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Personalized tourism has recently become an increasingly popular mode of travel. Effective 
personalized route recommendations must consider numerous complex factors, including the 
vast historical trajectory of tourism, individual traveler preferences, and real-time environmental 
conditions. However, the large temporal and spatial spans of trajectory data pose significant 
challenges to achieving high relevance and accuracy in personalized route recommendation systems. 
This study addresses these challenges by proposing a personalized tourism route recommendation 
model, the Temporal Multilayer Sequential Neural Network (TMS-Net). The fixed-length trajectory 
segmentation method designed in TMS-Net can adaptively adjust the segmentation length of tourist 
trajectories, effectively addressing the issue of large spatiotemporal spans by integrating tourist 
behavior characteristics and route complexity. The self-attention mechanism incorporating relative 
positional information enhances the model’s ability to capture the relationships between different 
paths within a tourism route by merging position encoding and distance information. Additionally, 
the multilayer Long Short-Term Memory neural network module, built through hierarchical time 
series modeling, deeply captures the complex temporal dependencies in travel routes, improving 
the relevance of the recommendation results and the ability to recognize long-duration travel 
behaviors. The TMS-Net model was trained on over six million trajectory data points from Chengdu 
City, Sichuan Province, spanning January 2016 to December 2022. The experimental results indicated 
that the optimal trajectory segmentation interval ranged from 0.8 to 1.2 h. The model achieved a 
recommendation accuracy of 88.6% and a Haversine distance error of 1.23, demonstrating its ability to 
accurately identify tourist points of interest and provide highly relevant recommendations. This study 
demonstrates the potential of TMS-Net to improve personalized tourism experiences significantly and 
offers new methodological insights for personalized travel recommendations.
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Personalized tourism is an emerging mode of travel that customizes itineraries based on individual interests 
and preferences, offering tourists enhanced comfort and satisfaction during their journeys1,2. In recent years, 
scholarly interest in developing intelligent recommendation technologies for personalized travel routes has 
grown, aiming to offer more flexible and personalized services and enhance the overall travel experience3–6. These 
personalized recommendations consider factors such as timing, location, duration of stay, upcoming attractions, 
and historical points of interest7–10. Although traditional mathematical models are simple and efficient, they 
often overlook time-series information, cannot adjust routes dynamically, and fail to capture subtle changes in 
user preferences and interests11–14.

Therefore, several researchers have utilized deep learning models in this domain15,16. Kulshrestha et al. 
proposed a Bayesian bidirectional Long Short-Term Memory (LSTM) network to predict tourism demand17. 
Building on this, Sandfort et al. introduced a generative adversarial network for data augmentation method18, 
whereas Law et al. applied deep learning to establish the relationship between factors predicting tourism demand 
and tourist arrivals19. Chen et al. utilized adaptive genetic and seasonal index adjustment algorithms to generate 
route recommendations for tourists20. For the visual analysis of tourism behavior, Zhang et al. employed visual 
technology to map and recognize the cognitive perceptions of tourists21. Ma et al. applied this technique and 

1School of Computer Science and Technology, Yibin University, Yibin 644000, China. 2XueFei Xiao, ChunHua Li and 
XingJie Wang contributed equally to this work. email: lchyangyang_456@163.com

OPEN

Scientific Reports |          (2025) 15:382 1| https://doi.org/10.1038/s41598-024-84581-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-84581-z&domain=pdf&date_stamp=2024-12-27


found that combining comment text with user photos was the most effective approach for predicting comment 
usefulness22. Li et al. developed a dual-channel convolutional neural network-LSTM model to address 
the challenge of predicting emotional polarity in tourist-generated content23, which Lum et al. later used to 
process data from multiple sources24. Hu et al. applied the density-based spatial clustering of applications with 
noise clustering algorithm to identify urban areas of interest and detect spatial-temporal dynamics25, whereas 
Colladon et al. demonstrated that language complexity and network centralization were significant predictors 
of visits to scenic spots26. After analyzing the road network, Colak et al. concluded that moderately centralized 
route optimization can significantly reduce traffic congestion27. Additionally, Wang et al. developed an AI-based 
Internet of Things system that solves the problem of massive data processing and low-latency communication in 
intelligent tourism applications28.

