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The distributed multiple-input multiple-output (MIMO) radar system exhibits superior target 
localization capability by jointly processing target information from multiple radars under different 
observation angles. To improve the resource utilization of the distributed MIMO radar system, this 
paper proposes a hybrid action space reinforcement learning (HAS-RL) method, aiming to maximize 
the target localization performance under the radar resource constraints. Specifically, the Cramer–Rao 
Lower Bound (CRLB) incorporating the transmit radar power and receive radar selection is first derived 
and employed as the target localization performance metric of the distributed MIMO radar system. 
Subsequently, the radar resource allocation problem is modeled as a constrained optimization problem 
with continuous and discrete variables, and a hybrid action space reinforcement learning is proposed 
to solve the above optimization problem. Simulation results demonstrate that the proposed HAS-RL 
method can obtain better target localization performance under the given radar resource constraints.
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The distributed multiple-input multiple-output (MIMO) radar system is a widely used radar system1–3. Since 
receive radars in the system receive the echo signals from different observation angles, the distributed MIMO 
radar system can obtain more precise target information4. Compared with the traditional monostatic radar 
system, the distributed MIMO radar system has more accurate target localization and more substantial tracking 
capability.

With changes in mission requirements and application scenarios, the radar system needs to optimize resource 
utilization to meet different performance requirements. The distributed MIMO radar system contains various 
resources, such as transmitted power, bandwidth, radar position, etc. Theoretically, maximizing each resource in 
the radar system can achieve a higher target localization accuracy5. However, in practical applications, the radar 
system’s resources are usually constrained. Thus, how to allocate constrained resources and improve resource 
utilization efficiency has become an important topic in the distributed MIMO radar system6–21.

Godrich et al.6 first established the transmitted power allocation optimization model for target localization 
and solved the optimization problem with convex relaxation and local optimization algorithms. Feng et al.8 
designed an alternating global search algorithm to improve the transmitted power utilization of radar systems. 
Shi et al.10 introduced semi-positive definite planning and Karush–Kuhn–Tucker (KKT) conditions to obtain 
better target localization performance under the radar system’s power constraints. Guo et al.12 proposed an 
improved depth-first search-based approach to solve the radar system’s resource allocation for target localization.

Besides, some researchers14–20 consider jointly optimizing the allocation of transmitted power, bandwidth, 
and radar position to improve the target localization performance of radar systems. Ma et al.14 considered a 
joint optimization scheme of radar selection and power allocation in a MIMO radar network to minimize the 
target localization error. The proposed scheme divides the optimization process into two steps, where each step 
transforms the optimization problem into Second-Order Cone Programming (SOCP) for a solution through 
convex relaxation. Sun et al.15 analyzed the effects of the transmit radar, transmitted power, and bandwidth on 
the target localization performance of the distributed MIMO radar system and used the cyclic minimization 
algorithm to decompse the joint resource optimization into two sub-optimization problems. However, 
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decomposing the joint optimization of multiple resources into several sub-optimization problems requires more 
constraints or optimization processes.

Drawing on the above problem, this paper regards the joint transmitted power and transmit radar selection 
problem as a single optimization problem of transmitted power, in which the transmit radar is not selected 
when its transmitted power is set to 0. Specifically, we first employ the Cramer–Rao Lower Bound (CRLB) 
as the target localization performance metric of the distributed MIMO radar system. Then, we establish the 
resource allocation problem as a constrained optimization problem. Finally, we propose a hybrid action space 
reinforcement learning (HAS-RL) method to maximize the target localization performance under the radar 
resource constraints. The experimental results under two simulation scenarios demonstrate the effectiveness of 
our proposed HAS-RL method for radar resource allocation.

The remainder of this paper is organized as follows: Section II provides the derivation of the CRLB. Section 
III establishes the constrained optimization problem for resource allocation and describes the proposed HAS-RL 
method. The simulation experiments are reported in Section IV. Section V discusses the differences between our 
proposed method and other related methods. Finally, Section VI concludes this paper.

System model and Cramer–Rao lower bound
System model
Given the 3D coordinate system, a distributed MIMO radar system consists of M transmit radars and N receive 
radars all placed at large distances4. The m-th transmit radar includes KTm  individual nodes, and its phase 
center is located at (xmt , ym, zm), m = 1, 2, ...M . Similarly, the n-th receive radar includes KRn  individual 
nodes, and its phase center is located at (xnt , yn, zn), n = 1, 2, ...N. Fig. 1 depicts the distributed MIMO radar 
system in the 3D coordinate system.

