring accurate and precise outcomes.

 it = s(wi[At−1, St] + bi) (1)

 ft = s(wf[At−1, St] + bf) (2)

 ot = s(wt[At−1, St] + bt) (3)

In the provided equations, the left-hand side (LHS) represents the input, forget, and output gates, denoted by 
the variables ‘i’, ‘f ’, and ‘o’. The symbol sigma (σ) is used to signify the sigmoid activation function. The symbol 
‘w’ stands for the weights assigned to the neurons within these respective gates. ‘At-1’ corresponds to the hidden 
state of the previous unit at time, ‘t-1’, while ‘St’ represents the input at the current time step. The symbol ‘b’ 
represents the biases linked to the three gates, as indicated in Fig. 5 with values 0, 1, 2, and 3.

Additionally, Eq. (1) delineates how the input gate determines the nature of the information to be carried 
forward. Equation (2) quantifies the degree to which the current unit should forget past information from the 
previous unit. Lastly, Eq. (3) governs the activation of the output gate for the current time step.

 C̃t = tan h(wc [At−1, St] + bc) (4)

 Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

 At = ot ∗ tan h(Ct) (6)

The variable Ct stands for the memory information at the present time step, and C̃t represents the candidate for 
the current cell state. The symbol ‘*’ indicates element-wise multiplication of the given vectors.

Upon scrutiny of Eqs. (4)–(6), it becomes apparent that the activation function in Eq. (8) assumes a vital role 
in deciding what information to discard and in shaping the final output, based on the previous memory state.

LSTM comparing to other models, has layer memory, and each output rely upon prior outputs which has 
potential to exploit the dependencies between time series data. In engine emission prediction, LSTM will be 
an add-on benefit as it has gated mechanism, long term-dependency handling, versatility and lesser gradient 
problems.

Diesel RK—software: fuel spray visualization
Diesel-RK simulation software is a top-notch tool for optimizing parameters linked to Compression Ignition 
(CI) engines because it is primarily made to imitate the real-world operational scenarios of diesel engines. 
Estimating diesel engine performance, combustion dynamics, and emission characteristics is the primary use. It 
operates on both conventional diesel fuel and a wide range of biodiesel categories. In particular, Diesel-RK is able 
to replicate the running cycles of a number of diesel engines without much dependence on empirical coefficients. 
These coefficients hold constant for a wide range of engine types and operating situations. Modern models 
for combustion and emission production are included in the strategy, along with strategies for optimization 
that insure adherence to existing emission regulations. It permits optimal emission control and conforms with 
current regulations.

Diesel-RK is unique in that it can imitate several combustion chamber geometries, encompassing nozzle, 
spray placement, swirl profiles, and multiple fuel injections. It is also a beneficial tool for maximizing piston 

Fig. 5. LSTM architecture.
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bowl shapes that comply with certain design specifications. Also, the software provides dynamic visualizations 
that demonstrate connections between adjacent sprays, air swirl patterns, and chamber walls and fuel sprays. A 
range of fuel substitutes enable an in-depth evaluation of diesel engine properties, such as thermal efficiency, 
in-cylinder pressure, heat release rates, ignition delays, and concentrations of soot, CO, and NOx. Therefore, 
by correlating these simulation results with experimental test data, exact inferences can be made. Without 
modifying the engine’s running conditions, Diesel-RK makes it less difficult to generate piston bowls with 
Hemispherical Combustion Chambers (HCC) that meet testing requirements during the experimental phase.

By using default data on widely accepted technical solutions for internal combustion engines and general 
diesel engine knowledge, Diesel-RK streamlines the development of input data files. This simplifies the process 
of entering data and calibrating the engine model. It is regarded as a professional tool of the industry, which 
makes it indispensable for researchers working on projects with tight deadlines and sparse experimental data. 
It uses combustion modeling and spray evolution simulations to take use of the physical characteristics of 
biofuel blends. Additionally, users can designate distinct fuels for different engine running modes and preserve 
bespoke fuel attributes in the internal database of the software. It introduces an alternative concept known as 
the multi-Zone quasi-dimensional model (as shown in Fig. 6), which partitions sprays into distinct zones based 
on a combination of geometric principles and considerations related to mixture formation and evaporation 
conditions. The figure provides a comprehensive overview of the multi-zone fuel spray model, which reveals 
the existence of seven distinct characteristic zones that correspond to specific evaporation and combustion 
conditions. Before the fuel jet makes contact with the surface (jet impingement), there are only three zones in 
the spray:

 1.  The free spray’s thick axial core.
 2.  The free spray’s thick forward front.
 3.  An outer sleeve that is diluted and encircles the free spray.

