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This study investigated the potential of using remote sensing indices with artificial neural networks 
(ANNs) to quantify the responses of dry bean plants to water stress. Two field experiments were 
conducted with three irrigation regimes: 100% (B100), 75% (B75), and 50% (B50) of the full irrigation 
requirements. Various measured parameters including, wet biomass (WB), dry biomass (DB), canopy 
moisture content (CMC), soil plant analysis development (SPAD), and soil water content (SWC) as well 
as seed yield (SY) were evaluated. The results showed that the highest values for WB, DB, CMC, SWC, 
and SY were achieved under B100, while the highest SPAD values were achieved under B75. The study 
also found that most of the RGB image indices (RGBIs) and spectral reflectance indices (SRIs) exhibited 
a linear relationship with the measured parameters and SY, with R² values ranging from 0.34 to 0.95. In 
contrast, SPAD showed a significant quadratic relationship, with R² values ranging from 0.34 to 0.79. 
Additionality, the newly developed SRIs demonstrated 5–40% higher correlations compared to the 
best-performing published SRIs across all measured parameters and SY. ANNs using RGBIs and SRIs 
separately demonstrated high prediction accuracy with R2 values ranging from 0.79 to 0.97 and 0.86 to 
0.97, respectively. Combining the RGBIs and SRIs, the ANNs achieved higher prediction accuracy, with 
R² values ranging from 0.88 to 0.99 across different parameters. In conclusion, this study demonstrates 
the effectiveness of using SRIs and RGBIs with ANNs as practical tools for managing the growth and 
production of dry bean crops under deficit irrigation.
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The challenge of water scarcity poses a significant barrier to sustainable agriculture in arid regions, particularly 
in the face of rapid climate changes1. Projections indicate a potential 20% increase in global water scarcity 
because of profound climate shifts. Notably, around 80% of farmlands in dry regions such as Egypt heavily 
rely on irrigation, drawing from 85% of the area’s freshwater resources2. Projections indicate that Egypt is on 
course to surpass the critical threshold of absolute water scarcity (500 m3/capita per year) by the year 20253. 
With escalating competition for water, up to 40% of available water may need to be redistributed across sectors, 
with agriculture facing a disproportionate impact due to its substantial water demands. The threat of limited 
irrigation water jeopardizes future food security on a global scale, highlighting the pressing need for water-
efficient strategies that optimize crop yields per unit of irrigation water, as opposed to per unit of land4.

In 2022, dry bean cultivation areas in Egypt spanned approximately 43,816 hectares, yielding 159.42 
thousand tons5. The growth and development of dry bean plants are significantly influenced by minor errors 
in irrigation management. These errors typically include inaccuracies in the amount of water applied or failure 
to align irrigation schedules with critical growth stages. Such mistakes can disrupt crops by inducing water 
stress6. Many studies highlight the dangers of exposing crops to water stress, especially during critical growth 
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stages such as flower development. The flower development is highly sensitive to water stress, which impairs 
nutrient transport and weakens growth. This stress can trigger flower drop, disrupt pollination, and hinder pod 
formation ultimately reducing yield potential7–11. These negative effects also affect yield quantity, ranging from 
10 to 50%, depending on the crop type, severity of water stress, and the growth stage affected. Hence, precise 
irrigation water management is crucial to optimize yield of dry bean crops when facing water stress scenarios12.

Deficit irrigation is a strategic approach that involves applying less water than the crop’s full requirement. 
This method aims to conserve water resources while minimizing potential yield losses13. Plant parameters 
such as wet and dry matter, plant moisture content, and SPAD as well as crop yield play a crucial role in 
effectively implementing deficit irrigation strategies. These parameters are commonly employed to assess crop 
conditions during water scarcity14. Nevertheless, the effective application of these parameters relies on consistent 
monitoring and precise evaluation of its reactions to water shortages at frequent intervals. By doing so, farmers 
can identify sustainable threshold levels of water stress that crops can tolerate without significant yield loss and 
adjust irrigation schedules to maintain optimal plant health and productivity15. Typically, conventional methods 
for evaluating these plant parameters are time-consuming, costly, labor-intensive, and data collected often 
lack spatial representativeness, failing to capture the overall status of crop populations comprehensively16–21. 
However, SRIs often yield inconsistent results when estimating crop parameters under diverse environmental 
and spatial conditions. Developing optimal SRIs is crucial to ensure the efficacy of this rapid and straightforward 
method in accurately estimating plant parameters. Generally, previous research has primarily focused on using 
published SRIs to evaluate various plant characteristics. This study’s advantage lies in selecting the best two-band 
SRIs through the creation of 2D contour maps, providing a robust method for choosing the best effective SRIs 
in evaluating the plant parameters.

Digital cameras are valuable instruments for proximal sensors, enabling the assessment of diverse plant 
parameters during water scarcity22. These cameras utilize sensors to photograph images of the plant within the 
visible wavelength range, focusing on wavelengths roughly between 400 and 499 nm for blue, 500–549 nm for 
green, and 550–750 nm for red regions. By analyzing data from these regions, numerous indices can be generated. 
These indices provide ample information for estimating various plant parameters affected by different stresses, 
encompassing both biotic and abiotic factors23. Interestingly, plant parameters that are difficult to accurately 
assess visually can be easily distinguished by examining the variations in reflectance within RGB images24. For 
instance, Elsayed et al.25 demonstrated that RGB images of the plant canopy can effectively track WB, DB, CMC, 
and yield of potato plants to gauge its response to water deficit stress. This tool offers a cost-effective means to 
capture images of numerous plants and extract various plant traits with minimal effort. However, the widespread 
adoption of RGB images for estimating plant parameters has been limited. Only a few studies have utilized RGB 
image analysis to assess how different morpho-physiological parameters and dry bean plant yields respond to 
varying levels of irrigation, especially in dry environments.

Data obtained from proximal sensors often lacks specificity and can result in significant overlap, necessitating 
careful handling. In recent years, a range of ANNs has emerged as reliable and precise solutions to tackle this 
challenge. ANNs are intricate mapping structures inspired by the complex workings of the human brain26, 
adept at learning and formulating mathematical models. These networks have demonstrated their efficacy 
in various real-world scenarios27, notably in agriculture, where they develop models rooted in intrinsic 
variable relationships, thereby circumventing the necessity for prior expertise28. Neural network models have 
been extensively employed in predicting a range of crop parameters, encompassing growth, yield, and other 
biophysical phenomena in various vegetable crops29–33. For example, Dutta Gupta and Pattanayak34utilized 
digital images of potato leaves to estimate chlorophyll content. Their study demonstrated that the ANN model 
showed superior performance with an R2 compared to the linear model’s R2 of 0.41. Sarkar et al.35 employed 
ANNs to estimate peanut plant growth and pod yield based on RGBIs combinations. Their models achieved high 
predictive accuracy, with R² values exceeding 0.95.

To the best of our knowledge, little research has utilized ANNs with spectral reflectance indices (SRIs) or RGB 
imaging indices (RGBIs) to construct innovative and robust models for accurately estimating and monitoring 
the measured parameters, including wet biomass (WB), dry biomass (DB), canopy moisture content (CMC), 
relative chlorophyll content (SPAD), and soil water content (SWC), as well as seed yield (SY) of dry bean crops 
under varying irrigation regimes. In the context, the study aims to achieve the following objectives: (i) Quantify 
the measured parameters and SY of dry bean crop under deficit irrigation; (ii) extract the optimized newly 
developed two-band SRIs for estimating measured parameters and SY of dry bean crop using the 2D contour 
maps; (iii) Evaluate the effectiveness of both RGBIs and SRIs as non-destructive techniques for estimating the 
measured parameters and SY of dry bean crop; and (iv) Assess the performance of ANN models, which are 
based on published and newly developed SRIs as well as RGBIs, in predicting the measured parameters and SY 
of dry bean crop.

Materials and methods
Experimental site, conditions, and design
Field experiments were conducted at a private farm in Talkha, Dakahlia Governorate, Egypt, during the 
consecutive spring growing seasons of 2022 and 2023 (located at 31.09° N, 31.38° E, and an elevation of 17 m). 
The NASA POWER Data Access Viewer website, available at https://power.larc.nasa.gov/data-access-viewer/, 
supplied daily data on maximum and minimum temperatures, average air humidity, average wind speed, and 
rainfall to gather precise meteorological information for the experimental site36. In the first and second seasons, 
the average daily minimum temperatures were recorded at 9.3 °C and 7.2 °C, respectively, while the average 
daily maximum temperatures stood at 46.1 °C and 42.3 °C. Relative humidity ranged from 35 to 79.3% in the 
first season and from 25.9 to 68.5% in the second season. Notably, Fig. 1  illustrates the daily rainfall during 
the growth period for both seasons. The cumulative rainfall was 20 mm and 24.2 mm for the first and second 
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seasons, respectively. The soil in the experimental area was classified as sandy clay, with the irrigation water 
exhibiting a pH of 7.21 and an electrical conductivity of 0.83 dS/m.

