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The development of scientifically rigorous evaluation methods is essential to overcome three 
persistent challenges in public navigation interfaces: inadequate guidance, low usability, and 
suboptimal user experience. Focusing on intelligent medical guidance systems, this study establishes 
a dual-dimensional analytical framework encompassing layout aesthetics (spatial composition 
principles) and visual cognition (information processing patterns). We propose an enhanced grey 
H-convex correlation model integrating Bayesian Best Worst Method (BBWM) and modified 
CRITIC with reference point (M-CRITIC-RP) to address weight determination limitations in existing 
models. Our experimental analysis reveals two key findings: First, the synergistic integration of 
layout aesthetics (e.g., visual hierarchy balance) and visual cognition characteristics (e.g., attention 
distribution patterns) significantly improves interface usability for medical service navigation. Second, 
the proposed BBWM-M-CRITIC-RP hybrid model demonstrates superior performance in quantifying 
aesthetic-cognition relationships, achieving 88% prediction accuracy compared to conventional 
methods. In a word, our research provides a new theoretical method for traditional visual display 
design and a new evaluation criterion for interface design, aiming at improving the user experience.

Keywords  Public guidance service interface, Layout aesthetics, Visual cognitive, Medical guidance desk, 
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The ongoing digital transformation has significantly deepened the integration between public services and 
information technologies1. Within this context, public guidance interfaces-digital platforms enabling service 
access in urban environments-exhibit distinct interaction characteristics compared to personal devices like 
smartphones or vehicle dashboards. These systems follow an intermittent usage pattern: while daily engagement 
remains limited, users demand immediate task completion during critical service encounters2.This operational 
paradigm creates three essential design requirements for public guidance interfaces deployed in healthcare 
facilities, transportation hubs, and cultural institutions (1) Visual salience to attract attention in crowded 
environments. (2) Zero-learning-curve operation for first-time users. (3) Time-constrained task efficiency 
for urgent service needs. Unlike high-frequency interfaces requiring habitual usage patterns, public guidance 
systems must achieve immediate usability without prior training while maintaining aesthetic appeal. This dual 
requirement of visual attractiveness and instant operational clarity defines their unique design challenges in 
public service scenarios.

Current public guidance interfaces suffer from three persistent design flaws: inadequate navigation cues, 
inefficient service delivery, and excessive operational complexity, collectively leading to suboptimal user 
experiences3. These shortcomings become particularly acute in healthcare settings where urgent service demands 
prevail4. As critical healthcare infrastructure, medical guidance desks must fulfill two essential functions: (1) 
providing immediate wayfinding solutions and (2) enabling rapid service acquisition for patients under time-
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sensitive conditions. Current research identifies critical challenges in healthcare interface design. Suboptimal 
guidance systems have been shown to induce user confusion and frustration5, particularly detrimental in 
emergency care environments where overcrowding and prolonged wait times exacerbate patient dissatisfaction6. 
The complexity of patient journeys—spanning registration, triage, treatment, and discharge—creates cumulative 
interaction barriers that challenge service quality maintenance7. Meanwhile, bedside clinical decision support 
(CDS) systems demonstrate the operational advantages of minimizing physician reliance on spatially distant 
desktop interfaces8. These findings collectively underscore the pressing need for interface designs that balance 
visual salience with operational immediacy in healthcare navigation systems.

This investigation establishes a dual-criteria evaluation framework for hospital guidance interfaces, 
systematically incorporating both aesthetic perception (spatial composition principles) and visual cognition 
patterns (information processing mechanisms). The proposed methodology generates actionable design 
guidelines to optimize medical navigation systems through enhanced interface intuitiveness and user-centric 
information architecture. These improvements directly target two operational objectives: (1) accelerating users’ 
task completion efficiency and (2) reducing dependency on staff-assisted navigation services.

Literature review
Visual interface design
Visual design quality evaluation operates through three interconnected dimensions: aesthetic perception, 
functional efficiency, and symbolic representation, each grounded in distinct theoretical foundations9. The 
aesthetic dimension traces its conceptual origin to Alexander Baumgarten’s 1750 treatise Aesthetica, which 
formalized aesthetics as the scientific study of sensory cognition (Greek: aisthētikos), positing aesthetics as the 
optimal realization of perceptual awareness10. This theoretical framework explains how interface aesthetics 
govern user perception dynamics, as evidenced by Sulikowski et al.‘s eye-tracking studies revealing aesthetic 
features’ influence on visual attention allocation11.

Functional evaluation employs interaction laws like Fitts’ Law12 - a mathematical model quantifying target 
acquisition time as a function of element size and movement distance - to assess interface operational efficiency. 
Meanwhile, the symbolic dimension incorporates cultural semantics and identity communication mechanisms, 
with Lee et al.13 and Lidwell et al.14 developing universal design principles for interface application scenarios 
through cognitive psychology theories and empirical case syntheses.

Aesthetics and functionality, as critical aspects of visual design for infrequently used interfaces, have garnered 
extensive academic attention. Research has primarily focused on aesthetic perception, aesthetic measurement, 
and human cognitive characteristics, yielding notable advancements. However, existing studies often fail to 
integrate these dimensions, potentially leading to discrepancies between interface design quality and actual user 
needs. On the one hand, aesthetics significantly influence visual design in unconventional public-oriented service 
interfaces. Visually appealing interfaces enhance user engagement. Scholars have explored user experience and 
usability by investigating intrinsic properties of design elements, including icons15, layouts16, and typography17. 
Research also addresses subjective dimensions like visual complexity18, utility19, and attractiveness20. Birkhoff 
(1933) proposed a seminal mathematical formula for macro-aesthetics: M = O/C, defining aesthetic measure 
as the order-complexity ratio21. Ngo et al. developed computational aesthetic models to quantify layout 
characteristics in interface design22.

On the other hand, visual perception serves as the primary channel for information perception in human 
interactions with infrequently used interfaces23. Integrating human cognitive features into interface design 
ensures alignment with user mental models, which is critical for effective interaction. Researchers have 
evaluated interface design through visual cognition theories. For instance, Zhi et al.24 analyzed layout types in 
train cockpit interfaces using eye-tracking experiments to assess visual cognitive load, search efficiency, and 
attention distribution. Similarly, Martinez et al.25 examined cockpit dashboard interfaces by analyzing pilots’ 
gaze patterns and visual cognition via eye-tracking metrics, focusing on gaze trajectories, fixation distribution, 
and frequency to minimize operational errors.

