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Kidney renal clear cell carcinoma (KIRC), a cancer characterized by substantial immune infiltration, 
exhibits limited sensitivity to conventional radiochemotherapy. Although immunotherapy has 
shown efficacy in some patients, its applicability is not universally effective. Studies have indicated 
that programmed cell death (PCD) can modulate the activity of immune cells and participate in 
the regulation of antitumor immune responses. However, systematic research on how various 
PCD patterns in KIRC affect the responsiveness to immunotherapy is lacking and requires in-depth 
investigation. We utilized a combination of 101 machine learning algorithms to analyze the TCGA-
KIRC cohort and the GSE22541 KIRC patients, screening for cell death patterns closely associated 
with prognosis from 18 potential modes. Integrating multi-omics analysis, including immune 
cell infiltration, phenotyping, functional analysis, immune checkpoint exploration, and gene set 
enrichment analysis (GSEA), we explored the relationship between key cell death patterns and 
patients’ responses to immunotherapy. Finally, potential drug targets were identified through drug 
sensitivity screening and molecular docking techniques. Our sophisticated risk assessment model 
successfully identified two PCD patterns, Anoikis and lysosome-dependent cell death (LDCD), closely 
associated with the prognosis of KIRC patients, with the high-risk group exhibiting poor outcomes. 
Immune cell analysis revealed upregulated expression of T follicular helper (Tfh) cells in both PCD 
patterns. Analysis of immune checkpoints disclosed enhanced expression of human leukocyte antigen 
E (HLA-E) across both patterns. Frequent mutations in the TTN and MUC16 genes were observed 
in the Anoikis pattern, whereas in the LDCD pattern, although the high-risk group had a higher 
mutation rate, there was no significant difference in tumor mutational burden. GSEA analysis indicated 
significant enrichment of the primary immunodeficiency pathway in the Anoikis high-risk group and 
significant enrichment of the spliceosomal tri-snrnp complex assembly pathway in the LDCD high-risk 
group. Drug sensitivity analysis showed notable sensitivity to SB505124 in both PCD patterns. HMOX1 
and PIK3CG were identified as common genes in the two key PCD patterns, and molecular docking 
analysis confirmed stable binding affinity between Carnosol and HMOX1, and between PROTAC and 
PIK3CG. Our study identifies Anoikis and LDCD as prognostic PCD patterns in KIRC, with key immune 
cells, genetic mutations, and drug sensitivity profiles. HMOX1 and PIK3CG are common genes with 
stable binding to Carnosol and PROTAC, respectively, while SB505124 shows significant sensitivity to 
both PCD modes, suggesting potential therapeutic targets.
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Renal cancer is one of the most prevalent malignant tumors globally, with its incidence and mortality rates 
steadily increasing. It is projected that by the year 2040, the number of deaths attributable to this disease may 
soar to over 300,000 cases1,2. In terms of gender differences, the mortality rate has increased by 2.85% in males, 
while in females it has risen by 1.25%3. In China, approximately 50,088 new cases of renal cancer are diagnosed 
annually, with about 46,345 cases resulting in death4. Among all renal cancer cases, renal cell carcinoma accounts 
for up to 90%, with KIRC constituting 70%5. The prognosis of KIRC is generally grim, and the recurrence rate 
is as high as 30% for patients who have undergone surgical treatment6. Studies indicate that adjuvant therapy 
following surgery for localized renal cell carcinoma has always been a challenging research domain with limited 
success rates7. It is evident that the treatment of KIRC is a significant challenge in the global public health sector.

Malignant tumors of the urinary and reproductive systems, including prostate cancer8 and bladder cancer9, 
have traditionally been managed primarily through radiotherapy and chemotherapy. However, KIRC stands out 
due to its resistance to conventional chemotherapeutic agents. KIRC is one of the highly immune-infiltrated 
cancers10. Within the tumor microenvironment (TME), immune cells play a pivotal role in tumor growth, 
invasion, migration, and modulation of anti-tumor immunity11. Under these circumstances, immunotherapy 
has become an essential component of its therapeutic strategy12. Nevertheless, the combined application 
of immunotherapy and immune checkpoint inhibitors has shown positive effects only in certain patient 
populations13,14. Current research suggests that the variability in patients’ responses to immunotherapy may be 
associated with the tumor’s immune evasion mechanisms, which prevent some patients from benefiting from 
immune checkpoint blockade therapy15–17. Therefore, a deeper investigation into the mechanisms of tumor 
immune evasion is crucial for the development of more effective treatment strategies.