The tested dry bean (Giza-6 cultivar) seeds were obtained from Field Crops Research Institute, Agricultural 
Research Center, Giza, Egypt. On February 23 of the first season and March 3 of the second season, six seeds 
were manually placed inside two hills on either side of each dripper. After two weeks, the number of plants on 
each hill was reduced to two plants. In the first season, harvesting was done on June 12; in the second season, 
it was done on June 20. The fertilizer requirements were satisfied by adhering to the guidelines provided by the 
Egyptian Ministry of Agriculture. A venturi-type injector was used to apply fertilizers through the drip irrigation 
networks, guaranteeing accurate and effective nutrient delivery to the plants. Phosphorus (P) was supplied to the 
dry bean crops in the form of phosphoric acid (85% P2O5), 205 kg/ha of nitrogen (N) in the form of urea (46.5% 
N), and 96 kg/ha of potassium (K) in the form of potassium sulphate (50% K2O).

The dry bean plants were irrigated using a drip irrigation network, as shown in Fig. 2. The irrigation network 
consists of several components in the control head including an 80 mm-diameter centrifugal water pump 
that can deliver water at a rate of 1050 L/min and with 4.8 hp. In order to remove impurities, a disk filter 
was included. Pressure gauge allowed for monitoring the irrigation network’s pressure. Venturi-type injectors 
were used to inject water-soluble nutrients into the irrigation network. Control valves were used to manage the 
irrigation processes. Bypass valve was served to control pressure in a system by diverting a portion of the flow. 
Polyethylene (P.E.) pipes with a 75 mm diameter make up the main line, and P.E. pipes with a 63 mm diameter 
make up the sub-main. Lateral lines have built-in emitters and are made of P.E. with a 16 mm diameter. At an 
operating pressure of 1  bar, these emitters typically discharge 6  L/hr. T-shaped plastic valves with a 16 mm 
diameter were positioned at the start of each lateral line to independently regulate the irrigation depth for each 
line. These valves made it possible to precisely modify the irrigation depth in accordance with the intended 
irrigation schedules. Each lateral was closed with an end cap at the end. A drip irrigation network was built and 
tested before being used at the experimental site. The system’s estimated distribution uniformity (DU) is 92%. 
Equation 1, as explained by Ella et al.37, was used to calculate the DU.

 
DU = average of the lowest quartile

the average of all readings
*100% (1)

 

Irrigation water requirements and regimes
Following Gabr et al.38 recommendations, the CROWAT model used the “FAO Penman-Monteith” to calculate 
the daily reference evapotranspiration ( ETo). The crop coefficient ( Kc) unique to each growth stage was 
multiplied by the ETo to determine the crop evapotranspiration ( ETc). The growth stages of the dry bean crop 
are classified as initial (20 days), developmental (30 days), mid (40 days), and harvest (20 days), according to39. 
The corresponding Kcfor each growth stage were 0.35, 0.75, 1.1, and 0.5, respectively, according to40.

Dry bean crops were subjected to three different irrigation regimes: 100% (B100), 75% (B75), and 50% 
(B50) of the full irrigation requirements. The CROPWAT program was employed to determine the irrigation 
scheduling in both seasons, as shown in Figs. 3 and 4. Prior to implementing the different irrigation regimes, 
uniform water depths of 46.2 mm in the first season and 66.9 mm in the second season were applied during the 
initial 20-day period to ensure seedling survival. In the first season of 2022, the total gross depths throughout the 
growing season were 331.15 mm, 473.63 mm, and 616.1 mm, corresponding to B50, B75, and B100, respectively, 
with a total of 18 irrigation events. In the second season of 2023, the total gross depths added during the growing 
season were 366 mm, 515.55 mm, and 665.1 mm for B50, B75, and B100, respectively, with 19 irrigation events. 
Irrigation was halted 15 days before harvesting to allow for proper crop maturation in both seasons. To reduce 

Fig. 1. Daily rainfall during the growth period for both seasons.
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Fig. 3. Irrigation scheduling during season 2022 at different irrigation regimes.

 

Fig. 2. The layout of experimental design for the different irrigation regimes.
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spatial variations, a randomized, complete block experimental design with four-replicate was used. Two P.E. 
lateral lines made up each replicate. With emitters spaced 0.30 m apart, each lateral line was 9.0 m long. The 
lateral lines were separated by 0.60 m. The area of each replicate was 10.8 m².

Ground based-remote sensing techniques
The canopy spectral reflectance and the RGB digital image were captured from the same selected plant. To 
guarantee that the measured parameters and SY of dry bean can be linked to the vegetation indices that were 
computed from the canopy spectral reflectance and RGB digital image. The measurements were taken at 67 DAS 
for the first season and 68 DAS for the second season, which corresponds to the flowering growth stage.

Spectral reflectance measurements
The spectral reflectance of dry bean canopies was measured using a passive reflectance sensor called HandySpec 
Field® (tec5, Oberursel, Germany). The sensor’s bandwidth was 2 nm, and its spectral range was 302 to 1148 nm. 
There were two units in the sensor. The first unit was used as a reference signal to measure the incident light 
radiation and was attached to a diffuser. The second unit measured the plant canopy’s reflectance using a fiber 
optic. A calibration factor based on a grey reference standard was used to adjust the canopy reflectance. Data 
such as rows, reflectance spectra, integration time, and file name assignments were automatically saved by the 
instrument.

The detector was held vertically at a height of about 80 cm above the plants, creating a sensing area of about 
20 cm², in order to reduce the impact of the soil background. This configuration was put into place in accordance 
with41 methodology. The majority of the spectral measurements were made between 11:00 and 13.00 when there 
were no clouds. As used in a related study by Zhao et al.42, this guaranteed that the plants would receive the 
maximum amount of solar intensity from direct sunlight. Furthermore, as recommended by Dobos et al.43, this 
time period was selected to reduce the impact of air humidity. Following the methodology of44, three scans were 
measured and averaged for each plant to represent its spectral characteristics.

The lattice package (R Foundation for Statistical Computing, 2013) in R statistics v.3.0.2 was used to create 
various 2D contour maps. The most efficient spectral reflectance indices (SRIs) were found by contour map 
analysis for all dual wave-length combinations between 302 nm and 1148 nm. These SRIs are mathematical 
formulas that provide information about particular plant characteristics by combining wavelengths as a 
ratio spectral index. The contour map analysis in this study yielded the mean R2 of the SRIs with comparable 
wavelengths, which includes data pertinent to the dry bean crops’ WB, DB, CMC, SPAD, SY, and SWC. Table 1 
listed the formulas and relevant references for newly developed SRIs. Also, Table  2 listed the formulas and 
relevant references for some widely published SRIs.

Digital RGB imaging
The study captured images of bean plant canopies in different treatments using a 14-megapixel digital camera 
(SM-A035 F/DS, Galaxy A03) between 11:00 and 13:00. The camera, equipped to take 8-bit RGB pictures 
ranging from 0.4 to 0.7 micrometers with a resolution of 3120 × 4160 pixels, was manually operated in a vertical 
downward position at an 80 cm distance from the plants, ensuring measurement consistency without flash 
usage. The resulting images, saved in JPG format, underwent analysis through the OpenCV library and Python 
software (Version 3.11).

During the feature extraction process, depicted in Fig.  5, image segmentation and extraction techniques 
were employed to eliminate disturbances from non-canopy elements like soil, weeds, and straw that occasionally 

Fig. 4. Irrigation scheduling for during season 2023 at different irrigation regimes.
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appeared in the images. The vegetation extraction image processing pipeline involved creating red (R), green 
(G), and blue (B) channels from the original image. According to55, Color Index of Vegetation Extraction 
(CIVE), a vegetation index derived from variations in the G, B, and R channels, facilitated vegetation area 
identification within the image. Subsequently, the CIVE image underwent Otsu thresholding, separating it into 
background and foreground (vegetation) areas based on pixel intensity distributions56. Through this process, 
the vegetation areas were successfully isolated, and the original image was masked using the binary image 
from the Otsu thresholding, retaining only the vegetation-associated regions. This segmented image provided 
crucial information for analyzing the distribution and characteristics of vegetation in the scene. Finally, various 
RGB image indices (RGBIs) of the segmented image were calculated, with each pixel in an RGB digital image 
represented by values corresponding to the R, G, and B channels, as outlined by Kumaseh et al.57.

The mean values of RGB channels are extracted as sample features using the following equations:

 
R = 1

Snum

Snum∑
i=1

Ri (2)
 

SRI Formula References

Normalized water index 1 (NWI-1) (R970−R900)
(R970+R900)

45

Normalized water index 3 (NWI-3) (R970−R880)
(R970+R880)

46

Normalized water index 4 (NWI-4) (R970−R920)
(R970+R920)

47

Normalized water index 5 (NWI-5) (R970−R910)
(R970+R910)

48

Normalized water index 6 (NWI-6) (R780−R670)
(R780+R670)

49

Normalized difference index
NDI570, 540

(R570−R540)
(R570+R540)

50

Normalized difference index
NDI686, 620

(R686−R620)
(R686+R620)

50

Anthocyanin index (NAI) (R760−R720)
(R760+R720)

51

NDI780, 550
(R780−R550)
(R780+R550)

47

NDI800, 670
(R800−R670)
(R800+R670)

52

Pigment-Sensitive Ripening Monitoring Index (PRMI) (R750−R678)
R550

53

Water Index (WI) R900
R970

54

Table 2. Widely published SRIs with its formulas and relevant references used in this study. Where R indicates 
the reflectance at corresponding wavelength, nm.