Research highlights the importance of deep learning models in improving the accuracy of travel 
route recommendations. These models excel in processing complex features and providing personalized 
recommendations. However, challenges remain in terms of managing large temporal spans on prediction 
accuracy and capturing user preferences with greater agility. To address these challenges, this study proposes a 
multilayer neural network prediction model called the Temporal Multilayer Sequential Neural Network (TMS-
Net). This model incorporates a time-attention mechanism that integrates relative location information to 
maintain correlations between attractions both before and after processing. In addition, it introduces a multilayer 
LSTM network that incorporates scenic spot characteristics as weighting factors. This approach aims to mitigate 
the degradation of temporal information over time and accurately analyze the travel intentions of tourists.

Related work
Fixed-length trajectory segmentation method
Tourists spend varying amounts of time at different attractions. Research in time-series segmentation has 
primarily explored two approaches: “dynamic segmentation” and “fixed segmentation.” Table 1 presents relevant 
research on trajectory segmentation. Although dynamic segmentation offers flexibility, it can lead to inconsistent 
inputs, making it difficult for the model to learn stable temporal dependencies, thereby reducing training 
stability. This study adopts a fixed time interval for segmenting historical tourist trajectory data based on these 
findings. Using segmented data as input for the TMS-Net model helps address variations in stay durations. 
Showing a 36% improvement in model training convergence speed compared to dynamic segmentation. This 
consistent segmentation approach ensures that each time slice contains sufficient data points, enabling effective 
capture of tourist behavior patterns.

Tourist preferences for delicacy
Personalized tourism services are typically determined by analyzing historical visits of tourists to attractions, 
incorporating their characteristics and behaviors. Table  2 presents selected studies on extracting tourist 
preferences. The analysis reveals that incorporating an attention mechanism into the LSTM model results in 
higher accuracy in interest extraction. This study focuses on user interests by preprocessing, and extracting 
features such as the types of attractions visited, length of stay, and selected routes through encoding. The model 

Task Performance Citation

Zheng et al. proposed an end-to-end attention-based Bi-LSTM method32 The Bi-LSTM model achieved a classification accuracy of 80%
https://doi.
org/10.1016/j.
bspc.2020.102174

Lin et al. developed an attention-based Conv-LSTM module to extract spatial and 
short-term temporal features33

Conv-LSTM and Bi-LSTM yielded a root mean square error 
(RMSE) of only 23.03 for feature extraction

doi:https://doi.
org/10.1109/
tits.2020.2997352

Huo et al. utilized a content-based approach and Long Short-Term Memory 
network for personalized feature extraction34

Achieved accuracy rates of 72.5% and 75.4% on the Assistment and 
Intelligence datasets, respectively

https://doi.
org/10.1016/j.
ins.2020.03.014

Lika et al. combined classification algorithms with similarity models to address the 
cold-start problem in recommendation systems35

Using datasets from the GroupLens research group, the model 
achieved a low mean absolute error (MAE)

https://doi.
org/10.1016/j.
eswa.2013.09.005

Table 2.  Extracting tourist preferences research.

 

Task Performance Citation

Liang et al. addressed the issue of prioritizing shortest distance over tourism 
experience in tourism route planning29 Improved training stability by 20% and recommendation accuracy by 21%

https://doi.
org/10.1371/journal.
pone.0257317

Guo et al. provided a review of attention mechanisms, among others30
Found that fixed segmentation techniques are commonly used in 
computational tasks and perform better than traditional segmentation 
methods

https://doi.
org/10.1007/s41095-
022-0271-y

Zhao GS et al. analyzed human travel patterns through static trajectory 
segmentation31

Observed that the area coverage of points of interest initially increases and 
then decreases as trajectory length increases

https://doi.
org/10.1016/j.
knosys.2020.105849

Table 1.  Trajectory segmentation research.
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uses an attention mechanism that integrates relative positional information to maintain a complete sequential 
relationship between tourist visits. It then employs a multilayer memory neural network to capture dynamic 
patterns and long-term dependencies in tourism data, effectively extracting features of tourist travel intentions. 
In experimental comparisons with current mainstream models, the TMS-Net model achieves an accuracy of 
88% in extracting tourist interests.

