Table 3 Comparison of detection results of different models on GC10-DET dataset.

From: Feature optimization-guided high-precision and real-time metal surface defect detection network

Methods

Backbone

mAP(%)

AP(%)

Pu

Wl

Cg

Ws

Os

Ss

In

Rp

Cr

Wf

RetinaNet30

ResNet50

59.9

92.4

88.4

94.5

74.1

54.5

54.4

28.7

15.5

21.4

75.1

Faster R-CNN32

VGG16

41.3

66.1

26.4

91.3

56.6

49.5

43.5

8.9

6.1

14.3

47.6

Faster R-CNN32

ResNet50

60.8

82.2

78.0

95.4

69.2

57.7

58.3

24.8

29.2

30.7

82.6

YOLOv3-spp55

Darknet53

60.6

96.5

82.5

96.8

75.5

57.4

48.4

26.4

22.0

14.4

77.6

YOLOv3-tiny23

Darknet19

59.7

96.3

65.6

97.8

80.1

60.6

45.1

22.0

21.6

41.0

67.2

YOLOv424

CSPDarknet53

61.2

90.4

89.8

93.9

62.6

59.4

48.3

23.6

17.7

37.6

88.2

YOLOv5s

CSPDarknet53

64.2

96.0

87.9

97.0

77.4

60.5

56.5

21.6

28.6

36.5

79.6

YOLOv726

E-ELAN

65.3

95.8

74.1

94.1

81.9

57.2

57.5

25.4

40.6

47.1

79.4

YOLOX56

CSPDarknet53

59.9

89.7

89.8

89.6

67.9

61.0

57.2

28.6

27.9

25.9

61.1

YOLOv8s

CSPDarknet53

66.2

98.3

92.3

97.1

76.8

65.9

49.9

24.1

28.6

46.7

82.8

RT-DETR57

HGNetv2

64.4

97.8

90.2

95.8

72.6

57.8

45.3

26.8

37.5

45.4

74.4

FOHR Net

CSPDarknet53

70.5

95.9

91.4

96.2

82.7

63.1

61.4

29.6

55.4

48.5

80.9

  1. The top 3 scores are marked in bold, italic, and bolditalic respectively.