 

SRI Formula References

SRI574, 1134
R574
R1134

Current work

SRI580, 1130
R580
R1130

Current work

SRI586, 1130
R586
R1130

Current work

SRI636, 630
R636
R630

Current work

SRI642, 632
R642
R632

Current work

SRI648, 622
R648
R622

Current work

SRI662, 610
R662
R610

Current work

SRI970, 946
R970
R946

Current work

SRI1104, 710
R1104
R710

Current work

SRI1120, 1142
R1120
R1142

Current work

Table 1. Newly developed SRIs with its formulas and relevant references used in this study. Where R indicates 
the reflectance at corresponding wavelength, nm.
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G = 1

Snum

Snum∑
i=1

Gi (3)
 

 
B = 1

Snum

Snum∑
i=1

Bi (4)
 

where Ri, Gi, and Bi are the pixel values for the red, green, and blue channels in the segmented image 
respectively; i represents the first pixel and Snum indicates the maximum number of pixels; Additionally, R, G, 
and B represent the mean values of the red, green, and blue channels, respectively. The formulas and references 
of the twenty RGBIs were calculated in this study are detailed in Table 3.

Measured parameters
Following the capture of RGB digital images and spectral reflectance of the dry bean canopies, measurements 
of all parameters were made simultaneously on the same selected plants. The methods outlined by Semananda 
et al.70 were used to estimate wet biomass (WB) weight, dry biomass (DB) weight, and canopy moisture content 
(CMC). In each treatment, twenty-four bean plants were chosen at random from the ground-level monitored 
area. These selected plants were immediately weighed to determine their WB weight (g). These plants were 
fragmented and subjected to a 24-hour drying process at 105 °C in a forced-air oven. The DB weight (g) of the 
dried plant material was then weighed. The following equation is used in the CMC calculation:

 
CMC, (%) =

(WB − DB
WB

)
*100% (5)

 

The relative chlorophyll content was assessed using the SPAD-502 chlorophyll meter. Following the methodology 
of71,72, SPAD readings were taken on the most recently fully expanded leaf of each selected plant, positioning 
the meter approximately midway between the leaf ’s edge and its midpoint. The average of the values from four 

Fig. 5. Image processing pipeline for vegetation extraction.
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leaves per plant was used to calculate the SPAD values. According to73, soil samples were taken 30 cm from the 
base of the plants in order to estimate the soil water content (SWC). Following the recommendations made by 
Paltineanu and Starr74 and Evett et al.75, the SWC were evaluated using the gravimetric method (see Eq. (6)).

 
SW C (%) =

(
Mwet − Mdry

Mwet

)
∗ 100% (6)

 

where: Mwet: Weight of moist soil, g; Mdry: Weight of dry soil, g.
During harvesting (110 DAS) in both seasons, a random sample of six plants was selected from each replicate 

in each treatment. The average weight of four replicates was used to determine the SY for each treatment, which 
was then expressed in tons per hectare.

Artificial neural network model
Recent research has emphasized the potential of ANNs as a regression tool, especially in tasks related to pattern 
recognition and function determination. Unlike traditional methods, ANNs exhibit the remarkable ability 
to draw meaningful insights, effectively manage incomplete information, and demonstrate resilience against 
outliers, as evidenced by Elsayed et al.25 and Huang et al.76. In order to predict the measured parameters, such 
as WB, DB, CMC, SPAD, and SWC, as well as SY for dry bean crops under deficit irrigation, an ANNs were 
developed. The Quasi-Newton method (QN), illustrated in Eq. (7), was chosen as the optimization technique to 
reduce the variance between predicted and actual values, iteratively adjusting connection weights77.

 
ωj+1 := ωj − α.L.

(
∂L
∂ωj

)−1

 (7)
 

ωj+1: Weights of next iteration, ωj: Weights of current iteration, α: Learning rate. ∂ L
∂ ωj

: The first partial 
derivative of the loss function (L)). Before the model training process, hyperparameters were predetermined 
instead of being acquired from the data, playing a crucial role in shaping the model’s performance78. These 
predetermined hyperparameters were essential for optimizing the models’ performance and enhancing its 
ability to generalize effectively. On the training dataset, different combinations of hyperparameters were tested 
using the grid-search method included in the scikit-learn library and cross-validation with a fold-size of 5. The 

RGBIs Formula References

Red pixel percentage (R %) R
R+G+B

57

Green pixel percentage (G %) G
R+G+B

57

Blue pixel percentage (B %) B
R+G+B

57

Green red simple ratio (GR) G
R

58

Red blue simple ratio (RB) R
B

58

Green blue simple ratio (GB) G
B

58

Modified Green Red Vegetation Index (MGVRI) (G)2−(R)2

(G)2+(R)2
58

Red Green Blue Vegetation Index (RGVBI) G−(B*R)
(G)2+(B*R)

58

Excess red vegetation index (ExR) (1.4*R) − G 59

Excess green vegetation index (ExG) (2*G) − R − B 59

Excess green minus Excess red index (ExGR) ExG − ExR 59

Vegetative index (VEG) G
Ra*B(1−a) , a = 0.667 60

Color Index of Vegetation Extraction (CIVE) (0.441*R) − (0.811*G) +
( 0.385*B) + 18.78745

61

Combination (COM) (0.25*ExG) + (0.3*ExGR) +
(0.33*CIVE) + (0.12*VEG)

62

Visible atmospherically resistant index (VARI) (G−R)
(G+R+B)

63

Green-red vegetation index (GRVI) (G−R)
(G+R)

64

Normalized difference index (NDI) 128*[
(

G−R
G+R

)
+ 1] 65

Triangular Greenness Index (TGI) G − (0.39*R) − (0.61*B) 66

Principal component analysis index (IPCA) 0.994* (R − G) + 0.961
* (G − B) + 0.914*(G − R)

67

Green Leaf Index (GLI) (2*G)−R−B
(2*G)+R+B

68

Modified Excess Green Index (MExG) (1.262*G) − (0.884*R) − (0.311*B) 69

Table 3. Various RGBIs with its formulas and relevant references are used in this research.
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hyperparameters that need tuning include the number of hidden layers (ranging from 1 to 5), the number of 
neurons per hidden layer (ranging from 2 to 10), the learning rate (0.001), the maximum iteration (500, 600, 
700, 800, 900, 1000), and the activation functions (see Table 4) for specific functions used, as described in79. 
According to80, experience and testing were usually used to determine the structure of an ANN. Based on the 
highest R2 value and the lowest RMSE (see Eqs. (9) and (10), the model with the best performance and the best 
set of hyper-parameters was chosen. A comprehensive flowchart depicted in Fig. 6 outlines the proposed ANNs 
for indirectly estimating measured parameters and SY in dry bean crops.

Data analysis software and datasets
To facilitate the model training process, the dataset underwent normalization using Eq. (8), following the 
methodology outlined by Thara et al.81 This normalization technique was employed to standardize the vegetation 
indices, ensuring its mean values were centered around zero and its standard deviation was set to one. Here, z 
denotes the transformed dataset value; x represents the actual value; µ denotes the mean value; and σ signifies 
the standard deviation.

 
z = x − µ

σ
 (8)

 

The dataset was randomly divided, with 70% (50 samples) allocated for training and validation of the ANNs, while 
the remaining 30% (22 samples) was set aside for testing to compare predicted results against actual values, thus 
evaluating the model’s performance. The ANNs employed SRIs and RGBIs as input features, selected based on 
their correlation surpassing a predefined threshold. Subsequently, the ANNs underwent training and validation 
using 5-fold cross-validation, a method aimed at enhancing generalization, preventing overfitting, and offering 

Fig. 6. Flowchart depicting a broad outline of the ANN models designed to indirectly measure WB, DB, CMC, 
SPAD, and SWC, as well as SY for dry bean crops under deficit irrigation.

 

Name Equations

Hyperbolic Tangent (Tanh) f (x) = (ex−e−x)
(ex+e−x)

Logistic (Sigmoid) f (x) = 1
1+e−x

Rectified Linear Unit (ReLU) f (x) = max(0, x)
Linear (Identify) f (x) = x

Table 4. Types of activation function in ANN models.
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a more precise assessment of the model’s predictive capacity82. Our data analysis, model creation, and setup were 
conducted using Python version 3.12.1 and the Spyder software. The ANN modules were obtained from the 
Scikit-learn library, customized for regression tasks.

Model evaluation
In order to determine the difference between the actual value and the predicted value by the model, the 
evaluation of ANN models was estimated using metrics like the determination coefficient (R2 score, the root 
mean squared error (RMSE) value, and normalized root mean squared error (NRMSE) (see Eqs. (9–11). In this 
context, Ya refers to the actual value determined in the laboratory; Yp refers to the predicted value; Y̅ represents 
the mean value; and N represents all the data points. The NRMSE values are categorized based on its range to 
assess the accuracy and reliability of the predictions. The categories are defined as follows: Excellent: NRMSE 
values between 0% and 10%, Good: NRMSE values between 10% and 20%, Fair: NRMSE values between 20% 
and 30%, Poor: NRMSE values exceeding 30%. The best-performing model with the optimal combination 
of hyperparameters and optimum indices was selected based on the lowest RMSE and the highest R2 value, 
indicating better predictive accuracy and a better fit to the data.