In summary, significant progress has been made in interface design evaluation, yet existing research 
predominantly focuses on frequently used interfaces, with limited attention to infrequently used systems such 
as medical guidance interfaces. Current studies often examine layout aesthetics or visual cognition in isolation, 
neglecting their combined influence, which risks incomplete assessments of design quality. Notably, quantitative 
investigations into the mapping relationships between interface layout aesthetics and visual cognitive features 
remain scarce.

Grey correlation analysis
The evaluation of public service guidance interface layouts can be conceptualized as a “grey system,” where 
aesthetic metrics and visual cognitive physiological measurements represent “white systems,” while their 
coupling relationships form an unknown “black system.” Grey theory excels in addressing uncertainties with 
partial information availability. Grey relational analysis, a core component of grey system theory, evaluates 
relational degrees based on geometric similarities of data sequence curves26. Existing models include the grey 
entropy correlation model27, grey B-type relational model28, and new grey absolute relational model29.

However, traditional grey correlation methods are limited to positive correlations and fail to capture negative 
relationships. To resolve this, Wu et al.30 proposed a grey convex correlation model that measures sequence 
convexity via vertical distances. Pan et al.31introduced the grey H-convex relational degree using span and arch 
height principles to quantify negative correlations through horizontal convexity. Recent advancements extend 
these methods to three-dimensional panel data, exemplified by Dang et al.‘s32 grey vector relational model based 
on 3D geometric features, addressing comparability in multi-dimensional data analysis.
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While existing models have advanced significantly, they retain notable limitations. For instance, the 
assessment of sequence curve similarity often overlooks indicator weighting or relies on oversimplified or 
ambiguous weighting methods, introducing deviations from actual outcomes.

Weighting method
Existing studies divide weight determination methods into two categories: subjective and objective.

(1) Subjective methods rely on expert knowledge and experience to assign criterion weights. For example, 
Liu et al.33 applied the Analytic Hierarchy Process (AHP) to calculate weights for interface evaluation criteria, 
proposing a human-machine interface reliability evaluation framework. Vrtagić et al.34 employed the Step-wise 
Weight Assessment Ratio Analysis (SWARA) to assess weight coefficients for enhancing traffic route safety. Gul 
et al.35 (2022) utilized the Bayesian Best-Worst Method (BBWM) to prioritize criteria for assessing safety risks 
in specific environments.

(2) Objective methods employ mathematical techniques based on inter-criteria relationships within raw data, 
eliminating human subjectivity. Examples include the entropy weight method, Criteria Importance Through 
Intercriteria Correlation (CRITIC), and M-CRITIC-RP. Chen et al.36 integrated entropy weighting to evaluate 
product conceptual design. Sharkasi et al.37applied M-CRITIC-RP to compute multi-criteria weights, combined 
with a gravity model to analyze product export potential. Neither approach fully captures all criteria information. 
Thus, hybrid methods—such as least squares38and game theory-based approaches39—combine subjective and 
objective weighting to achieve balanced results.

BBWM
The Best-Worst Method (BWM), initially proposed by Rezaei et al., deviates from pairwise comparisons by 
focusing on identifying the most and least important criteria and evaluating their priority relative to others40. 
However, BWM is limited to individual decision-maker judgments. To address this, Mohammadi et al.41 
developed the Bayesian Best-Worst Method (BBWM), which treats criteria as probabilistic events, with weights 
represented as occurrence probabilities. BBWM processes BWM inputs via multinomial distributions and 
calculates criterion weights using Dirichlet distributions. By constructing a Bayesian framework, BBWM derives 
optimal weights reflecting collective preferences across multiple decision-makers.

M-CRITIC-RP
The Criteria Importance Through Intercriteria Correlation (CRITIC) method faces two key limitations: (1) Its 
data normalization process requires categorizing criteria into strictly positive or negative attributes, leading to 
distortions when criteria do not strictly fit these categories. (2) Its reliance on Pearson correlation coefficients 
restricts weight calculation to linear relationships, ignoring nonlinear interdependencies.

To resolve these issues, Sharkasi et al.42 proposed the M-CRITIC-RP method, which employs fuzzy logic 
theory and Hamming distance to optimize normalization and mitigate rigid positive/negative attribute 
categorization. Additionally, distance correlation coefficients replace Pearson correlations to construct weighting 
matrices, enabling detection of both linear and nonlinear relationships.

Motivation
Existing research reveals limited exploration of evaluation methods for infrequently used interfaces, 
sparse integration of interface layout aesthetics with visual cognition, and minimal investigation into their 
interrelationships. Consequently, the proposed method demonstrates significant application potential in 
addressing these gaps.

In a previous study, we developed a grey H-convex relational model for the virtual museum interface using 
the Improving Criteria Importance through Inter-Criteria Correlation (ICRITIC) methodology43, which did 
not take into account subjective criterion weights. This work advances this framework through key method 
innovation: using BBWM and M-Critical-RP methods to determine the subjective and objective weights of 
indicators, and introducing game theory model to realize the dynamic balance between subjective and objective 
weights, thus improving the applicability of the model in the medical guidance interface.

To enhance the accuracy of mapping interface layout aesthetics to visual cognition, we introduced a weight 
determination step. BBWM and M-CRITIC-RP were selected due to their superiority over alternative weighting 
methods. Additionally, the grey H-convex relational model outperforms conventional grey models in handling 
nonlinear relationships, as demonstrated in subsequent comparative analyses.

Research framework
The framework is structured as follows (Fig.  1). First, an evaluation criteria system for human-machine 
interface layouts is established through emotional imagery analysis and literature review, followed by metric 
data generation. Next, comprehensive criterion weights are computed using BBWM (subjective weights), 
M-CRITIC-RP (objective weights), and a game-theoretic equilibrium model to unify both weight types. 
Weighted normalization is then applied to standardize input data for the grey H-convex relational model, which 
quantifies correlations between layout aesthetics and visual cognition.