However, once the jet impinges on a nearby surface, the flow becomes more homogeneous and denser, leading 
to a further classification into four zones:

 4.  An axial conical core of the near-wall flow.
 5.  The flow’s thick core approaches the wall.
 6.  The near-wall flow’s dense forward front.
 7.  A diluted outer zone encircling the flow close to the wall.

Throughout its development, the spray eventually reaches both the cylinder liner and the cylinder head, 
completing its trajectory. Figure 7 illustrates the design of piston bowl for (a) HCC (b) SDCC, (c) TCC and d)
TRCC with Diesel-RK software.

The capacity of the engine simulation program DIESEL-RK to forecast the performance, combustion 
dynamics, and emission features of diesel engines running on different fuels under optimal conditions has 
recently brought it notoriety. Using the extensive thermodynamic engine simulation program DIESEL-RK, Al-
Dawody and Bhatti60  investigated creative methods for cutting NOx emissions. They recommended designing 
deeper piston bowls with smaller diameters based on their simulation tests, which showed a considerable 
reduction in nitrogen oxide emissions.

In an alternative investigation, Kuleshov61 conducted a thorough examination of diesel engine performance 
and emission characteristics under typical operating settings using DIESEL-RK simulation software. They found 
that the software may be a very useful tool for changing a lot of engine characteristics, such as fuel injection, 
nozzle count, exhaust gas recirculation, and piston bowl shape. Additionally, Venu et al.’s study62  looked at 
how emissions, combustion, and diesel engine performance are affected by the architecture of the combustion 
chamber. They performed engine experiments and simulations under similar operating conditions using the 
simulation system. With regard to the combustion chamber design, their work expands the body of knowledge 
regarding the software’s ability to analyze performance and optimize emissions of diesel engines.

Fig. 6. Multi zone-fuel spray model developed by Diesel-RK simulation58
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Uncertainty analysis
Errors and uncertainties can emerge from various factors like selection and calibration of instruments, changing 
environment conditions, tests and observations, etc. In general, uncertainty can be grouped into two major 
factors, namely fixed errors and random errors. The former scenario deals with repeatability while the latter 
deals with the analytical measurements. In this current work, the uncertainty of measured variable (ρX) is 
evaluated by Guassian distribution as shown in Eq. (7) within the confidence limits of ± 2σ. 2σ is the mean limit 
in which the 95% of measured values rely upon.

 
∆Xi = 2σi

Xi
× 100, (7)

where Xi is the number of readings, Xi denotes the experimental reading and σi represents standard deviation. 
The uncertainties of calculated parameters were assessed using the expression given below:

 R = f(X1, X2, X3, . . . Xn) (8)
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where R in Eq. (8) represents the function of X1, X2,…Xn and X1,X2,…Xn represents number of readings taken. 
Hence “ρR” is computed by RMS (root mean square) of errors associated with measured parameters. The 
uncertainties of various measuring instruments were illustrated in Table 9. By using Eq. (9), the uncertainties in 
various measured parameters were evaluated and tabulated in Table 10.

Fig. 7. Different combustion chamber geometries design using DIESEL-RK software.
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Results and discussion
Performance characteristics
BSFC (brake specific fuel consumption)
The variation of BSFC for DBOPN in different combustion chamber geometries for the examined fuel samples 
were shown in Fig. 8. It is inferred that with increment in load, the BSFC was decreased owing to elevated cylinder 
temperature at peak loads thus requiring less fuel to maintain a constant speed. Among different geometries, 
it is found that, apart from HCC, the TCC geometry exhibits higher fuel consumption due to lacking pace in 
induction of swirl. At full engine load condition, the BSFC of DBOPN-TCC, DBOPN-SDCC and DBOPN-
TRCC were lower than DBOPN-HCC by about 3.74%, 5.63% and 8.65% respectively. The toroidal re-entrant 
bowl profile boosted the engine performance due to improvements in air-fuel mixture formation and more of 
this mixture is being directed concerning with ignition zone and better mixing of fuel/air mixture. Overall, 
contemplating BTE and BSFC variation, DBOPN-TRCC is considered the best blend for improved performance.