Personalized route recommendation framework
Personalized attraction recommendations involve analyzing historical trajectories and preferences of tourists. 
Table  3 presents relevant research on personalized route recommendation. This study divides historical 
trajectories into fixed time intervals and constructs a time-series attention framework by integrating relative 
positional information. Furthermore, it utilizes a multilayer LSTM to train each segmented dataset, preserving 
associations with past and future timesteps. Finally, a feedforward neural network converts the vectorized 
information into recommended tourist attractions.The TMS-Net model achieved a Haversine distance error of 
only 1.23 in attraction recommendation results.

Methods
Definition and framework
TMS-Net is a multilayer neural network prediction model designed to process route data and sequence 
information, providing personalized route recommendations for tourists with varying preferences. In this study, 
travel data is denoted as X = {x1?x2? ?? xk}, where xi(1 ≤ i ≤ K) represents the feature set of tourists 
at a given scenic spot, which includes parameters such as latitude, longitude, altitude, time, and speed. The 
predicted results are denoted as Y = {y1? y2? ?? yk}, where yi (1 ≤ i ≤ K) represents the feature set of 
tourists at the next scenic spot.

Figure  1 illustrates the framework of TMS-Net, which comprises five interconnected modules: the route 
encoding, time-series attention, multilayer LSTM neural network, feedforward neural network, and route 
prediction output modules.

Fig. 1.  TMS-Net research framework.

 

Task Performance Citation

Cao et al. proposed a genetic algorithm solution for determining the shortest tourism 
route36

The Improved Genetic Algorithm can be effectively applied 
to multi-destination route planning and selecting the 
shortest travel routes

https://doi.
org/10.1155/2022/7665874

Ke et al. used a fusion convolutional network to address spatiotemporal challenges in 
tourist flow prediction37

Training on Didi Chuxing data reduced the root mean 
square error by 48.3%

https://doi.org/10.1016/j.
trc.2017.10.016

Chang et al. introduced a VANET-based A* (VBA*) route planning algorithm to 
compute routes with minimum travel time or fuel consumption38

VBA* significantly reduced the average travel time and fuel 
consumption of planned routes

https://doi.
org/10.1155/2013/794521

Zeng et al. stacked Gated Recurrent Unit (GRU) and LSTM models for traffic 
prediction39

The stacked GRU-LSTM model improved prediction 
accuracy and reduced prediction time

https://doi.org/10.1109/
ACCESS.2022.3171330

Table 3.  Personalized route recommendation research.
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Route coding module
TMS-Net uses sine and cosine functions to generate positional codes from the original data, enhancing the 
comprehension and generalization of the sequence of data while distinguishing between different types of 
positional information. Location coding provides a more concise, continuous, and periodic representation 
compared to one-hot coding, which maps each location or category to a separate vector. Each encoded vector 
represents a segment of the journey, with each position x and dimension i represented by the positional codes 
P E_ {( pos, 2i )} and P E_ {( pos, 2i+1 )}, respectively. Position p is described by a vector in the dmodel

dimension. Once the input sequence data are encoded, they are integrated into the information vector for each 
attraction feature. The resulting output then serves as the input for the subsequent TMS-Net module.

	
P E (pos, 2i) = sin

(
pos/10000

2i
dmodel )

)
� (1)

	 P E (pos, 2i+1) = cos
(
pos/100002i /dmodel

)
� (2)

The route encoding module is crucial for enhancing the reliability of travel route recommendations. Figure 2 
illustrates the consecutive routes of tourists visiting various attractions, each identified by a unique numerical 
identifier (ID). The entire travel path was encoded for route analysis. First, we integrated and recorded the 
geographic information of scenic spots, and then generated continuous location codes using sine-cosine 
functions. TMS-Net then calculated the continuous vector using a dimension matrix [0.1, 0.2] and sine-cosine 
functions. A concatenation function was employed to aggregate different feature vectors in series, forming the 
information vector for each scenic spot. This vector was subsequently input into the time-series attention module 
of TMS-Net. Ultimately, behavioral learning of tourist sequences was performed for a comprehensive analysis.

Time-series attention mechanism
The self-attention mechanism in TMS-Net incorporates relative positional information, enhancing its ability to 
capture the temporal relationships between tourist routes. In contrast to the traditional attention mechanism 
introduced by Transformer, which achieves parallelism by discarding the order of inputs, TMS-Net retains the 
contextual information of adjacent landmarks, which is essential for modeling travel routes. By ignoring input 
order, Transformer-based methods become unable to model relative positions within a sequence, leading to gaps 
in understanding travel routes. The time-series attention mechanism calculates attention scores based on the 
features of travel routes, maintaining complete sequence relationships regardless of the length of the sequence.