PCD is an orderly process of cell self-destruction that is precisely regulated at the genetic level and carried 
out through a series of specific molecular mechanisms to perform internal cleansing tasks, eliminating damaged 
or unnecessary cells to maintain the health and function of tissues18. PCD encompasses a range of different 
pathways of cell death, including apoptosis, pyroptosis, ferroptosis, autophagy, necroptosis, cuproptosis, 
parthanatos, entotic cell death, netotic cell death, LDCD, alkaliptosis, oxeiptosis, NETosis, immunogenic cell 
death, Anoikis, paraptosis, methuosis, and entosis. Pyroptosis is a form of cell death process that triggers cell 
lysis and the release of inflammatory cytokines upon the activation of the inflammasome. Apoptosis is a form of 
programmed cell death regulated by caspases, characterized by significant changes in the nucleus and organelles, 
the blebbing of the plasma membrane, and the eventual fragmentation of the cell. Ferroptosis is an atypical form 
of programmed cell death closely related to iron-dependent lipid peroxidation. Autophagy is the process by 
which cells degrade their own damaged, aged, or superfluous biomolecules and organelles through lysosomes, 
a normal cellular self-renewal mechanism that releases free small molecules for cellular recycling. Necroptosis 
is a form of programmed cell death triggered by the receptor-interacting protein kinase signaling pathway 
in response to certain exogenous or endogenous stimuli, such as tumor necrosis factor. Cuproptosis is a cell 
death process directly induced by copper ions. Parthanatos is a form of programmed cell death caused by the 
overactivation of PARP-1, a DNA repair enzyme. Entotic cell death, also known as entosis, is the process where 
a living cell is engulfed by a conspecific cell and dies within the engulfing cell. Netotic cell death is a form of 
cell death driven by NETs, regulated by NADPH oxidase-mediated ROS production and histone citrullination. 
LDCD is a form of programmed cell death characterized by lysosomal dysfunction or rupture. Alkaliptosis is a 
specific form of cell death driven by intracellular alkalinization. Oxeiptosis is a form of atypical apoptosis-like 
cell death induced by reactive oxygen species that is caspase-independent. Immunogenic cell death is a unique 
form of cell death driven by stress that can activate the immune system to combat tumors or infections, often 
resulting from various cancer treatments such as radiation and chemotherapeutic drugs.Anoikis is a special form 
of programmed cell death induced when cells lose normal adhesion to the extracellular matrix and other cells. 
Paraptosis is a unique form of programmed cell death characterized by vacuolization of the cytoplasm, swelling 
of the mitochondria, and expansion of the endoplasmic reticulum. Methuosis is due to the dysregulation of 
large phagocytic vacuoles within the cell, leading to the formation of numerous vacuoles in the cytoplasm that 
coalesce and expand, ultimately causing cell death19–22.

PCD plays an extremely critical role in maintaining normal physiological activities and human health. It is 
noteworthy that PCD also plays an important role in the development of cancer. Studies have shown that PCD 
can regulate the enrichment of effector immune cells or regulatory immune cells, thereby participating in the 
regulation of anti-tumor immunity within the TME23. It can be seen that PCD plays a vital role in regulating the 
immune-suppressive TME and determining the clinical outcomes of cancer treatment methods. Current research 
indicates that there is a complex association between PCD and the response to and tolerance of immunotherapy 
in KIRC. For instance, in KIRC, a prognostic risk model related to ferroptosis reveals that patients in the high-
risk group are more sensitive to immunotherapy24. Furthermore, a prognostic risk model constructed based 
on five genes associated with immunogenic cell death not only maps the tumor immune microenvironment of 
KIRC patients but also helps to promote the implementation of personalized treatment and provides potential 
new targets for immunotherapy25. These findings emphasize the importance of intervention strategies targeting 
PCD in KIRC immunotherapy.

Despite advances in understanding PCD pathways and immunotherapy in cancer, two critical gaps remain: 
(1) Most studies in KIRC rely on single-omics analyses or examine individual PCD mechanisms, overlooking 
the synergistic effects of multi-omics-driven PCD networks; (2) The potential of PCD patterns as biomarkers 
for immunotherapy stratification remains underexplored. To address these limitations, we propose a machine 
learning framework that integrates genomics, transcriptomics, and clinical data to decode pan-PCD patterns 
and their therapeutic implications in KIRC. This approach not only identifies novel immunotherapy targets but 
also provides a roadmap for personalized treatment strategies.
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Methods
Data collection
We collected 18 modes of PCD and their key regulatory genes through literature search20. These genes include 
580 genes related to apoptosis, 52 genes related to pyroptosis, 88 genes related to ferroptosis, 367 genes related 
to autophagy, 101 genes related to necroptosis, 19 genes related to cuproptosis, 9 genes related to parthanatos, 
15 genes related to entotic cell death, 8 genes related to netotic cell death, 220 genes related to LDCD, 7 genes 
related to alkaliptosis, 5 genes related to oxidative stress-induced cell death, 24 genes related to NETosis, 34 genes 
related to immunogenic cell death, 338 genes related to anoikis, 66 genes related to paraptosis, 8 genes related 
to methuosis, and 23 genes related to phagoptosis, totaling 1964 genes, for analysis in this study. Additionally, 
TCGA-KIRC cohort data were downloaded from the TCGA database. RNA sequencing data and corresponding 
clinical pathological information of 614 KIRC samples were downloaded from the TCGA database  (   h t t p s : / / p o r t 
a l . g d c . c a n c e r . g o v / p r o j e c t s / T C G A - K I R C     ) . Clinical pathological information and microarray expression analysis 
data of the KIRC cohort GSE22541 were downloaded from the GEO database  (   h t t p s : / / w w w . n c b i . n l m . n i h . g o v / 
g e o /     ) .  