These are on par with the findings of Jaichandar and Annamalai63  and Wickman et al.40. With toroidal 
re-entrant bowl geometry, the BSFC is found to increase in the literature of Lalvani et al.64. However, some 
contradictory results with toroidal re-entrant bowl geometry giving rise to lowered BSFC such as Mamilla et 
al.65, Bapu et al.66 and Venkateswaran and Nagarajan67  which is a result of abnormal fluctuation in swirl and 
turbulence resulting in reduced combustion efficiency and more fuel enters the combustion chamber to maintain 
engine speed constant giving rise to lowered BSFC profile.

BTE (brake thermal efficiency)
Figure  9illustrates the variation in Brake Thermal Efficiency (BTE) for DBOPN across various combustion 
chamber geometries in relation to engine load. The results highlight the crucial role of the combustion chamber 
in enhancing engine efficiency. In comparison to DBOPN-HCC, DBOPN-TRCC, DBOPN-SDCC, and DBOPN-
TCC demonstrated higher BTE values by approximately 8.4%, 5.89% and 3.11% respectively, at full engine load 
conditions. This improvement is attributed to enhanced swirl and squish motion, facilitating improved air-fuel 
mixing with the modified chamber geometry. Notably, the TRCC bowl stands out as consistently yielding higher 
BTE across the entire engine load range among the various combustion chamber configurations; Brake thermal 
efficiency of DBOPN-TRCC is more than DBOPN-HCC and DBOP by about 8.4% and 11.97% respectively. 
This is because the re-entrant profile of TRCC offers fuel turbulence with an enhanced swirl. DBOPN-TRCC 
exhibits 33.484% BTE at 100% engine load condition with impact of fuel bound oxygen atoms in BFB improving 
efficiency of combustion along with higher BTE. These results are on par with the findings of Jaichandar and 
Annamalai63 and Venkateswaran and Nagarajan67. With toroidal re-entrant bowl geometry, the BTE is found 
to increase in the literatures of Mamilla et al.65, Bapu et al.66 and Venkateswaran and Nagarajan67. However, 
some contradictory results with toroidalre-entrant bowl geometry giving rise to lowered BTE were reported 
such as Lalvani et al.64.However, some contradictory results with toroidal re-entrant bowl geometry giving rise 

Parameters % Uncertainty

Speed 0.2

Load 0.52

Brake power 0.36

Brake specific fuel consumption 0.4

Brake thermal efficiency 0.34

Fuel flow rate 0.68

Air flow rate 0.58

Carbon monoxide 0.2

Oxides of nitrogen 0.3

Hydrocarbon 0.5

Smoke opacity 0.9

Table 10. Uncertainty values of parameters.

 

Instruments Ranges Accuracy % Uncertainty

Stopwatch – + 0.5s 0.2

Manometer 0–200 mm + 1 mm 1

Tachometer 0–10,000 rev/min + 10 rpm 0.1

Smoke meter 0–100 BSU + 0.1 1

Exhaust gas temperature 0–900 °C + 1 °C 0.12

Pressure transducer 0–110 bar + 0.1 bar 0.2

Table 9. Uncertainty values of instruments.
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to lowered BTE due to abnormal fluctuation in swirl and turbulence resulting in reduced combustion efficiency 
followed by lowered BTE profile as reported such as Lalvani et al.64.