Methods
Evaluation criteria
The evaluation criteria system for human-machine interface layouts comprises two components: interface layout 
aesthetics criteria and visual cognition evaluation criteria. Firstly, this study adopted a three-phase stratified 
validation protocol involving expert, professional, and non-professional groups with distinct roles. (1) Expert 
panel: To validate the evaluation system, comprising 4 human-computer interaction design professors and 2 
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chief information officers from tertiary hospitals. (2) Aligned with Nielsen’s parallel design theory44, consisting 
of trained designers (with interaction design expertise and medical interface project experience) for precise 
decomposition of layout aesthetic. (3) Non-professional group (n = 15): Representing end-users. A minimum 
sample size (n = 12) was determined via G-Power 3 (α = 0.05, β= 0.2, effect size = 0.4). Inclusion criteria: at least 
2 visits to tertiary hospitals in the past 6 months45. Secondly, 26 smart medical console interface prototypes were 
designed following interface design principles. The professional group conducted emotional imagery analysis on 
the prototypes, which were then evaluated and refined by the non-professional group. This process yielded 16 
distinct imagery descriptors through preliminary screening based on semantic divergence. The non-professional 
group subsequently assessed the prototypes using a 7-point Likert scale. Structural validity of the questionnaire 
was confirmed via Exploratory Factor Analysis (EFA) (KMO = 0.82, Bartlett’s sphericity test p < 0.001), with 
five factors accounting for 91.3% cumulative variance. Reliability testing using Cronbach’s alpha demonstrated 
strong internal consistency (α = 0.87; all factor-specific α > 0.7). Five layout aesthetic criteria were ultimately 
selected: Balance, Density, Simplicity, Order, and Uniformity.

On the other hand, existing research indicates that interface element layout significantly influences users’ 
visual cognitive performance46. Five validated eye-tracking metrics linked to interface layout aesthetics include 

Fig. 1.  Research framework.
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gaze duration47, gaze count48, mean pupil diameter49, saccadic frequency50, and fixation time percentage51. These 
metrics were selected as evaluation criteria for public service-oriented interface design. The human-machine 
interface layout evaluation framework is depicted in Fig. 2.

Evaluation model
Model frame
The model framework is divided into three parts, as shown in Fig. 3.

(1) Collecting data. On one hand, aesthetic evaluation values were obtained based on formulas. On the other 
hand, user visual cognitive characteristics were derived from eye-tracking experiments. Let the interface layout 
aesthetics evaluation criteria be {Ca

1 , Ca
2 , Ca

3 · · · , Ca
n}, the eye movement criteria is {Ce

1 , Ce
2 , Ce

3 · · · , Ce
n}.

(2) Weight distribution. The BBWM method determines subjective weights, while the M-CRITIC-RP 
method calculates objective weights. Finally, using the principles of game theory, the standard combination 
weights were determined.

(3) Construct an improved grey H-convex correlation model. Establish a weighted standardized indicator 
data sequence as input for the model. Using the grey H-convex correlation method, quantitatively evaluate the 
correlation between eye movement indicators and layout aesthetics indicators.

Data collection
(1) Layout aesthetics value.

Building on the shape superiority effect in cognitive processing psychology, interface layout elements were 
functionally zoned and abstracted into black rectangles to achieve precise positioning52. A coordinate system 
was established to compute layout aesthetic metrics (Fig. 4), with four parameters defining spatial positioning: 
the horizontal coordinate x, the vertical coordinate y, the total width b and the total height h of the rectangle. 
Overall layout dimensions: b×h = 400 × 300 mm. Among them, along the interface from left to right is the 
x-positive direction, and from top to bottom scanning is the y-positive direction. According to aesthetic 
calculation formula proposed by Ngo et al.22, calculate the evaluation results of aesthetics indicators.

	1)	 Balance Ca
1

The degree of balance indicates the symmetry of the elements in the interface layout in three directions: vertical, 
horizontal and diagonal. It is calculated by the formula22.

	2)	 Intensity Ca
2

Intensity represents the tightness or looseness of the elements in the interface. An optimal interface intensity is 
achieved at 50%22.

	3)	 Simplicity Ca
3

Simplicity refers to the degree of element arrangement and integration in an interface layout to reduce users’ 
cognitive load in perceiving layout configurations22.

	4)	 Order Ca
4

Fig. 2.  Evaluation criteria system of human-machine interface layout.
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The human eye has reading habits from top to bottom, from left to right, from large objects. The interface layout 
according to this visual law can effectively guide the order of human attention22.

	5)	 Uniformity Ca
5

Uniformity emphasizes the visual coherence of interface layout elements. It is usually calculated as the aspect 
ratio of the interface layout elements to the interface frame22.

Fig. 4.  Coordinate system for interface layout aesthetics calculation. Origin (0,0) at top-left corner with 
x-axis positive to the right, y-axis positive downward. Interface elements are abstracted as black rectangles 
parameterized by position (xij ,yij) and dimensions (bij ,hij).

 

Fig. 3.  Model framework.
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(2) Visual Cognition Measurement.
Eye-tracking technology enables the acquisition of physiological data on visual cognition by observing 

interface element layouts and capturing variations in user gaze trajectories. The sample size of 42 participants 
was determined via a priori power analysis using G-Power 3.1, which indicated a minimum requirement of 38 
subjects to detect a medium effect size (f²=0.25) with 95% power for multiple regression analysis involving five 
predictors at α= 0.05. This exceeds the recommended threshold in interface eye-tracking studies53. Participants 
underwent rigorous screening including: 1)Questionnaire-based exclusion of prior eye-tracking experience. 2) 
Gender-balanced recruitment (21 males/21 females). 3) Age stratification (24–55 years) ensured representation 
of key medical kiosk user demographics, with screening intentionally excluding individuals under 24 (infrequent 
users) and over 55. All participants had normal or corrected-to-normal vision in both eyes and were free from 
color vision deficiencies.

The subjects were seated in a fixed position, with the eye distance to the front of the monitor maintained 
at 60.2 ± 3.1 cm (mean ± SD) through postural adjustments. The experimental equipment was a Tobii X2-30 
eye-tracker with a sampling frequency of 30 Hz, coupled with a 21.5-inch Hewlett-Packard desktop monitor, 
featuring a screen resolution of 1920 × 1080 PX. The experimental program was written and run with the 
help of ErgoLAB, designed for the acquisition of experimental data. The experiment utilized flicker-free LEDs 
(5500 K ± 5% color temperature) with stable illumination of 250 ± 10 lx (calibrated by Testo 540 light meter) to 
ensure environmental consistency for pupillometry. All participants underwent a 9-point eye tracker calibration 
procedure, achieving a mean error of < 0.5°, thereby guaranteeing measurement accuracy.

Criteria weights
(1) Subjective weighting.