Assume that the waveform transmitted by the transmit radar Tm is sm(t) following the normalization ∫
T |sm(t)|2dt = 1, and the effective bandwidth of waveform sm(t) is denoted by βm. To simplify the analysis 

process, it is assumed that the waveforms of each transmit radar are orthogonal and satisfy the following equation:

	

∫
T si(t) ∗ sj(t − τ)dt =

{ 1 i = j,
0 i ̸= j, � (1)

Given the target Q located at (xq, yq, zq), the waveform transmission delay, transmitted by the transmit radar 
Tm, reflected by target Q then received by the receive radar Rn, is defined as follows:

	

τmn = R(Tm,Q)+R(Rn,Q)
c

=
√

(xm−xq)2+(ym−yq)2+(zm−zq)2+
√

(xn−xq)2+(yn−yq)2+(zn−zq)2

c
,

� (2)

where c stands for the light speed.
The baseband signal received by the receive radar Rn can be represented as

	
Zn(t) = aRn

M∑
m=1

hmnαmn

√
Pm[wT

Tm
∗ aTm ]sm(t − τmn) + AWGNn(t),� (3)

Fig. 1.  Transmit and receive radars distribution in MIMO radar systems.
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where αmn,Xq ∝ 1
(Tm,Xq)∗(Rn,Xq)  is the path loss between the m-th transmit radar and the n-th receive 

radar. hmn is the radar cross-section (RCS) of the m-n path with respect to target Q. Pmn, aTm , and wTm  
are the transmitted power, beamforming weight, and the steering vector of the transmit radar Tm. aRn  is the 
steering vector of the receive radar Rn. AWGNn(t) = [AWGNn,1(t); · · · ; AWGNn,KRm (t)] represents the 
Additive White Gaussian Noise (AWGN) with the characteristics of AWGN(t) ∼ N(0, σ2

w).
Thus, the baseband signal received by the receive radar Rn after beamforming can be represented as:

	 rn(t) = wT
Rn

∗ Zn(t),� (4)

where wRn  is the beamforming weight of the receive radar Rn.
Assumed that GTm

∆= wT
Tm

∗ aTm , GRn
∆= wT

Rn ∗ aRn  is the radar gain. When the regular transmit/
receive beamforming is used, and the target is illuminated by the main lobe, GTm = KTm , GRm = KRm . 
Then the echo signal at time t of the n-th receive radar after receive beamforming is given by:

	
rn(t) = GRn

M∑
m=1

hmnαmn

√
PmGTm sm(t − τmn) + Nn(t),� (5)

where Nn(t) ∼ N(0, KRn σ2
w), n = 1, 2, · · · , N

Cramer–Rao lower bound
The Cramer–Rao Lower Bound (CRLB) denotes the lower bound of the mean square errors between each 
estimated result and the variant to be estimated, which measures the reliability of the estimation. If the mean 
square errors between each estimated result and the variant to be estimated can reach the CRLB, the estimated 
results can be approximated as substitutes for the variant to be estimated.

In the target localization task of the distributed MIMO radar system, the position information of target Q 
needs to be estimated and is defined as θ = [xq, yq, zq]T . The conditional probability density function of the θ 
can be expressed as follows:

	
p(rq|θ) = 1

(2πKRσ2
w)

N
2

exp


− 1

2KRσ2
w

N∑
n=1

∫

T

[
rqn(t) − GRn

M∑
m=1

αmn

√
PmGTm hmnsm(t − τmn)

]2

dt


 ,� (6)

where rqn(t) represents the echo signal of target Q received from receive radar Rn. Then, the Fisher Information 
Matrix (FIM) of θ can be expressed as follows.

	 J(θ) = E{[∇θInp(rq|θ)][∇θInp(rq|θ)]T },� (7)

where ∇[·] denotes the gradient operator and [·]T  denotes the transpose operation of the matrix.
According to the literature22, the CRLB of the target localization error can be expressed as:

	 CLRB = tr{CCLRB} = tr{[J(θ)]−1}.� (8)

Define ϕ is a function of θ, where ϕ = [τ11, · · · , τmn, · · · , τMN ].  According to the chain derivation rule, the 
J(θ) in Eq. (5-8) can be rewritten as:

	
J(θ) = PJ(ϕ)PT ,
P = ∂ϕ

∂θ
,

� (9)

where J(ϕ) ∈ RMN×MN  is the FIM with respect to ϕ, which can be expressed as follows:

	
J(ϕ) = −E

[
∂2 log p(r|ϕ)
∂τmn∂τm′n′

]
=

{
2

KRσ2
w

4π2G2
Rn

α2
mnPmG2

Tm
|hmn|2 β2

m mn = m′n′,

0 mn ̸= m′n′,
� (10)

The matrix P ∈ R3×MN  can be expressed as:

	
P = ∂ϕ

∂θ
=

[
∂τ

∂x
,

∂τ

∂y
,

∂τ

∂z

]T

,� (11)

where ∂τ
∂x  denotes the derivation of each element of τ  with respect to x, and the derivation is shown below:

