Table 7 Average predicted output error results of the K-MHFLMS for the example with \(p = 1,2,3,4\).

From: Design of multi-innovation hierarchical fractional adaptive algorithm for generalized bilinear-in-parameter system using the key term separation principle

K-MHFLMS

\(p = 1\)

\(p = 2\)

\(p = 3\)

\(p = 4\)

\(\sigma^{2} = 0.2^{2} ,\delta = 0.4\)

7.6914

7.6853

7.6624

7.5589

\(\sigma^{2} = 0.2^{2} ,\delta = 1.2\)

7.5802

7.6681

7.7395

7.6463

\(\sigma^{2} = 0.5^{2} ,\delta = 1.2\)

7.4740

7.4730

7.4970

7.3538

\(\sigma^{2} = 0.8^{{2}} ,\delta = 1.2\)

7.4080

7.4093

7.3208

7.1493