The subjective weights are calculated based on BBWM.
Step.1 Identification of a collection of evaluation criteria C = {C1, C2, · · · , Cn}.
Step.2 Experts based on industry information, actual investigation and subjective experience from the 

interface layout evaluation system C = {C1, C2, · · · , Cn} initially determine the best  CB   and worst  CW

criteria as reference and comparison object.
Step.3 Constructing comparison guidelines. Experts compare CB  with other interface layout evaluation 

indicators in pairs to obtain a matrix:AB = {aB1, aB2, · · · , aBn}. Among them, aBjrepresents the ratio of 
the importance of CB  to other interface layout evaluation indicators, expressed as integers ranging from 1 to 
9, and aBB= 1. Similarly, by comparing other interface layout evaluation indicators with CW  in pairs, a matrix 
is obtained: AW = {a1W , a2W , · · · , anW }.Among them, aiW  represents the ratio of the importance of other 
interface layout evaluation indicators to CW , expressed as integers ranging from 1 to 9, with aW W = 1.

Step.4 Introduce polynomial distribution and Dirichlet distribution as the probability distribution 
assumptions for the input and output of BBWM model.

Step.5 Transform the weight judgment problem of interface layout evaluation indicators into a probability 
statistical problem of approximating the posterior distribution of the best weight vector, and calculate the best 
weight vector wagg  for group decision-making.

Considering the joint influence of AB  and AW  the optimal weight vector for evaluating the layout of public 
guidance service interfaces in expert group decision-making is calculated based on a Bayesian hierarchical model. 
Setting with kth experts, k = 1, · · · , K , determines the best and worst comparison matrices Ak

W  and Ak
Bbased 

on the interface layout evaluation criteria C1, · · · , Cn, the set of best and worst-case comparison matrices for 
the k experts is A1:K

B  and A1:K
W . Let wagg  denote the optimal weight vector for expert group decision-making, 

calculated based on the optimal weight vector wk(k = 1, · · · , K) for each expert. Before calculating the wagg

, the joint probability distribution of the evaluation random variables for the public guidance service interface 
should be represented based on the given parameters. A1:K

B  and A1:K
W  are given, while wagg  and w1:Kare the 

quantities that need to be solved. Therefore, the joint probability distribution of wagg  can be expressed as:

	 P
(
wagg, w1:K ∣∣A1:K

B , A1:K
W

)
� (1)

In the Bayesian hierarchical model, w1:K  is both the variable to be solved and the parameter to solve wagg . 
According to the chain rule, Eq. (1) is represented as:

	

P
(
wagg, w1:K ∣∣A1:K

B , A1:K
W

)

∝ P
(
A1:K

B , A1:K
W

∣∣wagg, w1:K )
P

(
wagg, w1:K)

= P (wagg)
K∐

k=1

P
(
Ak

W |w k
)
P

(
Ak

B

∣∣wk
)

P
(
wk |wagg

)
.

� (2)

Where P
(
wagg, w1:K

∣∣A1:K
B , A1:K

W

)
  represents the posterior distribution of wagg ,P (wagg)  represents the 

prior distribution of wagg ,P
(
Ak

W |w k
)

andP
(
Ak

B |w k
)

represents the polynomial distribution assumption of 
Ak

W  and Ak
B ,P

(
wk |wagg

)
 represents the prior distribution of wk .

The process of solving the posterior distribution of wagg  and wk  involves high-dimensional integration, 
which is difficult to calculate. Therefore, using the Markov chain Monte Carlo method in Gibbs sampling 
environment, fitting the posterior distributions of wagg  and wk , and finally taking the sample mean of the wagg  
posterior distribution as the optimal weight result.
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(2) Objective weighting.
The M-CRITIC-RP method calculates the objective weights of interface layout evaluation criteria.
(1) Define the decision matrix R. With m interface programs and n criteria, there are,

	 R=(rij)m×n; i = 1, · · · , m; j = 1, · · · , n� (3)

Where rij  represents the elements of the decision matrix for the j criteria in the i interface program.
(2) The clear values of the decision matrix elements rij ∈ [Aj , Bj ] are transformed into the fuzzy form [

rL
ij , rU

ij

]
.

(3) Specify the fuzzy reference point RP for each standard cj . The fuzzy RP points are [aij , bij ] ⊆ [Aj , Bj ]
, where aij =

∑m

i=1 rL
ij

/
m;bij =

∑m

i=1 rU
ij

/
m  is the mean ofrL

ij   and  rU
ij , fuzzy element 

rL
ij = rij − hi, rU

ij = rij + hi,hi is some positive decimal, for all i and j: 0 < rij + hi < 1, 0 < rij − hi < 1
.Besides, Aj = minir

L
ij′ , Bj = maxir

U
ij′。

(4) The decision matrix is normalized and the calculation is expressed as follows

	
NRP

([
rL

ij , rU
ij

])
=

{
1,

1 − |rL
ij −aj |+|rU

ij −bj |
2(Bj −Aj)

,

[
rL

ij , rU
ij

]
⊆ [aj , bj ][

rL
ij , rU

ij

]
̸⊂ [aj , bj ] ,

[
rL

ij , rU
ij

]
⊆ [Aj , Bj ] � (4)

(5) Calculate the standard deviation Sj  of the j interface evaluation criteria.

	
Sj=

√(∑m

i=1 xij − x̄j

)2

m − 1
� (5)

(6) Calculation of distance correlation coefficients dCor (cj , cj′ ).

	
dCor (cj , cj′ ) =

dCov (cj , cj′ )
sqrt (dV ar (cj) dV ar (cj′ )) � (6)

Where  dCov (cj , cj′ )  denotes the distance covariance of cj   and  cj′ ,dV ar (cj)=dCov (cj , cj)denotes the 
distance variance of cj ,dV ar (cj′ )=dCov (cj′ , cj′ )denotes the distance variance ofcj′ .

(7) Calculation of the amount of information Ej .

	
Ej = Sj

∑n

j=1
(1 − dCor (cj , cj′ ))� (7)

(8) Calculation of the weighting factor wj .

	

wj = Ej

n∑
j=1

Ej

j = 1, 2, · · · , n
� (8)

(3) Combined weights.
By applying game theory principles, this study adopts the attainment of Nash equilibrium54 as the 

optimization goal for harmonizing subjective and objective weights. The objective is to identify an equilibrium 
point that minimizes deviations between the integrated weights and the original base weights, thereby deriving 
optimal composite weights.