Figure 3 illustrates the framework of time-series attention mechanism. The attention mechanism calculates 
the attention score by determining the similarity between one element and all others in the sequence through a 

Fig. 2.  Route coding procedure (the maps were generated using QGIS software, version 3.28.14-Firenze, 
available at: https://qgis.org/). Each tourist attraction is identified by a unique numerical ID, and the complete 
travel itinerary of visitors is recorded. By integrating the geographical information of each attraction, 
continuous position encodings are generated using sine and cosine functions, resulting in continuous vectors 
recognizable by TMS-Net.
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dot product operation. For a set of travel data X = {x1?x2? ?? xk}, the attention score between elements xi

and xj is calculated as

	 Tij = xi· xj√
d

� (3)

In this study, we incorporated the positional offset (relative position) into the attention score calculation. 
Assuming element xi and yi represent the positions of two elements, with rij as their relative positional 
difference, and d as the embedding dimension, the updated attention score is expressed as

	 T ′
ij = Tij + xi· rij√

d
� (4)

The attention weights, calculated by applying the softmax function to the attention scores, indicate the importance 
of each element relative to others in the sequence. The attention weight for element xi to element xj is

	
wij =

exp(T ′
ij)∑

n
k=1 exp(T ′

ik) � (5)

The output of element xi , resulting from the weighted sum of the input sequence using attention weights, is 
obtained as

	 yi =
∑

n
j=1 wijxj � (6)

Multilayer LSTM neural network module
To mitigate the loss of temporal information in tourist trajectory data and ensure the coherence in the generated 
tourist routes, we implemented a multilayer LSTM neural network. This module integrates features of tourist 
routes into the time steps of TMS-Net, enabling it to capture long-term dependencies and dynamic patterns 
in travel data. Figure 4 illustrates how the multilayer LSTM neural network module helps TMS-Net learn the 
relationships between consecutive time steps by weighting the hidden states over. This process allows the model 
to better understand the travel intentions of the tourist.

Each time step in the travel data contains location-based information. When these data are incorporated into 
the multilayer LSTM neural network structure, ct represents the cell state at the current time step, whereas the 
hidden state ht and cell state ct−1 capture information from the previous time step. gt represents the candidate 
cell state for the current time step, and is gradually updated over time.

	 gt = tanh (Wpgpt + Weget + Wvgvt + Whght−1 + Wcgct−1 + bg) � (7)

	 ct = ft ⊙ ct−1 + it ⊙ gt � (8)

	 ht = ot ⊙ tanh (ct) � (9)

TMS-Net regulates the importance of current inputs and how much historical information should be retained 
or discarded at each time step. In addition, it controls the output information at each specific moment, where 
pt , et , and vt represent the location, elevation, and other input features, respectively, and it , ft , and ot are 
the activation vectors for various gating types.

Fig. 3.  Time series attention mechanism. The attention mechanism first computes the dot product of each 
element with all other elements, resulting in an initial relevance score. Subsequently, positional offsets are 
introduced to enhance the model’s ability to distinguish between elements at different positions. Then, the 
SoftMax function is applied to normalize these relevance scores, yielding a set of attention weights. These 
weights reflect the importance of each element in processing the current input, enabling the model to focus on 
the most relevant information.
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	 it = σ (Wpipt + Weiet + Wvivt + Whiht−1 + Wcict−1 + bi) � (10)

	 ft = σ (Wpf pt + Wef et + Wvf vt + Whf ht−1 + Wcf ct−1 + bf ) � (11)

	 ot = σ (Wpopt + Weoet + Wvovt + Whoht−1 + Wcoct + bo) � (12)

Experiment
Data processing
This study collected travel data from tourists in Chengdu, Sichuan Province, between January 2016 to December 
2022. The data were sourced from Flickr (https://www.flickr.com/), a platform rich in user-generated travel 
information, making it suitable for research on travel route recommendations. The extracted features included 
the user ID, longitude, latitude, altitude, speed (km/h), and total distance traveled. To ensure the optimal 
performance of TMS-Net, the original travel data were preprocessed.

