Table 6 ML models, hybrid models and input meteorological combinations.

From: Comparative assessment of empirical and hybrid machine learning models for estimating daily reference evapotranspiration in sub-humid and semi-arid climates

No

Models

Input combinations

RF

M5P

XGBoost

LightGBM

RF-M5P

RF-LightGBM

RF-XGBoost

XGBoost-LightGBM

1

RF1

M5P1

XGBoost1

LightGBM1

RF-M5P1

RF-LightGBM1

RF-XGBoost1

XGBoost-LightGBM1

Comb. 1

Tmax, Tmin, Rs

2

RF2

M5P2

XGBoost2

LightGBM2

RF-M5P2

RF-LightGBM2

RF-XGBoost2

XGBoost-LightGBM2

Comb. 2

Tmax, Tmin, RHmean

3

RF3

M5P3

XGBoost3

LightGBM3

RF-M5P3

RF-LightGBM3

RF-XGBoost3

XGBoost-LightGBM3

Comb. 3

Tmax, Tmin, Rs, U2

4

RF4

M5P4

XGBoost4

LightGBM4

RF-M5P4

RF-LightGBM4

RF-XGBoost4

XGBoost-LightGBM4

Comb. 4

Tmax, Tmin, RHmean, U2

5

RF5

M5P5

XGBoost5

LightGBM5

RF-M5P5

RF-LightGBM5

RF-XGBoost5

XGBoost-LightGBM5

Comb. 5

Tmax, Tmin, RHmean, Rs

6

RF6

M5P6

XGBoost6

LightGBM6

RF-M5P6

RF-LightGBM6

RF-XGBoost6

XGBoost-LightGBM6

Comb. 6

Tmax, Tmin, RHmean, Rs, U2