Step.1 There are E different weighting methods to assign weights Wz = {ωz1, ωz2, · · · , ωzn} (z = 1, 2, · · · , L)
, where ωzjdenotes the weight of interface layout criteria j under weighting method z, This paper L = 2. Let 
α = {α1, α2} be a linear combination of coefficients, then:

	 W = α1ωT
1 + α2ωT

2 (α1,2 > 0, α1 + α2 = 1)� (9)

Step.2 Introducing the idea of game-theoretic aggregation model, the optimal weights W are obtained with the 
objective of minimizing the deviation between W and Wk . The objective function is:

	
min

∥∥∥∥∥
2∑

l=1

αlω
T
l − ωz

∥∥∥∥∥
2

(z = 1, 2)� (10)

According to the differential characteristics of the matrix, the optimal first-order derivative conditional equation 
of Eq. (10) is as follows:

	

[
ω1 · ωT

1
ω2 · ωT

1

ω1 · ωT
2

ω2 · ωT
2

]
×

[
α1
α2

]
=

[
ω1 · ωT

1
ω2 · ωT

2

]
� (11)

Step.3 Normalizing the optimized combination coefficients α = {α1, α2}.
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α∗
z = |αz|

2∑
z=1

|αz| � (12)

Step.4 Calculate the combined weights W.

	 W = α∗
1ωT

1 + α∗
2ωT

2 � (13)

Improved grey H-convex correlation model
The grey H-convex relational model applies principles of span and arch height from bridge engineering to 
characterize the horizontal convexity of polyline curves31. Crucially, it distinguishes both positive and negative 
correlations between data sequences.

Definition 1  As shown in Fig. 5, for a fold line DEF , the line segment DF  denotes the span.

Definition 2  As shown in Fig. 5, for a broken line DEF , the vertical line HE between the vertex E and the 
span DF  represents the height of the arch.

Definition 3  As shown in Fig.  6, for any concave-convex folding line  DEF ,arch height  HE, spans  DF , 
Then the ratio HE

DF  of the arch height HE to the span DF  is the H-convexity of the fold DEF , expressed as 
dH−convex = HE

DF .

Fig. 6.  Schematic calculation of H-convexity. Figure 6-(a), Fig. 6-(b) shows the two cases of H-convexity 
calculation respectively. The X-axis represents the data series span and the Y-axis represents the H-convexity. 
Solid line folds show the change in convexity for three consecutive data (k, k + 1, k + 2).

 

Fig. 5.  Schematic of H-convex correlation with bridge-inspired span-arch principles. Coordinate system: 
X-axis (Span), Y-axis (Arch height). The figure presents a schematic representation of four folds with different 
spans and arch heights.
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As shown in Fig. 6, based on x(k),x(k + 1),x(k + 2) in the interface evaluation criteria series X plotting the 
fold DEF , spansDF =

√
(k + 2 − k)2 + [x (k + 2) − x(k)]2 =

√
4 + [x (k + 2) − x(k)]2, for ease of 

calculation, the value of GE is used instead of the arch heightHE,GE = x(k + 1) − x(k)+x(k+2)
2 , then the 

H-convexity of the sequence X at t = k + 1 is recorded as d̂H(X, k + 1),

	
d̂H(X, k + 1) =

x(k + 1) − x(k)+x(k+2)
2√

4 + [x(k + 2) − x(k)]2
� (14)

Definition 4  Let the interface layout evaluation criteria M, and the interface N, xn
m is the value of interface lay-

out evaluation for the n (n = 1, 2, · · · , N) interface of criteria m, Set ωi as the comprehensive weight of the i-th 
index. The weighted normalized data series form m criteria is then expressed as,Xa = ωa

(
x1

a, x2
a, · · · , xN

a

)
,

Xb = ωb

(
x1

b , x2
b , · · · , xN

b

)
, · · · ,XM = ωM

(
x1

M , x2
M , · · · , xN

M

)
. Then the grey H-convexity coefficients of 

Xa and Xm at t = kis,

	
γ̂H(Xa,Xm) (k) = sgn

(
d̂H (Xa, k) , d̂H (Xm, k)

) 1
1 +

∣∣∣∣d̂H (Xa, k)
∣∣ −

∣∣d̂H (Xm, k)
∣∣∣∣ � (15)

For weighted normalized data series Xa = ωa

(
x1

a, x2
a, · · · , xN

a

)
,Xb = ωb

(
x1

b , x2
b , · · · , xN

b

)
, · · · ,

XM = ωM

(
x1

M , x2
M , · · · , xN

M

)
, The grey H-convex correlation between sequences Xa and Xm is denoted by 

R̂H (Xa, Xm), abbreviated as R̂H (a, m), then,

	
R̂H (a, m) = 1

n − 2

n−1∑
k=2

γ̂H(Xa,Xm) (k)� (16)

Application
The primary function of the guide desk is to provide convenient, accurate and friendly medical guidance and 
services to patients. The system provides personalized guidance processes based on each patient’s condition and 
treatment plan, including registration, diagnosis and treatment, examination, and guidance.

Samples
Using clustering analysis, 10 interface samples exhibiting high layout heterogeneity were ultimately screened. 
Figure  7 illustrates one schematic of the interactive interface. Key functions include: intelligent display of 

Fig. 7.  Interface design sample of intelligent medical guidance desk. (Fig. 7. was obtained from Xijing 
Hospital, Xi’an, China. In addition, considering the privacy of users, the personal information displayed in the 
case is computer-generated virtual data.).
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patients’ basic identity information, digital presentation of hospital department functionalities and information, 
and—most critically—generating personalized intelligent consultation guidance plans based on physicians’ 
prescriptions.

Figure 8 illustrates the schematic process of abstracting real interfaces into rectangular layouts. The original 
interface (Fig. 8-a) is simplified into a minimum bounding rectangle encompassing all internal elements, 
producing the rectangular layout interface shown in Fig. 8b.

Abstract all real interfaces into rectangular samples schemes, as shown in Fig. 9.

Data source
Aesthetic evaluation values for layout samples were calculated using formulas, while visual cognitive 
characteristics were measured through eye-tracking experiments. To address potential mismatches between 
abstract rectangular layouts (Fig. 9) and real interface functionalities, experimental samples were redesigned as 
shown in Fig. 10. The optimized samples feature a layered design: underlaid with real interfaces and overlaid with 
semi-transparent abstract rectangular layouts. This hybrid approach ensures participants could intuitively assess 
rectangular layouts while retaining contextual awareness of the underlying real interfaces during evaluations.