 
R2 =

∑
(Ya − Yp)2

∑
(Ya − Y )2  (9)

 

 

RMSE =

√√√√ 1
N

N∑
i=1

(Ya − Yp)2 (10)

 

 
NRMSE = RMSE ∗ 100

Y
 (11)

 

Statistical analysis
The experiment was arranged using a Randomized Complete Block Design (RCBD) with four replicates per 
treatment. Following a homogeneity test, the data underwent ANOVA to identify distinctions among the 
different irrigation regimes. Duncan’s multiple range test was then applied to detect significant variations in the 
mean values of the measured parameters, SY, and various tested indices across the different irrigation regimes 
in the two seasons. Statistical analysis was performed using the SPSS software package (Version 28.0). Simple 
regression analysis was utilized to determine the relationship between the different tested indices, measured 
parameters, and SY. The significance of the R2 values for these relationships was evaluated at p-values of ≤ 0.001, 
0.01, and 0.05.

Results and discussion
The impact of irrigation regimes on measured parameters
A one-way ANOVA revealed that there was a statistically significant effect on all measured parameters and SY of 
dry bean plants (p < 0.01) due to the deficit irrigation regimes, as shown in Fig. 7. The WB, DB, CWC, and SWC 
have similarly showed a parallel trend (B100 > B75 > B50), as shown in Fig. 7. The B100 consistently displayed 
the highest WB and DB weights during the flowering stage in both seasons, as shown in Fig. 7a and b. This result 
can be ascribed to the drip irrigation’s constant supply of water, which made sure the plants got its optimal water 
requirements. The current study’s findings concur with previous studies on dry bean plants, including72,83–85. 
They also showed that inadequate water availability causes smaller plants, thinner stems, and less leaf area, which 
in turn causes a decrease in WB and DB weights.

A comparison of various irrigation regimes with the CMC and SWC showed a consistent pattern of 
reduced CMC and SWC as irrigation water application decreased, as shown in Fig. 7c and d. So, scientists have 
utilized CMC and SWC to schedule irrigation and identify plant water stress86. These results are consistent 
with87–89. Additionally, there were highly significant differences in the SPAD values, which represent the relative 
chlorophyll content in leaf samples, between irrigation regimes, as shown in Fig. 7e. The B75 had the highest 
SPAD values, followed by the B50 and B100. Our findings indicates that a slight reduction in CMC does not 
result in chlorophyll degradation. Therefore, when CMC decreases while chlorophyll levels remain stable, the 
chlorophyll concentration increases, leading to higher SPAD values, as seen in B75. However, under severe water 
stress conditions, a significant lack of CMC causes chlorophyll breakdown in the leaves, resulting in a decline in 
SPAD values, as seen in B50. This pattern aligns with findings from previous studies90, which are consistent with 
the results of our research.

A one-way ANOVA revealed that there was a statistically significant difference in mean seed dry bean yield 
between at least two treatments (F(2) = 388.485, p < 0.01) due to irrigation regimes, as shown in Fig. 7f. The 
effect size, eta squared (η²), was 0.990, indicating a large effect. Duncan’s multiple range test showed that the 
B100 scored significantly higher than both B75 and B50. In comparison to B75 and B50, B100 produced a higher 
seed bean yield in the first season by 18.49% and 39.75%, respectively. Likewise, the increases in second season 
were 20.18% and 40.00%, respectively. Sufficient water availability in the root zone promotes better absorption 
of nutrients and water, which in turn improves plant metabolic processes. Water stress during the flowering can 
result in fewer flowers and pod abortion72. These findings align with8,91,92.
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Advantage of remote sensing method to estimate measured parameters and SY
Irrigation water management can be significantly enhanced by accurately identifying various plant-related 
parameters that are closely related to soil moisture availability. Implementing deficit irrigation strategies can 
significantly reduce crop yields, as demonstrated with93–95. This yield reduction can be predicted by indirectly 
evaluating plant parameters, such as DB, during the initial growth phase. Therefore, it is essential to regularly 
and concurrently evaluate these plant parameters using quick, practical, and non-destructive techniques to 
maximize irrigation water use and achieve desired yields. Modern approaches leveraging advanced technologies 
such as spectral reflectance indices and RGB image analysis offer scalable, cost-effective, and timely solutions, 
empowering farmers to make data-driven decisions that maximize yield potential while minimizing resource 
waste and environmental impact96,97.

Response of RGB image indices to different irrigation regimes
In Table 5, the average RGB image indices (RGBIs) display statistically significant differences (p < 0.01) across 
various irrigation regimes in both seasons. This disparity in the RGBIs’ mean values suggests that the proportions 
of the R%, G%, and B% values were impacted by deficit irrigation. In particular, compared to the fully irrigated 
plants, the water-stressed plants displayed lower G% values and higher R% and B% values. Vinod et al.98 state 
that the water-stressed plants showed the lowest G% value, suggesting that photosynthetic pigment affected 
by water stress. While, fully irrigated plants appear to absorb more R and B channels for photosynthesis. The 
response of R, G, and B channels across various irrigation regimes highlights potential practicality and cost-
effectiveness of employing RGB techniques as a monitoring method for managing deficit irrigation. Wenting et 
al.99 and Christenson et al.100 emphasized the potential of the visible region for effectively monitoring various 
plant parameters such as CMC and chlorophyll content with R2 = 0.70. Additionally, Mercado-Luna et al.101 and 

Fig. 7. The Impact of Different Irrigation Regimes on (a) WB, (b) DB, (c) CMC, (d) SWC, (e) SPAD, and (f) 
SY of dry bean crops. Means having the different alphabetical letter (s) are significantly differ between regimes 
at 0.01 level according to Duncan’s multiple range test.
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Qian et al.102 identified a positive correlation between the G region and the nitrogen status of tomato plants, 
whereas the B and R regions have an adverse correlation with the nitrogen status of tomato plants.

Potential of RGBIs to estimate the measured parameters
The majority of the RGBIs showed a strong and significant linear relationship with all measured parameters and 
SY, with the exception of SPAD, which demonstrated a significant quadratic relationship with all RGBIs. On the 
other hand, all measured parameters and SY showed a significant negative correlation with the R (%), B (%), 
ExR, and CIVE indices. However, it is crucial to note that there was no correlation found between the RB index 
and the measured parameters or SY.

The R2values between the RGBIs, measured parameters, and SY were examined. WB, DB, CMC, SPAD, SWC, 
and SY had R2values ranging from 0.59 to 0.93, 0.60 to 0.95, 0.47 to 0.81, 0.34 to 0.79, 0.60 to 0.95, and 0.56 to 
0.84, respectively, for the first season (Fig. 8a). R2values for WB, DB, CMC, SPAD, SWC, and SY in the second 
season ranged from 0.56 to 0.87, 0.52 to 0.77, 0.48 to 0.82, 0.43 to 0.74, 0.68 to 0.96, and 0.68 to 0.91, respectively, 
as shown in Fig. 8b. The R2values for combining the data from both seasons were 0.57 to 0.89 for WB, 0.56 to 0.86 
for DB, 0.50 to 0.80 for CMC, 0.35 to 0.76 for SPAD, 0.61 to 0.89 for SWC, and 0.60 to 0.87 for SY, as illustrated 
in Fig. 8c.

Our image analysis results indicate that the B and R channels alone is inadequate for accurately predicting 
measured parameters and yield estimation. The RB ratio neglects the crucial G component of vegetation, which 
plays a significant role in evaluating vegetation health and biomass. Since greenness is strongly correlated with 
chlorophyll content and overall plant health103, these indices hold significant potential as cost-effective tools 
for monitoring plant yield and growth. Previous research, including the work of104, has demonstrated the 
effectiveness of RGBIs in predicting wet biomass and SY across a wide range of growing conditions. Recent 
studies on beans and cassava crops by Parker et al.105 and Wasonga et al.106 have further corroborated these 
findings, underscoring the significance of RGBIs in capturing key biometric variables with R2 up to 0.90.