Identification of differentially expressed genes (DEGs) in KIRC
RNA sequencing data and corresponding clinical pathological information of 614 KIRC samples were 
downloaded from the TCGA database. R software (version 4.1.2) was used for statistical analysis. The “edgeR” 
package was utilized to screen for DEGs, with criteria set at an adjusted P-value < 0.05 and |log2 Fold Change 
(FC)|> 1.

Construction of a prognostic model based on integrated machine learning methods
To establish a consensus of PCD-related genes with high accuracy and stability, we integrated 10 machine 
learning algorithms and 101 algorithm combinations. These algorithms include Random Survival Forest 
(RSF), Elastic Net (Enet), Lasso, Ridge, Stepwise Cox, CoxBoost, Partial Least Squares Regression (plsRcox), 
Supervised Principal Component (SuperPC), Generalized Boosted Regression Modeling (GBM), and Support 
Vector Machine for Survival (survival-SVM),were obtained from R Project (https://www.r-project.org/) . The 
steps for generating the feature signature include: (a) constructing predictive models in the TCGA-KIRC cohort 
using 101 algorithm combinations and leave-one-out cross-validation (LOOCV); (b) further cross-validation 
of all models using GSE22541; (c) calculating the Harrell’s Concordance Index (C-index) for each model, with 
models having an average C-index or test set C-index > 0.7 considered excellent. According to the descriptions 
in previous literature26,27, we stratified KIRC patients into high and low risk groups based on the median scores 
of their respective cohorts.

Construction and evaluation of nomograms
To validate the value of different PCD patterns as independent prognostic indicators for KIRC patients, univariate 
and multivariate Cox regression analyses were performed. Prognostic nomograms were developed using the R 
packages “rms” and “replot” based on the TCGA-KIRC and GSE22541 cohorts, and their performance was 
evaluated through the Receiver Operating Characteristic (ROC) curves.

Immune infiltration analysis
Comprehensive immune cell infiltration analysis of the TCGA-KIRC dataset samples was performed using 
the IOBR package (https://github.com/IOBR/IOBR) in conjunction with the CIBERSORT algorithm. Pearson 
correlation analysis was employed to explore the association between differentially expressed genes and 
specific immune cell subpopulations. Functional enrichment analysis of immune cells was conducted using the 
immunogenomic "immune.gmt".

Prediction of immunotherapy response
Tumor immune dysfunction and exclusion (TIDE) is a computational framework  (   h t t p : / / t i d e . d f c i . h a r v a r d . e d 
u /     ) that assesses the potential for tumor immune evasion by evaluating the gene expression profiles of cancer 
samples. The TIDE score, composed of immune dysfunction and immune exclusion components, serves as an 
alternative biomarker for predicting the response to immune checkpoint blockade across various cancer types. 
The list of immune checkpoint genes (ICGs) is derived from prior research28.

Somatic mutation analysis
Somatic mutation data downloaded from the TCGA database were analyzed using the “maftools” package in 
R. Tumor mutational burden (TMB) was calculated as the number of non-synonymous somatic mutations per 
megabase in cancer samples.

GSEA
GSEA software version 3.0 was obtained from the official GSEA website. Samples were stratified into high 
expression (> 50%) and low expression (< 50%) groups based on the expression of hub genes. The gene set 
c2.cp.kegg.v7.4.symbols.gmt was downloaded for analyzing biological pathways and molecular mechanisms29. 
Through GSEA analysis, with a minimum gene set size of 5 and a maximum of 5000, and performing a thousand 
simulation samplings, pathways with P < 0.05 and normalized enrichment score thresholds were selected and 
categorized for visualization.
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TME scoring
The ESTIMATE algorithm was used to analyze the infiltration levels of immune cells and stromal cells in 
KIRC, with data sourced from the TCGA database. Stromal scores, immune scores, and composite scores were 
calculated.