A Latin square design was implemented to counteract order effects, with 20 interface samples randomly 
divided into 10 pairs (1 abstract semi-transparent image and 1 corresponding real interface image). The 
experimental phases included: (1) 800 ms central fixation. (2) 5-second free-viewing phase (Fig. 10). (3) Task-
oriented phase (locating the radiology icon in the Fig. 7). (4) 800 ms central fixation. All images underwent 
grayscale conversion (Fig. 11) to minimize color interference.

Figure  12. shows two experimental scenes in which subjects viewed a transparent abstract rectangular 
stimulus image and a real interface stimulus image.

Let Nibe the i-th intelligent medical guide interface layout scheme, the final initial evaluation data of interface 
layout aesthetics and visual cognitive are shown in Table 1.

Results and analysis
To Calculate the correlation degree between visual cognitive features and layout aesthetics, a sequence of system 
characteristic behaviors in terms of gaze duration, gaze count, mean pupil diameter, gaze shift frequency and 
gaze time percentage for the  N1–N10, denoted byY = (Y1, Y2, Y3, Y4, Y5). Balance, intensity, simplicity, 

Fig. 9.  Abstract rectangular sample schemes.

 

Fig. 8.  The abstract representation diagram of the real interface.
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orderliness and uniformity as comparison sequences, denoted by X = (X1, X2, X3, X4, X5). First, the data in 
Table 1 were pre-standardized. Next, comprehensive criterion weights were calculated using Eqs. (1)–(13), with 
results presented in Table 2. Weighted normalized data outcomes are summarized in Table 3.

Calculate the correlation value between visual cognition and layout aesthetics according to Eqs. (14)-(16), the 
statistical results are shown in Fig. 13.

(1) Correlation between average pupil diameter and layout aesthetics.
Pearson correlation analysis (data normality confirmed by Shapiro-Wilk test, p > 0.05) revealed a negative 

correlation trend between average pupil diameter and layout aesthetics metrics: (R̂H (3, 1)= −0.7404, p < 0.001), 

Fig. 12.  Experimental scene.

 

Fig. 11.  The process of eye movement experiment.

 

Fig. 10.  Transparent abstract rectangular stimulus image schematic diagram.
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(R̂H (3, 2)= −0.7380, p < 0.001), (R̂H (3, 3)= −0.3706, p < 0.001), (R̂H (3, 4)= −0.9845, p < 0.001), (R̂H (3, 5)
= −0.4910, p < 0.001). That is, average pupil diameter exhibited the strongest correlation with Orderliness, 
followed by Balance and Density, with weaker correlations to Unity and Simplicity. The high correlation 
between Orderliness and average pupil diameter suggests that the logical hierarchy of interface element layouts 
significantly impacts users’ cognitive load. Interface designers should prioritize information hierarchy and 
guidance cues to reduce cognitive demands and enhance search efficiency. Additionally, Balance demonstrated 
notable correlation with pupil dynamics, indicating users inherently seek symmetry in horizontal and vertical 
element distribution. Imbalanced layouts may disrupt visual cognition. Furthermore, Density significantly 
influenced pupil diameter, implying that excessive elements increase cognitive load.

(2) The correlation between gaze duration and layout aesthetics.
Pearson correlation analysis (data normality confirmed by Shapiro-Wilk test, p > 0.05) revealed a negative 

correlation trend between gaze duration and layout aesthetics metrics: (R̂H (1, 1)= −0.6981, p < 0.001), 

Sample

visual cognitive layout aesthetics

Y1 Y2 Y3 Y4 Y5 X1 X2 X3 X4 X5

N1 0.0672 0.0629 0.0566 0.0383 0.0184 0.0251 0.0295 0.0371 0.0443 0.0219

N2 0.0074 0.0207 0.0058 0.0905 0.0683 0.0844 0.0066 0.1300 0.1494 0.0000

N3 0.0192 0.0302 0.0074 0.0714 0.0567 0.0890 0.0590 0.0000 0.1411 0.0739

N4 0.5759 0.0618 0.0399 0.0484 0.0322 0.0319 0.0328 0.0464 0.0747 0.0246

N5 0.0000 0.0000 0.0000 0.0931 0.0771 0.0890 0.0852 0.1300 0.1577 0.0274

N6 0.0753 0.0664 0.0675 0.0195 0.0095 0.0799 0.0262 0.0696 0.0332 0.0137

N7 0.0303 0.4118 0.0161 0.0569 0.0417 0.0571 0.0262 0.0836 0.1190 0.0548

N8 0.0900 0.0873 0.1029 0.0000 0.0000 0.0000 0.0000 0.0975 0.0000 0.0602

N9 0.0336 0.0525 0.0257 0.0513 0.0386 0.0479 0.0459 0.0650 0.0968 0.0465

N10 0.0865 0.0794 0.0881 0.0044 0.0064 0.0068 0.0459 0.0139 0.0249 0.0055

Table 3.  Standardized weighted evaluation results.

 

Criteria Subjective weight Objective weight Combination weight Order

Ce
1 0.0752 0.1229 0.0900 5

Ce
2 0.0933 0.0739 0.0873 8

Ce
3 0.1126 0.0815 0.1029 3

Ce
4 0.0887 0.1028 0.0931 4

Ce
5 0.0806 0.0695 0.0771 10

Ca
1 0.0760 0.1178 0.0890 6

Ca
2 0.0836 0.0887 0.0852 9

Ca
3 0.1313 0.1273 0.1300 2

Ca
4 0.1880 0.0908 0.1577 1

Ca
5 0.0707 0.1250 0.0876 7

Table 2.  Combination weights of criteria.