Emission characteristics
Carbon monoxide (CO)
The CO emission fluctuation for DBOPN in different piston bowl geometries with engine load is delineated in 
Fig. 10. From the figure, it is found that D100 emits more CO when compared to oxygenated additives since it 
has less built-in O2and can convert more easily into CO2 during oxidation. All other geometries show lower CO 
emissions when compared to DBOPN-HCC. The CO emissions of DBOPN-TCC, DBOPN-SDCC, and DBOPN-
TRCC are, at 100% engine load, approximately 48.85%, 5.96%, and 90.16% lower than those of DBOPN-HCC. 
The O2 present in BBOPN mixes, which may have increased CO oxidation and thus reduced CO emission, and 
improved air circulation within the combustion chamber are responsible for this enormous reduction in CO 
emissions. Maximum CO reduction is evident for DBOPN-TCC and DBOPN-TRCC due to potential utilization 
of inbuilt O2, quick fuel molecule breaking and swirl improvement along with squish formation which causes 
the fuel to be directly concerned with the combustion chamber. Overall, DBOPN-TRCC results in reduced CO 
emission throughout the load. Reduced CO emission with such a re-entrant profile is confirmed with the results 
revealed by Wickman et al.40 and Venkateswaran and Nagarajan67. With toroidal re-entrant bowl geometry, CO 
is found to increase in the literature of Benajes et al.68. However, some contradictory results with toroidal re-
entrant bowl geometry giving rise to lowered CO were reported such as Mamilla et al.65, Li et al.20, Jaichandar 
and Annamalai63, Dolak et al.69, Lalvani et al.64 and Venkateswaran and Nagarajan67  which could be attributed 
to poor utilisation of inbuilt O2, difficulty in fuel molecule breaking and poor swirl development which causes 
the fuel to be poorly oxidized and reduced CO levels.

HC (hydrocarbon)
Figure 11 portrays the fluctuation of HC emission for DBOPN in different piston bowl geometries with engine 
loads. The deduction is that the alteration of the combustion chamber can significantly contribute to the 
reduction of Hydrocarbon (HC) emissions. HC emissions are highest for D100, while the lowest HC is reported 
for DBOPN-TRCC throughout the engine load condition. At 100% load, DBOPN-TRCC exhibits HC emission 
of about 0.02 g/kWh which is lower than DBOPN-HCC, DBOPN-TCC and DBOPN-SDCC by about 59.95%, 
57.78% and 41.63% respectively. TRCC bowl supports the turbulent kinetic energy of the fuel mixture and 
therefore channels to the combustion zone. This occurrence, therefore, lowers the possibility of formation of 
fuel-rich zones followed by HC emission reduction. Even though DBOPN-TCC is comparatively lesser HC than 
DBOPN-HCC, the quantum of emissions is higher than other chambers such as SDRCC and TRCC which could 

Fig. 8. Variation of BSFC with respect to engine load.
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be possibly attributed to TCC due to absence of re-entrant geometry causes wall wetting tendency followed by 
higher HC emission. The reduced Hydrocarbon (HC) emissions, particularly evident with the TRCC geometry, 
align closely with the research findings of Jaichandar et al.70  and Wickman et al.40. With toroidal re-entrant 
bowl geometry, the HC emissions are found to increase in the literatures of Benajies et al.68. However, some 
contradictory results with toroidal re-entrant bowl geometry giving rise to lowered HC emissions were reported 
such as Mamilla et al.65, Lalvani et al.64 and Venkateswaran and Nagarajan67  as a result of lowered rich mixture 
zones in crevice areas of the combustion chamber due to the presence of swirl in combustion chamber.

NOx (oxides of nitrogen)
NOx fluctuation for DBOPN with relation to engine load is shown in Fig. 12 for various combustion chamber 
designs. D100 is the mix that shows the least amount of NOx when the engine is running. At engine loads 
of 25%, 50%, 75%, and 100%, respectively, the NOx emissions of DBOPN-HCC were approximately 45.8%, 
57.43%, 47.46%, and 57.18% higher than those of D100. When using a DBOPN mix, all of the four bowl 
geometries—TCC, SDRCC, and TRCC—show greater NOx levels than HCC. At 100% load, the NOx liberated 
by DBOPN-TCC, DBOPN-SDRCC and DBOPN-TRCC were about 17.56 g/kWh, 18.03 g/kWh and 18.81 g/
kWh respectively, while DBOPN-HCC emits only 17.09 g/kWh. Consequently, the DBOPN-TCC configuration 
achieved the lowest NOx emissions due to reduced swirl and squish fuel motion. This directs the fuel spray 
away from the combustion zone, thereby lowering the adiabatic temperature and resulting in reduced NOx 
emissions. Higher NOx emissions of DBOPN-TRCC are merely compensated for improved BTE and the lowered 
CO, HC emissions with respect to other geometries. Higher NOxemissions with TRCC are reported by few 
researchers65,70.

