Table 5 Comparison of Different Algorithms’ Performance on Classification Tasks in DGA Data.

From: A novel method for intelligent operation and maintenance of transformers using deep visual large model DETR + X and digital twin

Method type

Algorithm

Data type

Accuracy (%)

Remarks

Mechanistic model

Non-parametric kernel density

Raw Data of DAG

64

/

Gaussian density

Raw Data of DAG

54.4

/

Fuzzy set

Raw Data of DAG

53.8

/

Machine learning

Random Forest

Raw Data of DAG

88

/

AdaBoost

Raw Data of DAG

56

/

KNN

Raw Data of DAG

65

/

BP neural network

Raw Data of DAG

40

/

Logistic regression

Raw Data of DAG

67

/

Deep network

CNN

DGA Feature Image

81

Epoch = 5

CNN

DGA Feature Image

95

Epoch = 10

EfficientNet-B0

DGA Feature Image

98

Epoch = 5

ResNet-18

DGA Feature Image

98

Epoch = 5

DETR + X

DGA Feature Image

100

Epoch = 5 (The classifier is Vit)