Response of crop spectral reflectance signature to different irrigation regimes
The spectral signature of dry bean canopies under various irrigation regimes were displayed in Fig.  9a and 
b. Although there were differences between the treatments, the canopy reflectance signatures for the three 
irrigation regimes displayed comparable trends within the 302–1148 nm range. A detailed analysis of the spectral 
reflectance signatures revealed distinct dips at approximately 350 nm and 670 nm, attributed to the significant 

Season Regimes R % G % B % GR RB GB MGVRI

First

B100 0.23 ± 0.04c 0.56 ± 0.03a 0.21 ± 0.03c 2.59 ± 0.75a 1.12 ± 0.33a 2.75 ± 0.53a 0.71 ± 0.09a

B75 0.30 ± 0.03b 0.44 ± 0.02b 0.26 ± 0.03b 1.52 ± 0.22b 1.15 ± 0.23a 1.72 ± 0.28b 0.38 ± 0.10b

B50 0.34 ± 0.04a 0.33 ± 0.03c 0.33 ± 0.03a 1.00 ± 0.23c 1.03 ± 0.20a 0.99 ± 0.13c −0.03 ± 0.20c

Second

B100 0.25 ± 0.02c 0.56 ± 0.02a 0.20 ± 0.02c 2.30 ± 0.24a 1.27 ± 0.31a 2.88 ± 0.52a 0.68 ± 0.05a

B75 0.30 ± 0.03b 0.44 ± 0.02b 0.26 ± 0.03b 1.51 ± 0.18b 1.12 ± 0.22bc 1.67 ± 0.22b 0.38 ± 0.10b

B50 0.34 ± 0.04a 0.32 ± 0.03c 0.33 ± 0.02a 0.95 ± 0.19c 1.05 ± 0.16c 0.97 ± 0.12c −0.07 ± 0.18c

 Season  Regimes  RGVBI  ExR  ExG  ExGR  VEG  CIVE  COM

First

B100 −0.12 ± 0.03a −60.21 ± 
16.59c 170.96 ± 16.25a 231.17 ± 31.38a 2.62 ± 0.49a −49.58 ± 6.82c 96.04 ± 11.19a

B75 −0.28 ± 0.04b −7.81 ± 13.66b 90.59 ± 16.06b 98.40 ± 27.47b 1.58 ± 0.17b −16.52 ± 6.58b 46.90 ± 9.97b

B50 −0.51 ± 0.06c 36.16 ± 20.27a −4.83 ± 19.42c −40.99 ± 
38.39c 0.99 ± 0.16c 22.02 ± 8.19a −6.12 ± 13.60c

Second

B100 −0.13 ± 0.02a −55.46 ± 
10.31c 172.92 ± 11.57a 228.38 ± 20.62a 2.47 ± 0.18a −50.15 ± 4.78c 95.49 ± 7.44a

B75 −0.28 ± 0.03b −7.37 ± 13.27b 87.98 ± 12.00b 95.35 ± 22.22b 1.56 ± 0.13b −15.50 ± 4.93b 45.67 ± 7.85b

B50 −0.52 ± 0.06c 39.69 ± 18.86a −8.98 ± 20.31c −48.67 ± 
38.25c 0.96 ± 0.15c 23.76 ± 8.51a −8.89 ± 13.70c

Season Regimes  VARI  GRVI  NDI  TGI  IPCA  GLI  MExG

First

B100 0.34 ± 0.07a 0.43 ± 0.09a 182.46 
± 11.59a 86.01 ± 7.75a 77.84 ± 8.24a 0.44 ± 0.05a 110.14 ± 11.78a

B75 0.15 ± 0.04b 0.20 ± 0.06b 153.69 
± 7.82b 46.31 ± 8.25b 44.71 ± 10.23b 0.23 ± 0.04b 59.71 ± 10.25b

B50 −0.01 ± 0.06c −0.01 ± 0.10c 126.29 
± 12.88c −2.23 ± 9.06c −1.25 ± 8.59c −0.01 ± 0.06c 1.92 ± 14.28c

Second

B100 0.31 ± 0.03a 0.39 ± 0.04a 178.06 
± 5.51a 87.75 ± 5.64a 82.27 ± 6.54a 0.43 ± 0.03a 109.58 ± 8.42a

B75 0.15 ± 0.04b 0.20 ± 0.06b 153.59 
± 7.29b 44.86 ± 6.29b 42.88 ± 9.46b 0.22 ± 0.03b 58.44 ± 8.12b

B50 −0.02 ± 0.06c −0.03 ± 0.09c 123.71 
± 11.89c −4.13 ± 9.58c −2.23 ± 8.15c −0.03 ± 0.07c −1.11 ± 14.40c

Table 5. Comparing the average RGBIs values across three irrigation regimes for the dry bean crop during the 
flowering stage.
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absorption of chlorophyll. Additionally, the absorption characteristics of the canopy moisture content led to the 
observation of troughs near 970 nm. These findings concur with107.

When the various irrigation treatments were compared, it was discovered that fully irrigated plants (B100) 
had the highest reflectance values in the red edge (700–760 nm) and near-infrared (NIR) regions (> 760 nm), 
and the lowest reflectance values in the visible region (< 700 nm). In contrast, water-stressed plants (B50) showed 
the lowest reflectance values in the NIR and red edge regions and the highest reflectance values in the visible. 
These results are consistent with108. These findings suggest that fully irrigated plants have reduced reflectance in 
the visible spectrum as a result of absorbing visible light for photosynthetic processes. Furthermore, the red edge 
region showed higher reflectance in well-irrigated plants, which are recognized for having a higher chlorophyll 
content and healthier photosynthetic activity. The internal structure and moisture content of the plants affect 
how much NIR energy is reflected. Adequately irrigated plants contain ample water, filling the inter-cell spaces, 
increasing the number of cell layers and cell size, ultimately leading to amplified NIR light reflection14,109. Padilla 

Fig. 8. The determination coefficients of relationships between the RGBIs with measured parameters and SY 
of dry bean under different irrigation regimes at (a) first season, (b) second season, and (c) combining the data 
from both seasons. The full names of the abbreviations of RGBIs are listed in Table 3.
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et al.110 used SRIs to determine tomato chlorophyll content and achieved an R² in the range of 0.88–0.93 (P < 
0.001). Additionally, Elvanidi et al.111 discovered that canopy spectral reflectance can determine a tomato plant’s 
chlorophyll content and nitrogen levels under water stress, with R² values of up to 0.81.

Contour map analysis of the spectral reflectance data
To derive various spectral reflectance indices (SRIs), the study utilized processed spectra obtained from the 
dry bean canopy plants, spanning wavelengths between 302 nm and 1148 nm. Through using 2D contour 
maps, depicted in Fig.  10, the study successfully found the most robust and consistent correlations among 
newly developed SRIs, measured parameters, and SY. This analysis was conducted by pooled data from various 
irrigation treatments, replications, and seasons. As indicated in Table 2, the study identified the newly developed 
SRIs with the highest R2 values as the most appropriate matches for the study.

The contours revealed robust relationships between measured parameters, SY, and newly developed SRIs 
combine wavelengths from VIS, red-edge, and NIR regions of the spectrum. This phenomenon is likely attributed 
to the close relationship between wavelengths in the VIS region and plant characteristics such as photosynthetic 
capacity, vigor, and pigment status, which are essential for crop growth and productivity. Observations from 
tomato and bean plants subjected to varying irrigation regimes also suggest that alterations in these wavelengths 
serve as indicators of the plants’ water status112,113. The red-edge wavelengths serve as indirect stress indicators for 
plants thriving in challenging conditions, as it provides vital insights into plant biomass, health, and vigor114,115. 
Internal factors like cell arrangement in the mesophyll layer, the ratio of palisade to spongy mesophyll cells, and 
the presence of intercellular air and water spaces significantly influence NIR wavelengths116–118. Notably, spectral 
reflectance in the NIR spectrum is highly sensitive to plant water status due to water absorption properties in this 
region, enabling deeper leaf penetration119,18. Analyzing reflectance patterns at specific wavelengths within the 
VIS, red-edge, and NIR spectra offers valuable insights into plant parameters, water status, and stress levels. With 
this information, it can enhance overall crop productivity, optimize water use efficiency, and facilitate effective 
monitoring and management of crop irrigation practices.

Previous researchers have utilized all possible combinations of the two bands (contour maps) to identify 
newly developed SRIs for determining CMC, biomass, chlorophyll content, and crop production under various 
environmental conditions18,120–122. For instance, Elsayed et al.20investigated the relationships between newly 
developed SRIs and parameters such as WB, DB, and CMC in potato crops grown under various irrigation 
schedules. They discovered that the measured parameters and yield showed significant and strong relationships 
with newly developed SRIs that were dependent on effective wavelengths. These studies have emphasized the 
significance of contour maps, which entail looking at every possible combination of two bands. In contrast, 
Barmeier and Schmidhalter123 reported that they did not observe any improvement in the selection of SRIs 
based on contour map analyses in their study. These disparities in findings may be due to differences in crop 
varieties, environmental factors, and experimental designs between studies.

Response of published and newly SRIs to different irrigation regimes
Table  6 presented the means and standard deviations of various SRIs under varying irrigation regimes. 
Statistical analysis revealed significant relationships between specific SRIs and different irrigation regimes. 
SRI574, 1134,  SRI580, 1130, SRI586, 1130, SRI642, 632, SRI648, 622, SRI1104, 710, and SRI1120, 1142 were 

significantly related to different irrigation regimes. However, there were no significant differences between B100 
and B75 for the remaining SRIs. These variations highlight the differing responses of dry bean canopies’ spectral 
reflectance to varying irrigation regimes. Changes were found in the average values of published SRIs. These 
values ranged from 2.75 to 4.81 for PRMI, 0.22 to 0.31 for NAI, and 1.10 to 1.14 for WI (as seen in Table 6). 
Additionally, newly developed SRIs such as SRI574, 1134, SRI580, 1130, and SRI586, 1130 showed significant changes in 
its mean values, ranging from 0.82 to 0.89, 0.68 to 0.79, and 0.64 to 0.77, respectively.