While some contradiction results with lowered NOx with TRCC is also reported by Wei et al.71, Prasad et al.72  
and Wickman et al.40. With toroidal re-entrant bowl geometry, the NOx emissions are found to increase in the 
literatures of Mamilla et al.65, Jaichandar and Annamalai63,70, Li et al.20, Lalvani et al.64 and Venkateswaran and 
Nagarajan67. However, some contradictory results with toroidal re-entrant bowl geometry giving rise to lowered 
NOx emissions were reported such as Wickman et al.40, Lim and Min73  and Wei et al.71. This can be attributed 
to a reduction in swirl and squish fuel motion, directing the fuel spray away from the combustion zone, thereby 
reduced adiabatic temperature and poor O2utilization lowering the NOx emission subsequently.

Smoke opacity
The fluctuation smoke opacity for DBOPN in various combustion chamber designs in relation to engine load 
is shown in Fig. 13. As most of the literature points out, it can be seen as a trade-off feature between smoke 
opacity and NOx emissions. For D100, the maximum smoke opacity is seen at all engine load conditions. When 

Fig. 9. Variation of BTE with respect to engine load.
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comparing DBOPN-TCC, DBOPN-SDCC, and DBOPN-TRCC to DBOPN-HCC, the smoke opacity of each is 
approximately 2.71%, 3.58%, and 15.48% lower, respectively, at 100% engine load. This can be attributed to the 
various bowl shapes that provide efficient spray penetration, enhanced evaporation, and rapid precursor burning, 
all of which reduce the likelihood of undesired fuel accumulation and the air shortfall in the combustion zone, 
giving rise to lowered smoke emissions. DBOPN-TRCC achieved highest smoke reduction throughout the load 
could be attributed to enhanced fuel swirl thereby lessening the soot precursor formation, improved oxidation 
followed by lowered smoke. Lowered smoke capacity with the usage of re-entrant bowl profile was on par with 
similar research findings of Wei et al.71. Results with toroidal re-entrant bowl geometry giving rise to lowered 
smoke emissions were reported such as Mamilla et al.65, Jaichandar and Annamalai63,70, Lalvani et al.64 and 
Venkateswaran and Nagarajan67 and Dolak et al.69.

LSTM algorithm prediction
The results have been included into the LSTM network to examine how various fuel mixes operate and what 
kind of emissions they produce under full engine load (80–100%) condition. To validate the model, the collected 
data is used for training and subsequently compared to the values generated by the LSTM network. For most 
parameters, a second-order function was applied to ensure consistency, and the dataset was constructed to 
encompass Brake Thermal Efficiency (BTE), Brake Specific Fuel Consumption (BSFC) and the concentrations of 
Carbon Dioxide (CO2), Carbon Monoxide (CO), Nitrogen Oxides (NOx), and smoke opacity. Table 11 presents 
the regression model coefficients (P, Q, R, S) associated with various parameters (BTE, BSFC, HC, CO, NOx and 
smoke opacity). In each case, coefficient P holds no significance. These regression coefficients are employed to 
prepare and subsequently train the dataset in conjunction with LSTM. Figures 14 and 15 have been included 
to depict the comparison of regression models with Long Short-Term Memory (LSTM) specifically for Brake 
Thermal Efficiency (BTE) and Hydrocarbon emissions (HC). Similarly, this methodology can be extended to 
predict various parameters. Table 12 displays the Root Mean Square Error (RMSE) values for the LSTM model 
concerning different parameters for the test fuels. Upon the obtained predicted data, LSTM could act as an 
effective tool for the present state of art problems. Also, LSTM can be effectively implemented in optimizing the 
sourced data from the diesel engine with lesser RMSE values.