 

Sample

Visual cognitive Interface layout aesthetics

Ce
1 Ce

2 Ce
3 Ce

4 Ce
5 Ca

1 Ca
2 Ca

3 Ca
4 Ca

5

N1 7535 16.94 4.76 56.30 54.20 0.62 0.77 0.70 0.51 0.66

N2 4953 11.02 3.18 72.54 76.39 0.88 0.70 0.90 0.89 0.58

N3 5462 12.36 3.23 66.59 71.22 0.90 0.86 0.62 0.86 0.85

N4 6872 16.78 4.24 59.46 60.32 0.65 0.78 0.72 0.62 0.67

N5 4633 8.12 3.00 73.35 80.31 0.90 0.94 0.90 0.92 0.90

N6 7887 17.43 5.10 50.47 50.26 0.86 0.76 0.77 0.47 0.63

N7 5942 13.16 3.50 62.10 64.56 0.76 0.76 0.80 0.78 0.78

N8 8521 20.36 6.20 44.39 46.02 0.51 0.68 0.83 0.35 0.80

N9 6084 15.48 3.80 60.36 63.18 0.72 0.82 0.76 0.70 0.75

N10 8369 19.25 5.74 45.77 48.85 0.54 0.82 0.65 0.44 0.60

Table 1.  The evaluation results of interface layout aesthetics and visual cognitive.
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(R̂H (1, 2)= −0.6895, p < 0.001), (R̂H (1, 3)= −0.3379, p < 0.001),(R̂H (1, 4)= −0.9384, p < 0.001), (R̂H (1, 5)
= −0.4424, p < 0.001). It is based on the size of the correlation ordering:R̂H (1, 4)> R̂H (1, 1)> R̂H (1, 2)
> R̂H (1, 5)> R̂H (1, 3). Correlation analysis revealed that gaze duration exhibited the strongest correlation 
with Orderliness, followed by Balance and Density, while Uniformity and Simplicity showed the weakest 
associations.

(3) Correlation between gaze count and layout aesthetics.
Pearson correlation was used after confirming data normality (Shapiro-Wilk test, p > 0.05). The correlation 

results show a negative correlation. (R̂H (2, 1)= −0.5075, p < 0.001), (R̂H (2, 2)= −0.0275, p < 0.001), (R̂H (2, 3)
= −0.3698, p < 0.001), (R̂H (2, 4)= −0.2567, p < 0.001), (R̂H (2, 5)= −0.2583, p < 0.001). That is, correlation 
analysis indicates that Balance and Simplicity exhibit the strongest associations with gaze count, followed by 
Uniformity and Orderliness, while Density shows the weakest correlation. The highest correlation between gaze 
count and Balance confirms users’ heightened sensitivity to interfaces with strong stability and symmetrical 
equilibrium. Concurrently, the role of Simplicity should not be underestimated: reducing design complexity and 
variability while maintaining effective information communication is critical for ensuring intuitive usability.

(4) Correlation between gaze shifts frequency and layout aesthetics.
Pearson correlation was used after confirming data normality (Shapiro-Wilk test, p > 0.05). The correlation 

results: (R̂H (4, 1)= 0.7427, p < 0.001), (R̂H (4, 2)= 0.7408, p < 0.001), (R̂H (4, 3)= 0.6119, p < 0.001), 
(R̂H (4, 4)= 0.9800, p < 0.001), (R̂H (4, 5)= 0.4906, p < 0.001). The frequency of gaze shifts demonstrated the 
strongest correlation with Orderliness, followed by Balance, Density, and Simplicity, while Uniformity exhibited 
the weakest association.

(5) Correlation between gaze time percentage and layout aesthetics.
Pearson correlation was used after confirming data normality (Shapiro-Wilk test, p > 0.05).The correlation is 

obtained by calculating: (R̂H (5, 1)= 0.7429, p < 0.001), (R̂H (5, 2)= 0.7443, p < 0.001), (R̂H (5, 3)= 0.3717, p < 
0.001), (R̂H (5, 4)= 0.9773, p < 0.001), (R̂H (5, 5)= 0.4922, p < 0.001). That is, gaze time percentage correlates 
most strongly with Orderliness, followed by Density and Balance, while Uniformity and Simplicity show the 
weakest associations.

Discussion
Model validity and performance
(1) Model validity.

To validate the effectiveness of the proposed model, the same data preprocessing methods were employed. 
Using the average pupil diameter and interface balance as exemplar metrics, we compared the performance of 
the original grey correlation, new grey absolute correlation, original grey H-convex model and Random Forest 
across four evaluation criteria: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), correlation, and 
statistical significance, with aggregated results presented in Table 4.

The proposed comprehensive evaluation framework was systematically compared and demonstrated 
significant advantages across multiple key performance metrics, as detailed in Table  4. Compared with the 

Model Type MAE RMSE Correlation P-value

Original grey correlation 0.362 0.381 0.6377 < 0.001

New grey absolute correlation 0.271 0.304 −0.3283 0.018

Grey H-convex correlation 0.232 0.322 −0.3523 0.032

Random Forest 0.218 0.296 −0.690 0.008

Our model 0.163 0.237 −0.7404 < 0.001

Table 4.  Comparison of model results.

 

Fig. 13.  correlation value(left)and positive and negative correlation(right).
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random forest model55, Grey H-convex correlation31, the improvement of the accuracy of this model comes 
from the collaborative architecture: the game theory integration of BBWM and M-Critical-RP optimizes the 
allocation of subjective and objective weights, while the curvature correction term in the H-convex model 
significantly improves the non-monotonic relationship modeling. Regarding error stability, the proposed model 
achieved a leading Root Mean Square Error (RMSE) of 0.237, indicating 37.8% lower error fluctuation than 
conventional grey relational models (RMSE = 0.381), confirming its robustness against outliers. Crucially, 
correlation analysis revealed a strong negative correlation (− 0.7404, p< 0.001) in the proposed model, aligning 
with the observed phenomenon of “enhanced interface symmetry leading to systematic pupil diameter reduction” 
in eye-tracking experiments. In contrast, the new grey absolute correlation model22yielded a weaker negative 
correlation (− 0.3283). However, the traditional grey relational model26 produced a counterintuitive positive 
correlation (0.6377), exposing its theoretical limitations in handling inverse relationships. Statistical validation 
via Friedman test (χ²=23.17, p < 0.001) and Nemenyi post-hoc analysis (critical difference CD = 1.24) confirmed 
fundamental performance differences across all benchmarks at α = 0.05 significance.

Furthermore, based on the evaluation results from Table 1, line graphs were plotted with interface samples 
as the X-axis and eye movement and layout aesthetics evaluations as the Y-axis, as illustrated in Fig.  14. 
Figures  14(a)–14(d) demonstrate that trends in layout aesthetics and visual cognition align closely with the 
model’s computational outputs.