Remarkably, these changes in SRIs corresponded to variations in measured parameters and SY. The 
magnitude of these changes depended on the irrigation regimes. The findings highlight that different irrigation 
regimes significantly impact various biophysical and biochemical parameters of dry bean canopies. As a result, 

Fig. 9. Spectral signature of dry bean plants under different irrigation regimes in the range from 302 to 1148 
nm during flowering stage in (a) first season and (b) second season.
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the spectral signatures of the canopy experience notable changes in the VIS, red edge, and NIR spectrums. These 
findings are supported by124,9,125–127. Therefore, creating SRIs with practical wavelengths from these spectral 
regions can be a reliable way to estimate crop yield and measured parameters in dry bean plants that are grown 
under varying water regimes. Crucially, this method provides a quick and non-invasive way to evaluate.

Potential of both published and newly developed SRIs in estimating the measured 
parameters
The study investigated the relationships between different SRIs, measured parameters, and SY under varying 
irrigation regimes during the flowering stage across two seasons, as illustrated in Fig. 11. In the first season, R2 
values for WB, DB, CMC, SPAD, SWC, and SY ranged from 0.45 to 0.74, 0.48 to 0.68, 0.28 to 0.53, 0.18 to 0.59, 

Fig. 10. displays correlation matrices indicating the R2 values for all dual wavelength combination of the 
hyperspectral reflectance with WB, DB, CMC, SPAD, SY, and SWC for dry bean crop using combined data 
during flowering stage in both seasons.
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0.34 to 0.79, and 0.33 to 0.80, respectively, as depicted in Fig. 11a. For second season, R2 values spanning from 
0.51 to 0.75 for WB, 0.46 to 0.68 for DB, 0.47 to 0.67 for CMC, 0.24 to 0.45 for SPAD, 0.43 to 0.76 for SWC, and 
0.38 to 0.72 for SY, as showcased in Fig. 11b. Pooling data from both seasons enabled, revealing R2 values ranging 
from 0.50 to 0.73 for WB, 0.48 to 0.71 for DB, 0.52 to 0.66 for CMC, 0.23 to 0.48 for SPAD, 0.32 to 0.72 for SWC, 
and 0.26 to 0.83 for SY, as demonstrated in Fig. 11c.

The study’s results underscored the efficacy of a majority of SRIs in accurately estimating measured parameters 
and SY. For instance, SRI574, 1134, SRI580, 1130, and SRI586, 1130 exhibited robust correlations with WB, DB, 
CMC, SY, SWC, and moderate associations with SPAD, as depicted in Fig. 11. The SRI574, 1134exhibited high R2 
values: 0.68, 0.69, and 0.68 for WB, 0.69, 0.66, and 0.67 for DB, 0.57, 0.53, and 0.54 for CMC, 0.37, 0.34, and 0.35 
for SPAD, 0.73, 0.75, and 0.74 for SY, and 0.79, 0.75, and 0.72 for SWC at flowering stage in first season, second 
season, and combined data for both seasons, respectively, as depicted in Fig. 11a. The SRI580, 1130exhibited 
high R2 values: 0.73, 0.71, and 0.72 for WB, 0.73, 0.68, and 0.70 for DB, 0.63, 0.56, and 0.59 for CMC, 0.37, 0.35, 
and 0.36 for SPAD, 0.68, 0.76, and 0.71 for SY, and 0.79, 0.76, and 0.71 for SWC, respectively, as depicted in 
Fig. 11b. The SRI586, 1130exhibited high R2 values: 0.74, 0.71, and 0.72 for WB, 0.74, 0.67, and 0.70 for DB, 0.65, 
0.57, and 0.61 for CMC, 0.39, 0.33, and 0.36 for SPAD, 0.66, 0.74, and 0.70 for SY, and 0.77, 0.75, and 0.70 for 
SWC in that order, as presented in Fig. 11c.

Additionally, the newly developed SRIs outperform the best-performing published SRIs across all measured 
parameters and SY. For WB, they demonstrate 10–23% higher correlations compared to PRMI (R2 = 0.62). 
Similarly, for DB, the correlations are 9–23% higher than PRMI (R2 = 0.62). In predicting CMC, the newly 
developed SRIs show 5–14% higher correlations relative to NDI570,540 (R2 = 0.59). For SPAD, the improvement 
ranges from 3 to 25% compared to NDI686,620 (R2 = 0.45). Regarding SWC, the newly developed SRIs achieve 
15–40% higher correlations than PRMI (R2 = 0.57). Finally, for SY, the correlations are 15–39% higher compared 
to PRMI (R2 = 0.59).

Leveraging artificial neural networks with vegetation indices to predict measured 
parameters of dry bean crop
Performance of ANN model based on published and newly developed SRIs for predicting the measured parameters 
and SY of dry bean crop
Simple SRIs are commonly employed for indirectly estimating crop parameters and yields. The spectral signatures 
of canopies can be distorted by a blend of soil background reflectance and vegetation saturation. To counteract 
these adverse impacts on canopy spectral properties, the amalgamation of diverse SRIs into a unified index 
proves beneficial128–131. Similarly, research by El-Hendawy et al.119, Winterhalter et al.132, and Elazab et al.129 
have echoed these observations. For instance, in scenarios of full irrigation, excessive biomass can lead to SRI 
saturation, whereas conditions of severe stress that diminish biomass accumulation can markedly alter canopy 
spectral reflectance due to heightened exposure of bare soil.

Our study utilized ANN models to precisely forecast measured parameters and SY of dry beans by integrating 
SRIs as independent variables. By pooled data from both seasons, ANN models were trained to predict the 

Season Regimes SRI574, 1134 SRI580, 1130 SRI586, 1130 SRI636, 630 SRI642, 632 SRI648, 622 SRI662, 610

First

B100 0.89 ± 0.01a 0.79 ± 0.03a 0.77 ± 0.04a 0.99 ± 0.00a 0.97 ± 0.01a 0.94 ± 0.02a 0.86 ± 0.04a

B75 0.86 ± 0.01b 0.73 ± 0.01b 0.70 ± 0.01b 0.98 ± 0.00b 0.95 ± 0.00b 0.89 ± 0.01b 0.78 ± 0.02b

B50 0.82 ± 0.02c 0.68 ± 0.03c 0.65 ± 0.03c 0.98 ± 0.01b 0.94 ± 0.01c 0.87 ± 0.02c 0.73 ± 0.04b

Second

B100 0.88 ± 0.02a 0.79 ± 0.04a 0.77 ± 0.05a 0.99 ± 0.00a 0.97 ± 0.01a 0.93 ± 0.02a 0.85 ± 0.05a

B75 0.85 ± 0.01b 0.73 ± 0.01b 0.70 ± 0.01b 0.98 ± 0.00b 0.95 ± 0.00b 0.89 ± 0.01b 0.78 ± 0.02b

B50 0.82 ± 0.02c 0.68 ± 0.03c 0.64 ± 0.04c 0.98 ± 0.00b 0.94 ± 0.01c 0.87 ± 0.02c 0.73 ± 0.05b

 Season  Regimes SRI970, 946 SRI1104, 710 SRI1120, 1142  NWI-1  NWI-3  NWI-4  NWI-5

First

B100 0.96 ± 0.01a 1.47 ± 0.11c 1.65 ± 0.09c −0.05 ± 0.02a −0.05 ± 0.02a −0.05 ± 0.01a −0.05 ± 0.02a

B75 0.94 ± 0.01b 1.65 ± 0.06b 1.85 ± 0.07b −0.06 ± 0.01b −0.07 ± 0.01b −0.06 ± 0.00b −0.06 ± 0.01b

B50 0.93 ± 0.01b 1.83 ± 0.12a 2.05 ± 0.17a −0.07 ± 0.01b −0.07 ± 0.01b −0.06 ± 0.00b −0.07 ± 0.01b

Second

B100 0.95 ± 0.01a 1.48 ± 0.11c 1.65 ± 0.12c −0.05 ± 0.01a −0.05 ± 0.01a −0.05 ± 0.01a −0.05 ± 0.01a

B75 0.94 ± 0.01b 1.65 ± 0.07b 1.84 ± 0.06b −0.06 ± 0.01b −0.07 ± 0.01b −0.06 ± 0.01b −0.06 ± 0.01b

B50 0.93 ± 0.01b 1.85 ± 0.14a 2.07 ± 0.15a −0.07 ± 0.01b −0.07 ± 0.01b −0.06 ± 0.01b −0.07 ± 0.01b

 Season  Regimes  NWI-6  PRMI NDI570, 540 NDI686, 620  NAI NDI780, 550 NDI800, 670  WI

First

B100 0.65 ± 0.15b 2.75 ± 0.94b −0.01 ± 0.02a −0.02 ± 0.01a 0.22 ± 0.05b 0.56 ± 0.11b 0.66 ± 0.15b 1.10 ± 0.03b

B75 0.80 ± 0.02a 3.94 ± 0.22a −0.03 ± 0.01b −0.05 ± 0.01b 0.27 ± 0.01a 0.65 ± 0.01a 0.80 ± 0.02a 1.14 ± 0.01a

B50 0.84 ± 0.04a 4.76 ± 0.76a −0.04 ± 0.01b −0.06 ± 0.02b 0.31 ± 0.04a 0.69 ± 0.03a 0.85 ± 0.04a 1.14 ± 0.01a