•	 Tourist travel records in Chengdu and surrounding areas were filtered based on longitude and latitude.
•	 Continuous route data were organized by time and location to ensure only one record was retained at the 

same location and time.
•	 Data points were identified as potential tourist attractions based on their latitude, longitude, speed, and alti-

tude.
•	 Data spanning more than 7 d were excluded.

After preprocessing, the dataset included more than 120 scenic spots and over six million tourist routes in 
Chengdu. Figure  5 shows the filtered travel data, with most points concentrated in central Chengdu and a 
smaller number in surrounding areas.

To reduce data redundancy, this study utilized a time-aggregation algorithm to extract representative features 
from the travel data, ensuring that each TMS-Net input contained a continuous route dataset for a single tourist. 
First, the time interval for each scenic spot was set to 1 h, and multiple raw data entries were consolidated into 
datasets for different time intervals. A small time interval could lead to overfitting, whereas an overly large 
interval might result in the loss of important information. The data within each time interval were aggregated 
using the mean value, and the aggregated result, along with the original timestamp, represented information 
on continuous visits to the scenic spot across multiple intervals. After merging all aggregated datasets, a more 
representative and interpretable dataset was generated using the time-aggregation algorithm.

Figure  6 illustrates the tourist route tracks retained after applying the time-aggregation algorithm, 
encompassing over 90 tourist attractions and 100,000 valid tourist route data points.

Experimental settings
Model comparison
The TMS-Net model integrates multiple fundamental deep learning models. To evaluate the practical 
effectiveness of this model ensemble, as shown in Table 4. To evaluate the practical effectiveness of this model 
ensemble, comparative experiments were conducted with several popular models, including Bidirectional Long 
Short-Term Memory (Bi-LSTM), Gated Recurrent Unit Long Short-Term Memory (GRU-LSTM), and Temporal 

Fig. 4.  Multilayer LSTM neural network. Each time step contains not only basic information such as position 
and altitude but also dynamic features related to time series. The cell state serves as the long-term memory of 
the network, ensuring the continuity and effectiveness of information across long sequences. In contrast, the 
hidden state acts as the short-term memory of the network, capturing and retaining the output information 
from the previous time step. The multi-layer Long Short-Term Memory (LSTM) network effectively 
remembers and updates these key pieces of information through the interplay of cell states and hidden states.
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Fig. 6.  The distribution of tourists on the tourism track in Chengdu (the maps were generated using QGIS 
software, version 3.28.14-Firenze, available at: https://qgis.org/). Using a time aggregation algorithm on the 
preprocessed data, over 100,000 valid visitor route data entries were retained.

 

Fig. 5.  Distributed travel data of Chengdu (the maps were generated using QGIS software, version 
3.28.14-Firenze, available at: https://qgis.org/). By preprocessing data from Chengdu between January 2016 and 
December 2022, over 120 attractions in the Chengdu area were selected.
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Interaction Multiscale Network (Times-Net). Additionally, we compared the multilayer LSTM neural network 
and the time-series attention mechanism within TMS-Net through experiments to investigate the effectiveness 
of the TMS-Net modules.

Evaluation metrics and experimental environment
This experiment employed several evaluation metrics, including Recall, Precision, Haversine, root mean squared 
error (RMSE), mean squared error (MSE), and R2. Recall and Precision were used to assess the coverage and 
accuracy of the recommendation system concerning real user preferences. Haversine, RMSE, and MSE were 
applied to evaluate the performance of the location prediction task by measuring the spherical distance, RMSE, 
and MSE between the predicted and actual positions. R2 was used to determine how well the model fit the 
data. Combining the results of these evaluation metrics comprehensively assessed the performance of the 
recommendation system and accuracy of the prediction task.

The Haversine formula accurately calculates the spherical distance between two points on the Earth’s surface 
using their latitudes and longitudes, which is crucial for verifying the distance between predicted and actual 
attraction coordinates. A smaller Haversine distance between the predicted and actual coordinates indicates 
better model performance, whereas, a larger distance suggests prediction errors that require further optimization.

The formula for Haversine distance is

	
d = 2r · arcsin

(√
sin2

(
∆ lat

2

)
+ cos (lat1) · cos (lat2) · sin2

(
∆ lon

2

))
� (13)

where d is the distance between two points, r is the radius of the Earth, ∆ lat is the difference in latitude, 
∆ lon is the difference in longitude, and lat1 and lat2 are the latitudes of points 1 and 2, respectively.