Drug sensitivity analysis
The response of KIRC patients to antitumor drugs was predicted based on the Genomics of Drug Sensitivity 
in Cancer (GDSC) database, reflected by the maximum half-maximal inhibitory concentration (IC50). The 
“ggplot2” R package was used to analyze and display the differences in IC50 among different groups of KIRC 
patients.

Docking validation of drug small molecule components and core common target molecules
The 3D structures (.pdb format files) of core common target molecules were downloaded from the PDB database 
(https://www.rcsb.org/). The structures of small molecule drugs (.sdf format files) were collected and analyzed 
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Molecular docking was performed using 
the CB-Dock2 online database ( h t t p s :   /  / c a d  d . l a b s h a r  e .   c n /  c b  - d o  c k 2  /  p h p /  b l i n d   d o c k . p h p) by uploading the small 
molecule compounds and target proteins into the system. A higher absolute value of the Vina score indicates a 
stronger binding capacity of the ligand molecule to the receptor protein. The specific parameter setting principle 
is to use the coordinates of the compound originally bound in the pocket of the protein target as the center for 
lattice construction.

Results
Preliminary screening of PCD of KIRC patient
Our research workflow is depicted in Fig.  1. Initially, we collected essential regulatory genes encompassing 
18 modes of PCD from literature, totaling 1964 genes20 (Fig.  2A, Supplementary Tables S1). Subsequently, 
differential analysis was conducted on the TCGA-KIRC cohort to identify 12,788 genes that exhibit differential 
expression between normal and tumor tissues (Fig. 2B). Intersections were then taken between genes related to 
the 18 PCD modes and differentially expressed genes. It was found that there were 157 intersecting genes with 
Apoptosis, 120 with Anoikis, 65 with Autophagy, 55 with LDCD, 26 with Necroptosis, 22 with Ferroptosis, 20 
with Pyroptosis, 16 with Paraptosis, 14 with Immunogenic cell death, 8 with NETosis, 6 with Cuproptosis, 4 
with Entosis, 3 with Entotic cell death, 3 with Methuosis, 2 with Netotic cell death, 1 with Alkaliptosis, and 1 
with Oxeiptosis, while no intersecting genes were found with Parthanatos (Fig. 2C). We included 11 types of 
cell death modes with more than 5 intersecting genes and, through univariate COX regression analysis, found 
that most PCD modes were associated with risk factors, whereas genes related to LDCD and Cuproptosis were 
predominantly protective factors (Fig. 3A–K).

101 machine learning combinations unveil key PCD patterns in KIRC
Our study successfully constructed a consensus riskscore model based on combinations of 101 algorithms and 
calculated the C-index for 11 cell death patterns across all cohorts in the TCGA-KIRC and GSE22541 datasets 
to evaluate the predictive efficacy of the model. The results indicated that the models for Anoikis, ferroptosis, 
LDCD, and autophagy demonstrated the highest average C-index or excellent performance, with a C-index 
exceeding 0.7 in the test set (Fig. 4A, B, Supplementary Figures S1A-I). Furthermore, we assessed the diagnostic 
efficacy of PCD in the cohorts by calculating the area under the ROC curve, where the Anoikis and LDCD 
models were ranked at the top (Fig. 4C and E, Supplementary Figures S1J-K). Survival analysis revealed that 
the high-risk groups for both the Anoikis and LDCD models had significantly adverse prognoses (Fig. 4D and 
F). Through multivariate analysis and calculation of the C-index for clinical characteristics, we found that the 
Anoikis riskscore model surpassed traditional clinical characteristics such as age, gender, tumor grade, and 
clinical stage in predictive power (Fig. 4G). Although the C-index of the LDCD riskscore model was slightly 
lower than that of clinical staging, its predictive stability was more pronounced (Fig. 4H). To enhance the clinical 
application value of the model further, we integrated the riskscore with clinical factors such as gender and age 
to develop nomograms as a novel prognostic model, where the Anoikis nomogram model achieved a predictive 
performance of 0.781, and the LDCD nomogram model achieved a predictive performance of 0.770 (Fig. 5A-D). 
These findings provide a new perspective and tools for the prognostic assessment of KIRC patients.

Analysis of the association between immune cell infiltration and typing in KIRC patients
This study conducted an in-depth exploration of the relationship between the immune cell infiltration status 
in the TCGA-KIRC cohort and patient clinical outcomes. The results indicated that higher infiltration levels of 
T cells CD4 memory resting, monocytes, mast cells resting, macrophages M2, and dendritic cells resting were 
associated with a positive improvement in overall patient survival prognosis. Conversely, higher infiltration 
levels of plasma cells, T cells CD8, T cells CD4 memory activated, Tfh, T cells regulatory (Tregs), macrophages 
M0, macrophages M2, dendritic cells resting, and mast cells activated were correlated with a worse prognosis for 
the patients. We further analyzed that within the Anoikis and LDCD death patterns, the low-risk group exhibited 
higher levels of inflammatory immune cell subtypes compared to the high-risk group, with the expression levels 
of inflammatory immune cell subtypes being higher in the low-risk group than in the high-risk group (Fig. 6).