Second

B100 0.68 ± 0.10b 2.92 ± 0.72c −0.01 ± 0.02a −0.03 ± 0.02a 0.22 ± 0.03b 0.58 ± 0.06b 0.69 ± 0.09b 1.11 ± 0.02b

B75 0.80 ± 0.02a 3.96 ± 0.27b −0.03 ± 0.01b −0.06 ± 0.01b 0.27 ± 0.02a 0.65 ± 0.01a 0.80 ± 0.02a 1.13 ± 0.01a

B50 0.84 ± 0.04a 4.81 ± 0.78a −0.04 ± 0.01b −0.06 ± 0.01b 0.31 ± 0.04a 0.70 ± 0.04a 0.85 ± 0.04a 1.14 ± 0.01a

Table 6. Comparing the average SRIs values across three irrigation regimes for dry bean crop during flowering 
stage.
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Fig. 11. The determination coefficients of relationships between the SRIs, the measured parameters, and the 
SY of dry beans under various irrigation regimes. The complete names of the SRIs can be found in Tables 1 and 
2.
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measured parameters and SY of dry beans, detailed in Table 7. Among the models, ANNB-WB1 emerged as the 
standout performer, demonstrating a robust correlation between its SRIs and WB. Notably, this model achieved 
an R2 value of 0.94 with an RMSE of 3.09 g/plant in training, and an R2of 0.93 with an RMSE of 2.48 g/plant in 
testing. Similarly, the ANNB-DB1 model excelled in predicting dry bean parameters, demonstrating remarkable 
accuracy with R2 of 0.96 in training and 0.88 in testing, along with low RMSE values of 0.26 g/plant and 0.33 g/
plant for training and testing, respectively. Additionally, the ANNB-CMC1 model distinguished itself as the top 
performer in assessing CMC, achieving an R2of 0.88 and an RMSE of 0.53% in training, and an R2 of 0.86 with an 
RMSE of 0.45% in testing. The ANNB-SPAD1 model displayed outstanding predictive prowess for SPAD values, 
boasting high R2 values of 0.97 for both training and testing, with corresponding RMSE values of 0.43 and 0.46. 
For SWC prediction, the ANNB-SWC1 model emerged as the most accurate, attaining R2 values of 0.97 and 
0.95, alongside RMSE values of 0.96 and 1.26 for training and testing, respectively. Furthermore, the ANNB-
SY1 model yielded outstanding results in SY predictions, achieving R2 values of 0.98 (RMSE = 1.14 g/plant) for 
training and 0.98 (RMSE = 0.99 g/plant) for testing. According to the NRMSE during training phase, the ANNB-
WB1, ANNB-DB1, ANNB-CMC1, ANNB-SPAD1, ANNB-SY1, and ANNB-SWC1 models demonstrated 
exceptional prediction accuracy (0–10%). Considering the NRMSE during testing phase, the ANNB-WB1, 
ANNB-DB1, ANNB-CMC1, ANNB-SPAD1, ANNB-SY1, and ANNB-SWC1 models demonstrated outstanding 
prediction accuracy (0–10%).

In this study, employing a combination of SRIs integrated into ANN models has enhanced the indirect 
prediction of parameters and SY for dry bean, as detailed in Table  7. This research was compared to other 
studies on plant growth and yield prediction using ANN. Osco et al.133evaluated water-stress-induced lettuce 
using hyperspectral response and ANN, achieving R2values up to 93%. Elvanidi and Katsoulas134 developed an 
ANN model leveraging hyperspectral data to predict different types of water stress in tomato crops. The ANN 
model performed exceptionally well, achieving a remarkable accuracy rate of 96%. These results highlight the 
potential and accuracy of ANN models in agriculture, particularly in tasks related to plant water status and stress 
detection.

Performance of ANN model based on RGBIs for predicting the measured parameters and SY of dry bean crop
The RGBI data were analyzed using ANN models, as outlined in Table 8. Among these, the ANNB-WB2 model 
proved to be the most effective predictor, demonstrating exceptional performance and establishing a strong 
correlation between the RGBIs and WB. It achieved R² values of 0.96 for training and 0.94 for testing, alongside 
RMSE values of 2.37 g/plant in training and 3.29 g/plant in testing. Similarly, the ANNB-DB2 model excelled 
in evaluating DB, recording R² values of 0.79 for training and 0.78 for testing, with RMSE values of 0.51 g/
plant and 0.63 g/plant, respectively. The ANNB-CMC2 model distinguished itself as the most precise for CMC, 
achieving R² values of 0.95 and 0.89 for training and testing, respectively, alongside RMSE values of 0.39% and 
0.57%. Designed for predicting SPAD values, the ANNB-SPAD2 model surpassed expectations with R² values 
of 0.96 for training and 0.94 for testing, and RMSE scores of 0.46 and 0.62 for the respective phases. In terms 
of SWC, the ANNB-SWC2 model demonstrated high accuracy, attaining R² scores of 0.92 for training and 0.86 
for testing, with low RMSE values of 1.65% and 2.12%. Finally, the ANNB-SY2 model emerged as the leading 
model for assessing SY, achieving an R² of 0.94 and an RMSE of 0.52 g/plant in the training dataset, along with 
an R² of 0.87 and an RMSE of 0.75 g/plant in the testing dataset. Based on the NRMSE during the training phase, 
the ANNB-WB2, ANNB-CMC2, ANNB-SPAD2, ANNB-SY2, and ANNB-SWC2 models exhibited excellent 
prediction accuracy (0–10%), while the ANNB-DB2 model fell within the good prediction range (10–20%). 
Additionality, based on the NRMSE, the ANNB-WB2, ANNB-CMC2, and ANNB-SPAD2 models exhibited 
excellent prediction accuracy (0–10%), while the ANNB-DB2, ANNB-SWC2, and ANNB-SY2 models fell 
within the good prediction range (10–20%).

Model Optimal SRIs

Hyper-
parameter
(Z, L, N, I)

Training Testing

R2 RMSE
NRMSE 
(%) R2 RMSE

NRMSE 
(%)

ANNB-WB1 SRI580,1130 ,  SRI586,1130 ,  SRI636,630 ,  SRI642,632 ,  SRI648,622 (Tanh, 1, 6, 700) 0.94*** 3.09 6.15 0.93*** 2.48 4.63

ANNB-DB1
SRI574,1134 ,  SRI580,1130 ,  SRI586,1130 ,  SRI636,630 ,  SRI642,632

,  SRI648,622 ,  SRI662, 610 ,  SRI970,946 ,  SRI1104,710 ,  SRI1120,1142 , 
PRMI, NDI570,540 , NAI

(Logistic, 2, 4, 
600) 0.96*** 0.26 3.36 0.88*** 0.33 4.08

ANNB -CMC1 SRI586,1130, SRI636,630, SRI642,632, SRI648,622, SRI662, 610, SRI970,946 (Relu, 1, 8, 500) 0.88*** 0.53 0.63 0.86*** 0.45 0.53

ANNB-SPAD1
SRI574,1134 ,  SRI580,1130 ,  SRI586,1130 ,  SRI636,630 ,  SRI642,632

,  SRI648,622 ,  SRI662, 610 ,  SRI970,946 ,  SRI1104,710 ,  SRI1120,1142 , 
NWI-1, NWI-3, NWI-4, NWI-5,  NDI570,540 ,  NDI686,620 , WI

(Tanh, 1, 5, 500) 0.97*** 0.43 1.07 0.97*** 0.46 1.12

ANNB-SWC1 SRI574,1134 ,  SRI580,1130 ,  SRI586,1130 ,  SRI636,630 ,  SRI642,632
,  SRI648,622 ,  SRI662, 610 ,  SRI1104,710 ,  SRI1120,1142 ,

(Logistic, 1, 8, 
600) 0.97*** 0.96 5.53 0.95*** 1.26 6.99

ANNB-SY1
SRI574,1134 ,  SRI580,1130 ,  SRI586,1130 ,  SRI636,630 ,  SRI642,632

,  SRI648,622 ,  SRI662, 610 ,  SRI970,946 ,  SRI1104,710 ,  SRI1120,1142 , 
PRMI, NDI570,540 , NAI

(Logistic, 1, 5, 
700) 0.98*** 1.14 3.02 0.98*** 0.99 2.49

Table 7. Performance of various ANN models in forecasting measured parameters and SY of dry bean crop 
using different SRIs. Z, L, N, and I represent activation function, layers number, neurons number in each layer, 
and iterations number, respectively.
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This study highlights the effectiveness of combining RGBIs with ANN in predicting measured parameters 
and SY for dry bean crops under deficit irrigation. Deficit irrigation induces dehydration and wilting, leading 
to changes in plant pigmentation, CMC, and stomatal closure. These changes are effectively captured by 
RGBIs25. By utilizing the variations in these indices, measured parameters and SY for dry bean were successfully 
quantified using ANN models, resulting in good values for R2, RMSE. The incorporation of highly correlated 
RGBIs, indicative of plant health, likely played a pivotal role in achieving these favorable results. Accurate 
predictions during the flowering stage hold particular significance for informed decision-making. Our research 
was compared to other studies on plant growth and yield prediction using ANN. Hamdane et al.135used ANN 
in combination with RGBIs to estimate the canopy vigor and biomass of tomato, eggplant, and pepper plants, 
achieving an R2 of 0.82. Similarly, Hassanijalilian et al.136 utilized RGBIs of soybeans captured with smartphones 
to develop an estimation machine learning model for chlorophyll content. The study demonstrated the efficiency 
and cost-effectiveness of this image processing approach with machine learning modeling, offering a scalable and 
adaptable solution for estimating chlorophyll content in soybeans and potentially other large-scale agricultural 
settings.