The comparative experiment was conducted five times, with the final score calculated as the average value. 
The experiments were tested using Python 3.10 and TensorFlow 1.8 on a platform equipped with an Intel (R) 
Core (TM) i7-13700@2.40 GHz processor and an NVIDIA GeForce RTX 4060 graphics card.

Model evaluation
Table 5 presents the experimental results for multi-model travel route prediction. Recall and Precision were 
used to assess the accuracy and reliability of the models in predicting travel routes. Times-Net and Bi-LSTM and 
model performed poorly, with low Recall and Precision, indicating its limited ability to capture real travel routes. 
Although GRU-LSTM model showed some improvement, its performance was still not optimal. Conversely, the 
TMS-Net model demonstrated significantly superior performance in both Recall and Precision than the other 
models.

In terms of fundamental deep learning models. The Haversine distance, RMSE, and MSE were used to 
evaluate the disparity between predicted and actual routes. The experimental results indicate that the LSTM 
model has limitations, including a tendency to overfit, a lack of interpretability, and inadequacy in handling 
long-term dependencies in tourism route planning. In contrast, the Autoregressive Moving Average (ARMA) 
model assumes data linearity, making it difficult to capture complex nonlinear patterns; it is also best suited for 
stationary data, performing less effectively with dynamically changing tourism route data. Additionally, models 
such as Deep Move and Personalized Weight Propagation perform well on these metrics but still could not 
match the performance of TMS-Net. Furthermore, the R2 index was used to evaluate data fitting. TMS-Net had 
the highest R2 value, indicating that it explained data variation more effectively than Bi-LSTM and GRU-LSTM, 
which exhibited weaker fitting capabilities.

In summary, the TMS-Net model outperformed all other models for accuracy, reliability, and data fitting for 
travel route prediction. The multilayer LSTM neural network and time-series attention mechanism integrated 
within TMS-Net were key factors in improving overall performance.

Model Description

ARMA For time series problems with a trend and no seasonal component, this model is applicable

SARIMA This model is designed to address time series problems with seasonal variations

LSTM It serves as a model for processing and predicting time series data

LSTM-seq2seq The model contains two LSTM networks that effectively capture long-distance dependencies between input and output sequences

Deep move With its RNN structure, the model is well-suited for modeling and predicting moving trajectory data.

PWP It functions as an itinerary planning system that considers tourists’ interests and provides them with various itinerary options

Times-Net Based on CNN’s architecture, the model divides complex travel time changes into multiple intra-cycle and intra-week changes, 
offering short- and long-term predictions

Bi-LSTM Bi-LSTM is a bidirectional LSTM model that considers both forward and backward information in a sequence, capturing more 
context and making it suitable for complex time-series prediction tasks

GRU-LSTM GRU-LSTM combines the features of GRU and LSTM, using fewer parameters to model long-term dependencies, with higher 
computational efficiency, suitable for time-series tasks with limited resources

TMS-Net-NL There is currently no TMS-Net model utilizing multi-layer LSTM neural networks available in the market

TMS-Net-NA The TMS-Net model does not incorporate the use of a time series attention mechanism in its design

Table 4.  Introduction of relevant models.
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Sensitivity analysis
Impact of time interval size
The selection of the time intervals directly affects the accuracy and stability of TMS-Net. As shown in Fig. 7a, 
different time intervals yield varying prediction scores. When the interval was too long, TMS-Net overlooked 
important details and turning points during travel, leading to inaccurate recommendations and reduced user 

Fig. 7.  Sensitivity analysis. Sensitivity analysis was conducted from two aspects: Impact of Time Interval Size 
and Influence of Track Length. (a) (filled blue square—Recall, filled orange triangle—Precision) illustrates the 
trend of the impact of different time intervals on the prediction results, identifying the optimal time interval 
value as 0.8 to 1.2 h. (b) (filled blue square—Recall, filled orange triangle—Precision) shows the influence 
of input and output trajectory lengths on the prediction results, concluding that both excessively long and 
excessively short trajectory lengths are detrimental to the model’s training.