Immune cell subtypes and immune checkpoint expression in anoikis and LDCD
Our study reveals that in the context of Anoikis, the high-risk group exhibits heightened expression of specific 
immune cell subsets. Specifically, T cells CD4 memory resting, T cells CD4 memory activated, Tfh, Tregs, 
Macrophages M0, and activated mast cells are more prevalent in these patients. Concurrently, resting dendritic 
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cells and resting mast cells show relatively lower expression levels in the high-risk group (Fig. 7A). Furthermore, 
in the case of LDCD, we observed that plasma cells, CD8 T cells, Tfh, and Tregs have higher expression levels in 
the high-risk group. In contrast, CD4 memory resting T cells, macrophages M2, resting mast cells, and activated 
mast cells exhibit lower expression in the high-risk group (Fig.  7B). To further validate these findings, we 
analyzed the correlation of immune cells in the two types of PCD using various software algorithms. Figure 7C, 
D display the results of these analyses, providing a quantitative perspective on the expression patterns of immune 
cell subsets and potentially revealing the interplay between different immune cell subsets and their impact on the 
tumor microenvironment. The results of immune cell functional analysis indicate that the expression of immune 
checkpoints is generally higher in the high-risk group, both in Anoikis and LDCD (Fig. 7E, F).

Fig. 1. A graphic abstract of this study.
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Molecular characteristics and immune escape mechanisms of anoikis and LDCD
Figure 8A–B’s heatmaps display the clinical information of patients under the two modes of PCD. Within the 
TCGA-KIRC cohort, we delved into the key biological differences among various PCD patterns. In the somatic 
mutation analysis of the Anoikis, we observed that the overall mutation rate in the high-risk group (Fig. 8C, 
53.21%) was significantly higher than that in the low-risk group (Fig. 8D, 41.09%). Notably, the mutation rates 
of the TTN and MUC16 genes were significantly higher in both risk groups. Additionally, the the TMB in 
the high-risk group was higher than that in the low-risk group (Fig.  8E, F). In LDCD, although the overall 
mutation rate in the high-risk group (Fig. 8G, 82.66%) was slightly higher than in the low-risk group (Fig. 8H, 
81.62%), there was no significant difference in TMB between the two (Fig. 8I, J). Furthermore, we analyzed the 

Fig. 2. Preliminary screening of PCD of KIRC patient. (A) Essential regulatory genes for 18 modes of PCD. 
(B) 12,788 DEGs between normal and tumor tissues in the TCGA-KIRC cohort. (C) Intersections of 18 PCD 
modes with differentially expressed genes in the TCGA-KIRC cohort.
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expression relationship between the two PCD patterns and immune checkpoint-related genes. In Anoikis, the 
expression levels of most immune checkpoint-related genes were significantly elevated in the high-risk group 
(Fig. 8K). Similarly, in LDCD, immune checkpoint-related genes were also highly expressed in the high-risk 
group (Fig. 8L). To gain a deeper understanding of the immune escape mechanisms relevant to immunotherapy, 
we conducted further analyses. The results showed that in Anoikis, the high-risk group had higher microsatellite 
instability, TIDE scores, immune dysfunction, responder status, CD8+ T cells, CD274 (also PD-L1) expression, 
and TAM M2 phenotype, while immune exclusion and cancer-associated fibroblasts (CAF) were not statistically 
significant in high-risk group patients (Fig. 9A–I). In LDCD, a similar pattern was observed, with the high-
risk group also exhibiting higher microsatellite instability, TIDE scores, immune dysfunction, responder 

Fig. 3. Univariate COX regression analysis results for 11 PCD modes. (A) Anoikis, (B) Apoptosis, (C) 
Autophagy, (D) LDCD, (E) Ferroptosis, (F) Necroptosis, (G) Immunogenic cell death, (H) NETosis, (I) 
Cuproptosis, (J) Paraptosis, (K) Pyroptosis.
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status, CD8+ T cells, CD274 expression, and TAM M2 phenotype, while immune exclusion, CAF, and CD274 
expression were not statistically significant in high-risk group patients (Fig. 9J–R).