Diesel RK—fuel spray visualization
The DBOP blend is a blend consisting of diesel/Jatropha biodiesel, vegetable oil and pentanol with different 
concentrations. To enhance its properties, it has been enriched with alumina nano additives at a concentration 
of 20 parts per million (ppm). The resulting fuel is referred to as DBOPN. Subsequently, the properties of HPF 
are utilized as inputs, which run over identical working environment to those of a typical diesel engine. The 

Fig. 10. Fluctuation in carbon monoxide (CO) levels in relation to engine load.
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software analyzes the performance of the engine using different combustion chamber geometries, including 
HCC (Homogeneous Charge Compression), SDRCC (Swirl Direct Re-Entrant Combustion Chamber), TCC 
(Turbulence Charge Compression), and TRCC (Toroidal Re-Entrant Combustion Chamber). The simulation 
within Diesel-RK focuses on fuel spray occurrence and combustion phenomenon within the various bowl 
profiles, as illustrated in Fig. 16. Among these geometries, the TRCC design stands out as the most effective in 
terms of enhancing performance and optimizing combustion parameters. This superiority is attributed to the 
TRCC’s ability to generate a potent squish effect along with efficient air movement, resulting in improved air-fuel 
interaction.

The outcomes derived from the Diesel-RK simulation are compared with actual experimental data obtained 
under identical operating conditions. The comparison involves the utilization of DBOPN blend and various 
bowl strategies. Table 13 presents the comparative analysis of these results. It is evident that the TRCC geometry 
consistently outperforms the other combustion chamber designs in several key aspects, including BTE, BSFC, 
higher Pcyl, and an increased HRR. This excellence is mainly credited to the generated squish effect and swirled air 
movement within the TRCC design, which significantly contributes to turbulence generation and, consequently, 
enhances the combustion efficiency. Notably, the simulation outcomes are closely aligned with the experimental 
values, underscoring the accuracy of the Diesel-RK software in predicting engine performance. However, it 
should be noted that the theoretical simulation values tend to be slightly higher than the actual values due to the 
omission of factors such as heat losses and friction in the simulation model. In a related study, Al-Dawody and 
Bhatti60 conducted a thorough investigation using the DIESEL-RK simulation software to optimize strategies for 
reducing nitrogen oxide (NOx) emissions in diesel engines. Their findings highlighted that a deeper piston bowl 
with a smaller diameter had a significant mitigating effect on NOx emissions. Similar reports were reported by 
Kuleshov61  with modified piston bowl having the greater turbulence shown higher performance of the diesel 
engine.

Conclusion
The present work explores the integration of nanotechnology and Long Short-Term Memory (LSTM) machine 
learning algorithms to enhance the understanding and optimization of fuel spray dynamics in compression 
ignition (CI) engines with varying bowl geometries.

• The test fuel used is a quaternary fuel (50% diesel (vol%) + 5% biodiesel (vol%) + 5% vegetable oil (vol%) + 40% 
(vol%) pentanol) with various combustion bowl strategies such as hemispherical, toroidal, shallow depth and 
toroidal re-entrant chambers.

Fig. 11. Changes in hydrocarbon (HC) levels with engine load.
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• DBOPN-TRCC is found to exhibit 8.13% higher BTE and 8.65% lowered BSFC than the conventional HCC 
bowl. DBOPN-TRCC is found to have 90.16% lowered CO, 59.95% lowered HC and 15.48% lowered smoke 
owing to improved spray penetration and faster burning of soot precursors. However, NOx emissions of 
DBOPN-TRCC were found to be higher (by 10.01% in comparison with DBOPN-HCC at full load).Overall, 
DBOPN-TRCC blend is found to have improved performance and minimized emission characteristics.

• The outcomes were trained and validated using LSTM networks. The regression coefficients indicate that the 
LSTM approach is effective in predicting both performance and emissions across a wide range of loading 
conditions. Application of toroidal re-entrant bowl geometry (TRCC) in quaternary fuel could be regarded as 
a promising substitute for traditional fossil fuels. Diesel-RK results also highlighted that a deeper piston bowl 
with a smaller diameter had a significant mitigating effect on NOx emissions74.