Performance of ANN model based on RGBIs and published and newly developed SRIs for predicting the measured 
parameters of dry bean crop
This study examined multiple ANN models based on selected combinations of RGBIs and SRIs to enhance 
the predictive capability for measured parameters and SY. Displayed in Table 9; Fig. 12, the ANN models were 
trained using RGBIs and SRIs as independent variables to forecast the measured parameters and SY of dry 
beans. Standing out among the models, ANNB-WB3 emerged as a robust predictor for WB, yielding R² values 
of 0.97 (RMSE = 2.09 g/plant) in training and 0.96 (RMSE = 2.35 g/plant) in testing. The ANNB-DB3 model 
excelled in measuring DB, achieving R² of 0.99 (RMSE = 0.10 g/plant) in training and 0.98 (RMSE = 0.20 g/
plant) in testing. In terms of CMC, the ANNB-CMC3 model showcased superior precision, with R² values of 
0.93 and 0.88, and RMSE values of 0.41% and 0.53% for training and testing, respectively. Leading the pack in 
predicting SPAD values, the ANNB-SPAD3 model achieved R² values of 0.94 (RMSE = 0.61) in training and 
0.93 (RMSE = 0.71) in testing. The ANNB-SWC3 model, tailored for estimating SWC, reached R² values of 
0.98 (RMSE = 0.77%) in training and 0.98 (RMSE = 0.81%) in testing. Lastly, for SY assessment, the ANNB-SY3 
model demonstrated exceptional accuracy with R² outputs of 0.99 (RMSE = 0.39 g/plant) in training and 0.98 
(RMSE = 0.57 g/plant) in testing. Elsherbiny et al.137 emphasized the importance of employing multiple training 

Model Optimal SRI and RGBIs

Hyper-
parameter
(Z, L, N, I)

Training Testing

R2 MSE R2 MSE

ANNB-WB3 ExG, CIVE, TGI, IPCA,  SRI580,1130 ,  SRI586,1130 ,  SRI636,630 ,  SRI642,632 ,  SRI648,622
(Logistic, 2, 5, 
700) 0.97*** 2.09 0.96*** 2.35

ANNB-DB3 ExG, CIVE, COM, TGI, IPCA, 
MExG,  SRI580,1130 ,  SRI586,1130 ,  SRI636,630 ,  SRI642,632 ,  SRI648,622

(ReLU, 1, 9, 700) 0.99*** 0.10 0.987*** 0.20

ANNB -CMC3 RGVBI, ExG, CIVE, TGI, IPCA, 
MExG,  SRI586,1130 ,  SRI636,630 ,  SRI642,632 ,  SRI648,622 ,  SRI662, 610

(Logistic, 1, 8, 
500) 0.93*** 0.41 0.88*** 0.53

ANNB-SPAD3 ExG, CIVE, COM, TGI, MExG,  SRI636,630 ,  SRI642,632 ,  SRI648,622 ,  NDI686,620 (ReLU, 2, 5, 500) 0.935*** 0.61 0.933*** 0.71

ANNB-SWC3 ExG, CIVE, COM, TGI, GLI, MExG,  SRI574,1134 ,  SRI580,1130 ,  SRI586,1130 ,  SRI636,630
,  SRI642,632 ,  SRI1104,710 ,  SRI1120,1142

(Tanh, 1, 8, 800) 0.98*** 0.77 0.977*** 0.81

ANNB-SY3 ExG, ExGR, CIVE, COM, TGI, MExG,  SRI574,1134 ,  SRI580,1130 ,  SRI586,1130
,  SRI636,630 ,  SRI642,632 ,  SRI1104,710 ,  SRI1120,1142

(Tanh, 1, 6, 500) 0.99*** 0.39 0.988*** 0.57

Table 9. Performance of different ANN models for prediction of measured parameters and SY of dry bean 
using RGBIs and SRIs together. Z, L, N, and I represent activation function, layers number, neurons number in 
each layer, and iterations number, respectively.

 

Model Optimal RGBIs
Hyper-parameter
(Z, L, N, I, O)

Training Testing

R2 RMSE
NRMSE 
(%) R2 RMSE

NRMSE 
(%)

ANNB-WB2 RGVB, G %, ExGR, ExG, COM, CIVE, IPCA, TGI, MExG, GLI (Logistic, 1, 7, 600) 0.96*** 2.37 6.33 0.94*** 3.29 8.95

ANNB-DB2 MGVRI, G %, ExR, ExG, RGVBI, CIVE, ExGR, VARI, COM, NDI, 
GRVI, IPCA, TGI, MExG, GLI (Logistic, 1, 6, 500) 0.79*** 0.51 13.20 0.79*** 0.63 16.55

ANNB -CMC2 RGVBI, MGVRI, ExGR, ExG, COM, CIVE, IPCA, TGI, MExG, GLI (Tanh, 1, 8, 500) 0.95*** 0.39 6.66 0.89*** 0.57 9.62

ANNB-SPAD2 RGVBI, MGVRI, ExGR, ExG, COM, CIVE, IPCA, TGI, MExG, GLI (Relu, 1, 5, 500) 0.96*** 0.46 5.30 0.94*** 0.62 7.66

ANNB-SWC2 RGVBI, G %, ExGR, ExG, CIVE, VEG, TGI, COM, GLI, IPCA, MExG (Identity, 1, 4, 500) 0.92*** 1.65 9.57 0.86*** 2.12 12.66

ANNB-SY2 ExGR, ExG, COM, CIVE, MExG, TGI (Tanh, 1, 4, 500) 0.94*** 0.52 6.89 0.87*** 0.75 12.70

Table 8. Performance of various ANN models in forecasting measured parameters of dry bean crops using 
different RGBIs. Z, L, N, and I represent activation function, layers number, neurons number in each layer, and 
iterations number, respectively.
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Fig. 12. Illustrates the ANN architecture that integrates SRIs and Rgps to identify the measured parameters 
and SY of dry bean crops grown under deficit irrigation regimes.

 

Scientific Reports |        (2025) 15:16808 20| https://doi.org/10.1038/s41598-025-00604-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


steps to enhance performance, including feature filtering and hyperparameter optimization. This study aims 
to elevate the precision and robustness of the predictive model for measured parameters and SY of dry bean, 
emphasizing the critical role of incorporating diverse features in this endeavor.

Limitations and future outlook
The spectroradiometer measurement technique was complex for obtaining data over large fields, primarily 
because collecting spectral data was time-consuming. However, its 2 nm bandwidth positively contributed to 
the study’s accuracy. Additionally, the combination of SRIs and RGBIs with ANN models enhanced the overall 
accuracy values. For future studies, integrating the spectroradiometer or specialized RGB cameras into a UAV 
platform could streamline data collection, save time, and improve prediction accuracy. Expanding the dataset 
to include dry bean measurements from different years and locations would help verify the applicability and 
stability of the variables. Moreover, we plan to apply deep learning models to analyze images at the pixel level for 
improved dry bean yield prediction.

Conclusion
Water stress significantly affects crop production by impeding nutrient uptake, photosynthesis, and respiration. 
Remote sensing technology facilitates the early detection of water stress, enabling timely management 
interventions that optimize yields in precision farming. Through field experiments conducted in 2022 and 2023, 
three drip irrigation regimes: 100% (B100), 75% (B75), and 50% (B50) of full irrigation requirements were 
evaluated for dry bean crops. Spectral reflectance indices (SRIs) and RGB image indices (RGBIs) were employed 
to assess key parameters such as wet biomass (WB), dry biomass (DB), canopy moisture content (CMC), SPAD, 
soil water content (SWC), and seed yield (SY). Results indicated that the B100 regime yielded the highest 
values for WB, DB, CMC, SWC, and SY, while the B75 regime showed the highest SPAD values. The study also 
revealed that newly developed SRIs outperformed previously published indices in estimating crop parameters 
and yield, demonstrating their potential for precision agriculture. Additionally, most RGBIs incorporating the 
green component showed strong correlations with crop parameters, while the RB index (excluding green) was 
ineffective. ANN models utilizing both published and newly developed SRIs achieved high prediction accuracy, 
with R² values ranging from 0.86 to 0.97. Similarly, ANN models using RGBIs demonstrated high prediction 
accuracy, with R² values ranging from 0.81 to 0.97 for WB, DB, CMC, SPAD, SWC, and SY. Combining SRIs 
and RGBIs further enhanced model performance, with R² values ranging from 0.88 to 0.99, making them robust 
tools for crop management under deficit irrigation. This research highlights the practical application of remote 
sensing and ANN models for optimizing irrigation strategies and improving crop productivity under water-
limited conditions. The integration of SRIs and RGBIs provides a cost-effective and scalable approach for real-
time monitoring and management of dry bean crops, offering valuable insights for precision agriculture and 
sustainable farming practices.

Data availability
The dataset can be shared upon request from the corresponding author.
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