(2) Model performance.
To validate the model’s performance, BBWM-CRITIC, BWM-CRITIC, and AHP-CRITIC were integrated 

with the grey H-convex relational model for comparative analysis. The comparative methods were implemented 
using identical input datasets and standardization protocols, following the same standardized preprocessing 
procedures as our model. Subjective methods (AHP, BWM) employed the identical expert panel for pairwise 
indicator comparisons, while objective methods (Entropy, CRITIC) were directly computed from raw 
data. Additionally, all comparative methods adopted classical implementations without parameter-specific 
adjustments.The calculation process is as follows: (1) Sample and Data Collection. Data collection involved 
acquiring layout aesthetic and eye-tracking cognitive data from 50 medical guidance interface prototypes. (2) 
Calculation of correlation degree. After calculating the comprehensive weight of indicators, the grey H- convex 
correlation model is used to calculate the correlation degree between Xi and ideal sequence X0. (3) Accuracy 
conversion. Through Receiver Operating Characteristic (ROC) curve analysis, it is determined that when the 
correlation degree R̂H ≥ 0.85, it is an effective scheme. The calculation method of accuracy is:

	
Accuracy =

N
(
R̂H ⩾ 0.85

)
Ntotal

× 100%� (17)

(4) Cross-validation. Divide 50 samples into 5 groups, 10 in each group, and get the overall average accuracy.
Accuracy results across models are illustrated in Fig. 15. The grey H-convex relational model based on the 

BBWM-M-CRITIC-RP method achieved an overall average accuracy of 88% (± 1.8% SD), followed by BBWM-
CRITIC with accuracy above 0.8, while other methods averaged around 0.6. The results indicate that using 
the BBWM-CRITIC method may increase errors, likely attributable to limitations in CRITIC’s normalization 
process and linear correlation-based weighting. As sample sizes grow, the accuracy of the AHP-CRITIC method 

Fig. 14.  Visual cognitive features vs. layout aesthetics trend line chart.
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declines below 0.6. This degradation stems from the escalating complexity of pairwise comparisons among 
criteria, which challenges experts’ ability to maintain consistent and precise judgments.

We also evaluated the computation time of the four models. As shown in Fig. 16, under identical sample 
sizes, the execution time increases with the number of indicators. The BBWM-M-CRITIC-RP method enhances 
decision-making accuracy but requires the longest computation time due to its complex computational 
procedures and formulas. In contrast, AHP-CRITIC and BWM-CRITIC involve simpler processes, achieving 
computation times within 5 min.

Correlation between layout aesthetics and visual cognition
This study reveals the systematic coupling mechanisms between layout aesthetics and visual cognition in 
medical guidance interfaces through multidimensional correlation analysis. From the perspective of visual 
information processing theory, the negative correlation between balance and gaze duration (r= −0.6981) reflects 
the profound influence of Gestalt’s “law of Prägnanz”56 (Ma et al., 2024)—symmetrical spatial distribution of 
interface elements accelerates the formation of holistic perceptual schemas, thereby reducing cognitive resource 
consumption in local detail scanning. Additionally, strong negative correlations between density/order and gaze 
duration (r = −0.6895, r = −0.9384) provide new theoretical support for attention allocation strategies in visual 
interface design.

The significant correlation between density and pupil dilation changes (r= −0.7380) confirms the “information 
density threshold effect” in cognitive load theory, where marked pupil expansion indicates cognitive overload 
compensation, demonstrating isomorphism with the critical inflection phenomenon in interface complexity-
efficiency curves57. Furthermore, the marked correlations between balance/orderliness and pupil changes (r = 
−0.7404, r = −0.9845) establish novel evaluation criteria for applying cognitive load theory to interface design.

The positive reinforcement relationship between order and gaze shift frequency (r= 0.9800) elucidates the 
guiding efficacy of visual hierarchy planning on ocular patterns, aligning with the “visual hierarchy gradient 
theory” regarding information layering and scanpath matching58 (Gomez et al., 2021). The linear correlation 
between uniformity and gaze time percentage (r= 0.4922) confirms that visual coherence optimizes attentional 
resource allocation by reducing Gestalt closure costs59. These findings deepen the mechanistic understanding of 
aesthetic-cognitive mapping and provide a theoretical foundation for adaptive interface design in smart medical 
systems through dynamic feedback modeling between layout parameters and cognitive metrics.

Fig. 16.  Comparison of model computation time.

 

Fig. 15.  Comparison of model accuracy.
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Limitations
1) One notable aspect is the complexity of the weight acquisition method, which, to a certain extent, leads to 
a slight increase in calculation time. Efforts will be directed towards streamlining and simplifying the weight 
assignment steps in order to mitigate this issue.

2) Interface layout is an important factor affecting cognitive efficiency, but it is also influenced by other 
factors. For example, the influence of interface style, color, technology and other factors. Future endeavors will 
center on further addressing the limitations in this research.

3) This study focuses solely on five eye movement metrics, while other metrics (such as gaze path length 
and gaze hotspot distribution60,61) may also influence interface layout aesthetics. Future research could further 
explore the potential of additional metrics.

4) While layout aesthetics and visual cognition demonstrate unique advantages for infrequently used 
medical interfaces, it is noteworthy that other dimensions (e.g., environmental dynamics, cultural symbolism, 
technological inclusivity) may also influence interface design, constituting a critical research agenda for future 
investigations.

Conclusion
This article studies the evaluation method of public guidance service interface design based on human aesthetic 
needs and cognitive characteristics, achieving the evaluation of interface layout aesthetics and measurement of 
user visual cognitive characteristics, and solving the quantification problem of the mapping relationship between 
the two. Taking the personal guidance interface of the intelligent medical guidance desk as an example, providing 
a new method attempt for the evaluation of infrequent contact interfaces.

1) In the theoretical domain of visual display design, this study integrates mathematical modeling and eye-
tracking physiological experiments. By employing a more objective quantitative methodology, it elucidates the 
coupling relationship between interface layouts and human visual cognition. Building upon this foundation, 
we propose a scientific evaluation method that incorporates users’ visual cognitive characteristics, thereby 
providing methodological references for visual display design. Specifically, we have discovered several interesting 
phenomena. For public guidance service interfaces, the order has the most significant impact on user visual 
cognition, with the highest correlation, next is the balance. Density is the most important indicator affecting the 
fixation count. The impact of uniformity and simplicity on visual cognition is not significant.

2) An improved grey H-convex correlation model was proposed. This study introduces the BBWM and 
M-CRITIC-RP methods and proposes an improved grey H-convex correlation model to quantify the mapping 
relationship between user visual cognition and layout aesthetics. By comparing the effectiveness and performance 
of several existing models, the accuracy of this paper is higher than 88%, which is superior to existing methods.

Data availability
We state that if anyone would like to obtain data from this study, please do not hesitate to contact us.Dr Zhiqiang 
Wen. bs231011006@sust.edu.cn.
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