Table 10 Performance of different models on the HRF dataset. Significant values are in bold.

From: An effective vessel segmentation method using SLOA-HGC

Model

Miou

Dice

ACC

HD

FPS

UNet

0.703 ± 0.005

0.626 ± 0.011

0.952 ± 0.002

767.217 ± 5.064

5.394 ± 0.267

SA-UNet

0.722 ± 0.020

0.658 ± 0.026

0.955 ± 0.008

802.238 ± 7.555

4.681 ± 0.389

UNET++

0.727 ± 0.018

0.666 ± 0.017

0.956 ± 0.007

576.168 ± 8.069

3.682 ± 0.264

RIMNet

0.707 ± 0.010

0.631 ± 0.017

0.954 ± 0.002

462.498 ± 5.349

4.832 ± 0.209

DeepLabV3

0.718 ± 0.019

0.657 ± 0.012

0.950 ± 0.005

614.745 ± 8.894

4.007 ± 0.205

BTS-DSN

0.717 ± 0.016

0.649 ± 0.028

0.955 ± 0.001

658.788 ± 9.313

4.598 ± 0.501

U2Net

0.735 ± 0.011

0.679 ± 0.023

0.958 ± 0.007

567.485 ± 8.611

2.575 ± 0.469

SLOA-HGC

0.741 ± 0.024

0.689 ± 0.031

0.958 ± 0.007

501.277 ± 7.102

3.264 ± 0.308