Scope for future work
The work can be extended to study the behavior of gaseous fuels or dual fuels with different combustion 
geometries. Also, microscopic analysis of fuel spray with photographs can be an interesting add on to the 
existing work.

Fig. 12. Changes in nitrogen oxide (NOx) levels in correlation with engine load.
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Fig. 13. Variation of smoke opacity with respect to engine load.
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P Q R S

Brake thermal efficiency (BTE)

 D100 – − 0.0036 0.563 − 0.398

 DBOP – − 0.0034 0.576 − 0.248

 DBOPN-HCC – − 0.0034 0.521 0.132

 DBOPN-TCC – − 0.0036 0.546 − 0.692

 DBOPN-SDCC – − 0.0037 0.535 − 1.286

 DBOPN-TRCC – − 0.0038 0.562 − 2.323

Brake specific fuel consumption (BSFC)

 D100 – 0.004 − 0.002 0.4965

 DBOP − 6E-04 0.003 − 0.001 0.4762

 DBOPN-HCC − 7E-05 0.0002 − 0.0132 0.5376

 DBOPN-TCC − 6E-04 0.005 − 0.0142 0.7826

 DBOPN-SDCC − 7E-05 0.0001 − 0.0039 1.0236

 DBOPN-TRCC − 2E-06 0.0004 0.0287 0.9876

Hydrocarbon (HC)

 D100 – 0 0.324 26.72

 DBOP – − 0.002 0.420 20.58

 DBOPN-HCC – − 0.002 0.396 19.54

 DBOPN-TCC – − 0.003 0.487 16.23

 DBOPN-SDCC – − 0.002 0.212 18.76

 DBOPN-TRCC – 0 0.218 18.25

Carbon monoxide (CO)

 D100 – 0.0004 − 0.002 0.420

 DBOP – 0.00005 − 0.003 0.262

 DBOPN-HCC – 0.00004 − 0.002 0.136

 DBOPN-TCC – 0.00005 − 0.003 0.072

 DBOPN-SDCC – 0.00006 − 0.004 0.007

 DBOPN-TRCC – 0.00006 − 0.005 − 0.326

Nitrogen oxide (NOx)

 D100 – 0.006 4.926 1.93

 DBOP – − 0.0034 0.7324 − 0.0523

 DBOPN-HCC – − 0.0034 0.7124 1.8612

 DBOPN-TCC – − 0.0036 0.755 − 1.5362

 DBOPN-SDCC – − 0.0037 0.7682 − 1.2842

 DBOPN-TRCC – − 0.0038 0.7684 − 3.2632

Smoke opacity

 D100 – 0.025 0.0023 0.146

 DBOP – 0.036 0.0024 0.162

 DBOPN-HCC – 0.042 0.0023 0.243

 DBOPN-TCC – 0.078 0.0046 0.026

 DBOPN-SDCC – 0.023 0.0023 − 0.126

 DBOPN-TRCC – 0.053 0.0046 − 0.643

Table 11. Aggression model coefficients for various test parameters.
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Fig. 14. Prediction verses measured BTE for LSTM machine learning model.
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Fig. 15. Prediction versus measured HC for LSTM machine learning model.
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Fuel/parameter BTE BSFC HC CO NOx Smoke opacity

D100 0.0632 0.01736 0.5234 0.0143 6.3215 0.1304

DBOP 0.02872 6.00412 0.1642 0.0173 6.7432 0.1835

DBOPN-HCC 0.25983 0.01376 0.1082 0.01918 8.0423 0.1202

DBOPN-TCC 0.02981 0.01683 0.1932 0.01326 10.546 0.1504

DBOPN-SDCC 0.01863 0.02345 0.2962 0.0075 11.236 0.0986

DBOPN-TRCC 0.07432 0.00242 0.3214 0.0072 13.2695 0.0278

Table 12. Root mean square error (RMSE) values for the LSTM model.
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Fig. 16. Simulation of fuel spray formation and combustion for different bowl geometries.
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Figure 16. (continued)
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