GSEA enrichment analysis and tumor microenvironment assessment of Anoikis and LDCD
We conducted further GSEA for two key modes of PCD in KIRC. In the context of Anoikis, Gene Ontology 
(GO) analysis results highlighted significant enrichment of immune-related pathways in the high-risk group 
(Fig. 10A). Concurrently, gene expression in the low-risk group was significantly enriched in biological processes 
related to the renal system and cell polarization (Supplementary Figures S2A). Subsequent Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis revealed significant enrichment in immune response and cell signaling 
pathways for the high-risk group (Supplementary Figures S2B), while the low-risk group showed significant 
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enrichment in those related to metabolic processes pathway (Supplementary Figures S2C). In the scenario of 
LDCD, GO analysis results disclosed significant enrichment in processes related to spliceosome assembly and 
function for the high-risk group (Supplementary Figures S2D). The low-risk group demonstrated significant 
enrichment in processes related to ion transport, renal function, and metabolism (Supplementary Figures S2E). 
KEGG results indicated no significant enrichment for the high-risk group, while the low-risk group continued 
to show enrichment in the processes related to drug metabolism, xenobiotic detoxification, and amino acid 
metabolism (Supplementary Figures S2F). By employing the ESTIMATE algorithm within the R package 
‘estimate’, we estimated the proportions of immune and stromal components in the tumor microenvironment 
for high- and low-risk groups in both PCD patterns, obtaining three scores: ImmuneScore, StromalScore, and 
ESTIMATEScore. The high-risk group correlated positively with these scores, indicating an association with 
immune and stromal components (Fig.  10B, C). Given the significant similarities exhibited by Anoikis and 
LDCD in immune-related analyses, enrichment analyses, and immune stromal components, we conducted an 
integrated analysis of Anoikis-related genes, LDCD-related genes, and DEGs in KIRC patients, identifying two 
key intersecting genes, HMOX1 and PIK3CG (Fig. 10D), which may play a crucial role in the immune response 
and therapeutic response in KIRC.

Drug sensitivity analysis of Anoikis and LDCD
Given that the prognosis of the high-risk group is significantly poorer than that of the low-risk group, we 
conducted a drug analysis for both the low- and high-risk groups of the two types of PCD to predict drugs that 
may exhibit higher sensitivity in the high-risk group. The results indicated that in the high-risk group of Anoikis, 
dihydrorotenone, OF-1, ibrutinib, SB505124, and P22077 showed greater sensitivity (Fig. 11A–E). In the high-
risk group of LDCD, only SB505124 demonstrated higher sensitivity (Fig. 11F). Interestingly, we found that 
SB505124 exhibited high sensitivity in the high-risk groups of both types of PCD.

Molecular docking verification of HMOX1 and PIK3CG with related drug small molecule 
components
As HMOX1 and PIK3CG are key genes in the two types of PCD, we performed molecular docking analysis on 
them. Through literature review, it was found that Carnosol exerts its antioxidant and microvascular endothelial 
cell-protective functions by enhancing the expression of HMOX1 and activating the Nrf2 signaling pathway30. 
Therefore, we verified the binding capacity of Carnosol with HMOX1, confirming that Carnosol can form a 
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stable binding with the active site of HMOX1 (Fig. 11G, H). Concurrently, we explored the molecular targeting 
strategy for PIK3CG. According to the literature, a research team developed a PROTAC bispecific molecule that 
can specifically degrade PIK3CG, thereby blocking the PI3Kγ-Akt signaling pathway31. Our molecular docking 
verification showed that PIK3CG can form a stable binding with the active site of the PROTAC molecule 
(Fig. 11I, J), providing a novel strategy for targeting PIK3CG in therapy.

Discussion
KIRC is a prototypical tumor with high immune infiltration, and its heterogeneous response to treatment has 
long been a significant challenge for clinical precision diagnosis and treatment10. In this study, we systematically 
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dissected the synergistic regulatory network of anoikis and LDCD in KIRC for the first time by integrating 
machine learning and multi-omics analysis. Our findings elucidate the molecular mechanisms by which these two 
modes of PCD mediate treatment resistance through remodeling of the immunosuppressive microenvironment, 
providing a novel theoretical framework and potential therapeutic strategies to overcome resistance to immune 
checkpoint inhibitors .