 

Model Recall Precision Haversine RMSE MSE R2

ARMA 0.324 0.413 1.713 1.457 2.123 0.328

SARIMA 0.572 0.516 1.721 1.393 1.939 0.336

LSTM 0.631 0.541 1.672 1.362 1.856 0.429

LSTM-seq2seq 0.672 0.552 1.523 1.32 1.745 0.478

Deep Move 0.637 0.612 1.322 1.316 1.734 0.513

PWP 0.721 0.631 1.317 1.273 1.624 0.527

Times-Net 0.732 0.672 1.255 1.239 1.537 0.613

Bi-LSTM 0.723 0.713 1.260 1.235 1.526 0.703

GRU-LSTM 0.734 0.736 1.253 1.274 1.623 0.673

TMS-Net-NL 0.754 0.763 1.272 1.251 1.564 0.602

TMS-Net-NA 0.742 0.752 1.262 1.235 1.529 0.675

TMS-Net 0.782 0.852 1.236 1.197 1.434 0.723

Table 5.  Evaluation results of different models.
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satisfaction. Conversely, a very short time interval led to overinterpreting travel behaviors, mistaking brief stops 
or minor activities for significant events, thereby introducing noise and affecting prediction stability. Through 
a comparative analysis of the results produced by TMS-Net under different time intervals, we determined the 
optimal interval to be between 0.8 and 1.2 h. TMS-Net captured key information and activity changes within this 
range, effectively addressing the needs of various trip types and user preferences.

Influence of track length
Figure 7b illustrates the effects of the input and output trajectory lengths on the prediction scores. The input 
trajectory contained past travel data, whereas the output trajectory determined recommended attractions. As 
input trajectory length increased, the model learned from a broader dataset, enhancing its understanding of 
behavioral patterns and preferences. However, beyond a certain point, further increases in input length provided 
minimal additional benefit, leading to model stability. For the output trajectory, moderate lengths yielded the 
highest scores, as tourists could visit only a limited number of attractions within a given time. While longer 
output trajectories stabilized the generated routes, further extension had minimal effect on improving stability 
and instead added to the cognitive load on users, potentially reducing their experience.

Overall, the prediction results of the model stabilized when the input and output trajectories reached optimal 
lengths. This indicates that incorporating the multilayer LSTM neural network and time-attention mechanism 
significantly improved the exploration of correlations between scenic spots. By adjusting trajectory lengths, the 
model effectively balanced predictive performance with user experience.

Example analysis
Travel records from the training dataset were randomly selected for further analysis, where TMS-Net predicted 
the next destinations based on the last visited location of the tourists. A correlation coefficient matrix was used 
to visualize the time-attention mechanism and highlight the influence weights of each destination.

As shown in Fig. 8, the numbers in the heatmap matrix correspond to various attractions. By analyzing the 
color depth, TMS-Net can intuitively identify the most significant attractions in historical trajectories. When 
travel data are processed through the temporal attention mechanism, the model considers route selection based 
on the itineraries of the travelers. The visit sequence and distances between attractions are integrated into 
the calculation as key temporal attention weight factors, capturing associations between them. Additionally, 
adjusting the attraction weights within the matrix further optimizes the learning and predictive capabilities of 
TMS-Net, enhancing the accuracy and practicality of its predictions.

The FP-growth algorithm was used to verify the predicted routes against the actual routes, calculating the 
weight of each scenic spot. The color range around a spot indicates its influence weight, with a wider range 
reflecting a greater weight. For example, attraction 132 was linked with attractions 128 and 96, likely owing to 
their proximity and the frequency of past visits, which affected the prediction results. As shown in Fig. 9, after 
selecting attraction 132, the recommended subsequent attractions include 96, 105, and 23. The final selection 
depends on the cyclic judgment for subsequent attraction predictions. In summary, the combination of the 
time-attention mechanism and scenic spot characteristics enhances the decision-making process within the 
interpretable prediction logic of TMS-Net, improving tourist route predictions and services.

Figure  10 depicts both correct ((a) and (b)) and incorrect ((c) and (d)) prediction cases. The black line 
represents the historical trajectory of the traveler, whereas the blue and red lines represent the actual and 
predicted routes, respectively. Incorrect predictions may result from errors or missing critical travel data, 

Fig. 8.  The heat maps of influence weights of scenic spots. The time attention mechanism is visualized using a 
correlation coefficient matrix, allowing the importance of attractions within the trajectories to be discerned by 
observing the depth of the colors. The deeper the color, the higher the importance of the attraction.
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reducing the ability of TMS-Net to capture user behavior patterns and preferences. In addition, an incomplete 
understanding of the travel industry and target user groups in the training data may contribute to prediction 
errors. Nonetheless, TMS-Net demonstrated relatively strong predictive capabilities at this stage.