We confirmed that the high-risk phenotype of anoikis is significantly associated with poor prognosis in KIRC 
patients, which contrasts sharply with the traditional view of anoikis as a metastasis-inhibiting mechanism32. 
Previous studies have suggested that KIRC may achieve immune evasion by constructing a multi-dimensional 
anoikis resistance network. At the level of immune checkpoint regulation, the mechanism by which the FXa-
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Fig. 7. Immune cell subtypes and immune checkpoint expression. (A, B) Analysis of immune cell infiltration 
for Anoikis and LDCD. (C, D) Analysis of immune cell infiltration using diverse software algorithms. (E, F) 
Functional enrichment analysis of immune cells.
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PAR-2 signaling axis activates the NF-κB pathway to induce PD-L1 transcriptional upregulation has been 
reported in hepatocellular carcinoma33, consistent with the elevated PD-L1 expression observed in the high-risk 
anoikis group in our study. In terms of the immunosuppressive cell network, the SPP1-mediated recruitment of 
MDSCs in hepatocellular carcinoma suggests that KIRC may establish an immunosuppressive barrier through a 
similar pathway34. At the metabolic-immune intersection, the metabolic reprogramming mechanism mediated 
by glutamate dehydrogenase 1 and ribosomal S6 kinase 2 in lung cancer offers new insights into the inhibition of 
CD8 + T-cell infiltration in KIRC35. Notably, our study breaks through the paradigm of considering PCD as an 
isolated mechanism by revealing for the first time a correlation between anoikis and LDCD in KIRC, suggesting 
that these two processes may amplify immunosuppressive effects through synergistic action.
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Fig. 8. Molecular characteristics and immune escape mechanisms. (A, B) Clinical information of patients 
under Anoikis and LDCD. (C, D) Somatic mutation analysis for Anoikis. (E, F) TMB analysis for Anoikis. (G, 
H) Somatic mutation analysis for LDCD. (I, J) TMB analysis for LDCD. (K, L) Expression levels of immune 
checkpoint-related genes in Anoikis and LDCD.
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LDCD is a form of PCD triggered by lysosomal membrane permeabilization (LMP), with its core mechanism 
involving the release of lysosomal hydrolases that disrupt intracellular homeostasis36. In the regulation of the 
tumor immune microenvironment, LDCD exhibits a dual mode of action. On one hand, LMP-mediated release 
of lysosomal content induces the exposure of damage-associated molecular patterns (DAMPs), which activate 
innate immune responses to facilitate the clearance of dying cells37–39. On the other hand, tumor cells can hijack 
the LDCD pathway to achieve immune evasion through multiple mechanisms. Specifically, abnormal release 
of lysosomal components such as cathepsin D can activate the caspase-8 signaling axis, inhibiting immune cell 
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Fig. 9. Analysis of immune evasion correlation. (A–I) Analysis of immune checkpoint associations in high 
and low-risk Anoikis groups: (A) MSI, (B) TIDE, (C) Dysfunction, (D) Exclusion, (E) CAF, (F) Responder, (G) 
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groups: (J) MSI, (K) TIDE, (L) Dysfunction, (M) Exclusion, (N) CAF, (O) Responder, (P) CD8, (Q) CD274, 
(R) TAM M2.
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activation through a cascade of reactions40. Tumor cells also reshape the lysosomal acidic environment and 
membrane stability to evade LMP-mediated death while suppressing the metabolic reprogramming capacity 
of immune cells, leading to terminal differentiation and exhaustion of plasma cells and lymphocytes41,42. The 
spatiotemporal-specific release of lysosomal content may regulate the immunogenicity of cell death, and when 
this process is disrupted, it not only fails to effectively recruit immune cells but also promotes immune tolerance 
by inhibiting antigen presentation. Previous studies have shown that the expression levels of LDCD-related 
genes are positively correlated with the degree of immune cell infiltration, particularly B cells and Treg cells, 
providing new molecular targets for elucidating the formation of the immunosuppressive microenvironment 
in KIRC43.
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Fig. 10. GSEA and assessment of the tumor microenvironment. (A) GO analysis of high-risk groups for 
Anoikis. (B, C) Ratios of immune stroma components in the tumor microenvironment among high and low-
risk groups for Anoikis and LDCD. (D) Intersection of Anoikis, LDCD, and DEGs in KIRC patients.
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Based on these mechanisms, this study innovatively proposes a combination therapy strategy targeting 
the PCD synergistic network. Drug screening results show that the TGF-β receptor inhibitor SB505124 can 
simultaneously suppress the high-risk phenotypes of anoikis and LDCD. SB505124 blocks the TGF-β signaling 
pathway, thereby effectively inhibiting cell proliferation, differentiation, and migration44. Although no studies 
have directly explored the specific role of SB505124 in KIRC treatment to date, TGF-β signaling has been 
identified as a key regulator of KIRC invasiveness and metastatic potential45,46. Considering the central role 
of the TGF-β pathway in KIRC malignancy46 and T-cell regulation47, the combination of SB505124 with PD-1 
inhibitors is expected to reverse immunosuppression and amplify PCD effects.
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In addition, we found that HMOX1 and PIK3CG are both expressed in anoikis-, LDCD-related genes, 
and differentially upregulated genes in KIRC patients. This suggests that anoikis and LDCD may enhance 
the expression of HMOX1 and PIK3CG, thereby affecting Tfh infiltration and HLA-E expression to shape 
the immunotherapy response in KIRC patients. HMOX1 has been confirmed to play a regulatory role in the 
immunotherapy of advanced renal cell carcinoma48, consistent with our findings. Moreover, through literature 
review, we found that Carnosol can enhance HMOX1 expression and activate the Nrf2 signaling pathway, 
exerting antioxidant and protective effects on microvascular endothelial cells30. Our experiments further 
verified the binding capacity of Carnosol to the active sites of HMOX1, confirming its stability. Although 
there is currently a lack of literature directly studying the impact of PIK3CG on KIRC immunotherapy, as a 
key component of the PI3K/Akt/mTOR signaling pathway, its potential role in KIRC treatment should not be 
overlooked, especially since mTOR inhibitors have shown significant efficacy in KIRC treatment49. Furthermore, 
a research team has developed a PROTAC heterobifunctional molecule that can specifically degrade PIK3CG 
and block the PI3Kɣ-Akt signaling pathway50. Our further molecular docking analysis revealed stable binding 
between the active sites of PIK3CG and the PROTAC molecule. Through additional molecular docking analysis, 
we validated the binding affinity between the active sites of HMOX1 and PIK3CG and potential drug molecules, 
providing important information for the development of new therapeutic strategies.

It is noteworthy that although KIRC is a tumor resistant to conventional radiotherapy, recent studies have 
shown that radioresistance can be overcome by high doses delivered through stereotactic body radiotherapy51. 
Evidence that radiotherapy can stimulate local52 and distant antitumor immunity (a phenomenon known as the 
“abscopal effect”53) has paved the way for combining radiotherapy with emerging immunotherapies, such as anti-
PD-154. In terms of programmed cell death, radiotherapy can induce pyroptosis in tumor cells, a potent form 
of PCD that activates the immune response55. For example, research teams have confirmed that radiotherapy 
can induce pyroptosis in certain types of tumor cells, leading to the release of IL-1β and IL-18, thereby exerting 
tumor-suppressive functions and inducing antitumor immune responses56. In contrast, immune checkpoint 
inhibitors target dysfunctional immune systems to induce CD8 + T cells to kill cancer cells57, while CD8 + T cells 
inhibit tumor growth through the induction of ferroptosis, necrosis, and pyroptosis58,59. Therefore, both immune 
checkpoint inhibitor therapy and SBRT have their respective advantages in inducing programmed cell death. 
Immune checkpoint inhibitors induce multiple modes of programmed cell death through systemic immune 
responses and direct damage to tumor cells, while radiotherapy primarily activates the immune response 
through local high-energy radiation damage and induction of pyroptosis, indicating that radiotherapy can serve 
as a potential partner for immunotherapy. Moreover, the identification of novel immune targets will improve the 
efficacy and long-term response rates of combination therapies. As the number of RCC immunotherapy trials 
increases and radiotherapy techniques advance, new opportunities for RCC management will emerge.

In summary, this study overcomes the limitation of focusing solely on a single mode of PCD by revealing 
the interaction between anoikis and LDCD for the first time and demonstrating how they collectively shape the 
immunotherapy response in patients with KIRC. Specifically, we found that anoikis and LDCD may enhance 
the expression of HMOX1 and PIK3CG, thereby influencing the infiltration of Tfh cells and the expression of 
HLA-E, which together shape the immunotherapy responsiveness in KIRC patients. Additionally, we discovered 
that SB505124 exhibits significant sensitivity in the high-risk groups of both PCD modes. We also confirmed 
stable binding interactions between Carnosol and HMOX1, as well as between PROTAC and PIK3CG. Our 
study underscores the necessity of considering the interplay among multiple PCD pathways in the therapeutic 
strategies for KIRC, which is crucial for identifying key target drugs and developing combination therapies, with 
the hope of bringing more precise and effective treatment options to KIRC patients.

Conclusion
Our study reveals that Anoikis and LDCD may diminish the immune response in KIRC patients by enhancing 
the expression of HMOX1 and PIK3CG. Furthermore, SB505124, Carnosol, and PROTAC have demonstrated 
significant potential as candidate immunotherapeutic agents.

Limitations
While bioinformatics analysis provides preliminary insights and hypotheses, relying solely on these analyses 
may not fully reveal the complexity of these biological phenomena. Therefore, it is planned to translate these 
preliminary findings into laboratory experimental validations in future research, thereby providing a solid 
foundation for the development of more effective therapeutic strategies.

Data availability
RNA sequencing data and corresponding clinical pathological information of 614 KIRC samples were obtained 
from the TCGA database (portal.gdc.cancer.gov/projects/TCGA-KIRC). And the clinical pathological infor-
mation and microarray expression analysis data of the KIRC cohort GSE22541 were obtained from the GEO 
database (https://www.ncbi.nlm.nih.gov/gds).
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