Recommended routes
The analysis in this study was based on the routes recommended by TMS-Net. Figure 11 shows the popular 
tourist routes for attractions in Chengdu.

•	 Figure 11a depicts the historical and cultural route in Chengdu, highlighting its rich heritage through attrac-
tions such as the Wuhou Shrine, Chengdu Museum, Kuanzhai Alley, and Du Fu Thatched Cottage.

•	 Figure 11b shows a natural scenery route around Chengdu, featuring destinations such as Qingcheng Moun-
tain, the Dujiangyan Irrigation System, Tongma Gou Bamboo Sea Park, and Yinxiu Bay Park.

•	 Figure  11c illustrates a modern urban route in downtown Chengdu, including landmarks such as Tianfu 
Square, Chunxi Road, Chengdu TV Tower, and Chenghua Park.

•	 Figure 11d presents a family-friendly route for parents and children, with attractions such as the Chengdu 
Research Base of Giant Panda Breeding, Happy Valley Amusement Park, Chengdu Haichang Polar Ocean 
Park, Guose Tianxiang Paradise, and the Botanical Garden.

Discussion
TMS-Net effectively addresses the challenges of segmenting travel time and extracting personalized tourist 
preferences. Introducing a time-attention mechanism based on relative positional information enables TMS-
Net to capture the temporal relationships between different locations accurately. The multilayer LSTM neural 
network further enhances the model by learning from historical travel paths, avoiding recommendations of 
outdated or irrelevant routes. Furthermore, TMS-Net dynamically adjusts recommendations based on factors 
such as visit timing and frequency. For instance, the model avoids suggesting another restaurant to a user who 
has recently visited one, thereby enhancing the relevance and personalization of the user experience. Compared 
to other popular time-series models, TMS-Net excels in both attraction prediction and route planning. A key 
example is the classic tourist route in Chengdu, Sichuan Province, proposed by the model. The overall framework 
of TMS-Net, from data acquisition to route recommendation, aligns well with smart tourism development. As 
the dataset increases, the potential to train the model with richer tourist features will increase. For instance, users 
interested in cultural relics could receive recommendations for historically significant sites, whereas those who 
prefer outdoor adventures could be directed to scenic natural attractions.

Conclusion
Personalized route recommendations based on historical travel trajectories and tourist preferences have become 
a key area of research. This study introduces TMS-Net, a multilayer neural network model designed to process 
route data and sequence information for personalized travel recommendations. Future research will expand 
this study by incorporating multimodal analysis, using neural networks to integrate various data types, such 

Fig. 9.  Physical trajectory of the travel route and FP-growth weight results(the maps were generated using 
QGIS software, version 3.28.14-Firenze, available at: https://qgis.org/). A tourist route trajectory was extracted 
from the dataset, and the FP-growth algorithm was employed to calculate the associations between attractions. 
The range of colors surrounding each attraction represents its influence weight, with a wider range indicating a 
greater weight.
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as videos, images, and text. Videos can capture dynamic scenes and the atmosphere of tourist destinations, 
images can offer high-resolution details, and text can reflect the preferences and historical behaviors of users. 
In the process of recommendation, TMS-Net will integrate access time and contextual information to prevent 
the repetitive recommendation of similar locations within a short time span. By combining these diverse data 
sources, TMS-Net will enrich its recommendation capabilities. This approach will enable TMS-Net to provide 
more tailored travel recommendations based on deeper insights into the interests and behaviors of tourists, 
further advancing the potential of smart tourism.

Fig. 10.  Example of a TMS-Net forecast route (the maps were generated using QGIS software, version 
3.28.14-Firenze, available at: https://qgis.org/). Both correct ((a) and (b)) and incorrect ((c) and (d)) prediction 
cases. The black line represents the historical trajectory of the traveler, whereas the blue and red lines represent 
the actual and predicted routes, respectively.
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Data availability
Data is available upon request. Please contact the corresponding author by email to obtain the data used in the 
study.Data is available upon request. Please contact the corresponding author by email to obtain the data used in 
the study. The maps were generated using QGIS software, version 3.28.14-Firenze, available at: https://qgis.org/.
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