	
∂τmn

∂x
= x − xm

cR (Tm, Q) + x − xn

cR (Rn, Q) ,
∂τmn

∂y
= y − ym

cR (Tm, Q) + y − yn

cR (Rn, Q) ,
∂τmn

∂z
= z − zm

cR (Tm, Q) + z − zn

cR (Rn, Q) .� (12)

For simplicity, we define
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gxm

∆= x − xm

R (Tm, Q) , gxn
∆= x − xn

R (Rn, Q) , gym
∆= y − ym

R (Tm, Q) , gyn
∆= y − yn

R (Rn, Q) , gzm
∆= z − zm

R (Tm, Q) , gzn
∆= z − zn

R (Rn, Q) .� (13)

and Equation 11 can be transformed into:

	
∂τmn

∂x
= 1

c
(gxm + gxn) ,

∂τmn

∂y
= 1

c
(gym + gyn) ,

∂τmn

∂z
= 1

c
(gzm + gzn) .� (14)

Combining Eqs. 9, 10, and 11, Equation 8 can be simplified as:

	
CCRLB =

(
PJ(ϕ)PT

)−1 = ξ

[
gx gxy gxz

gxy gy gyz

gxz gyz gz

]−1

,� (15)

where

	

ξ =
(

8π2

KRσ2
wc2

)−1
,

gx =
M∑

m=1

N∑
n=1

α2
mnPmG2

Rn
G2

Tm
|hmn|2β2(gxm + gxn)2,

gy =
M∑

m=1

N∑
n=1

α2
mnPmG2

Rn
G2

Tm
|hmn|2β2(gym + gyn)2,

gz =
M∑

m=1

N∑
n=1

α2
mnPmG2

Rn
G2

Tm
|hmn|2β2(gzm + gzn)2,

gxz =
M∑

m=1

N∑
n=1

α2
mnPmG2

Rn
G2

Tm
|hmn|2β2 (gxm + gxn) (gzm + gzn) ,

gxy =
M∑

m=1

N∑
n=1

α2
mnPmG2

Rn
G2

Tm
|hmn|2β2 (gxm + gxn) (gym + gyn) ,

gyz =
M∑

m=1

N∑
n=1

α2
mnPmG2

Rn
G2

Tm
|hmn|2β2 (gym + gyn) (gzm + gzn) .

� (16)

Thus, the CRLB of the target localization error can be expressed as:

	

CRLB = σ2
xCRB + σ2

yCRB + σ2
zCRB ,

σ2
xCRB = ξ

|G| (gy ∗ gz − gyzgyz) ,

σ2
yCRB = ξ

|G| (gx ∗ gz − gxzgxz) ,

σ2
zCRB = ξ

|G| (gx ∗ gy − gxygxy) .

� (17)

where |G| is the determinant of the matrix G.

Methods
Optimiztion model of the resource allocation
In some practical scenarios, the radar system’s total transmitted power is limited. Thus, the transmitted power 
allocation is necessary to improve the radar system’s target localization performance. Previous studies11,12 
demonstrate that CRLB can quantify the target localization performance of the MIMO radar system. Therefore, 
we establish the optimization model of the resource allocation to minimize the target localization error:

	

min
P,w,v

CRLB + ∥w∥0,

s.t Pm ≤ Pmax, m = 1, 2, ..., M,

wT P ≤ Plim,

∥v∥0 = λ,

� (18)

where P = [P1, P2, ..., PM ]T  represents the assigned transmitted power of each transmit radar. 
w = [w1, w2, ..., wM ]T  represents the transmit radar selection vector and wm ∈ {0, 1} in which ‘1’ indicates 
the transmit radar is selected while ‘0’ indicates not selected. ∥w∥0 represents the non-zero number of elements 

Scientific Reports |        2025 15:19593 4| https://doi.org/10.1038/s41598-025-02698-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in the transmit radar selection vector. Similarly, v = [v1, v2, ..., vN ]T  represents the receive radar selection 
vector. λ denotes the constrained number of receive radar. Pmax is the maximum transmitted power of each 
transmit radar, and Plim is the total transmitted power in the radar system.

A hybrid action space reinforcement learning
The above resource allocation model is a typical combinatorial optimization problem with a relatively large 
solution space. In this paper, we transform the combinatorial optimization problem into a sequential decision 
problem and employ the reinforcement learning method to find the solution.

The core of reinforcement learning consists of states, actions, and rewards. In our radar resource allocation 
scenario, the state space consists of the transmit radars’ power and the receive radars’ state. The action space 
consists of allocating transmitted power to the transmit radars and selecting receive radars. The rewards are 
related to the CRLB. The action space is a hybrid action space containing both continuous attributes (i.e., 
transmitted power allocation to the transmit radars) and discrete attributes (i.e., receive radar selection). The 
typical reinforcement learning methods (e.g., DQN23, DDPG24, etc.) can only deal with discrete and continuous 
actions. Some researchers take a divide-and-conquer approach when extending them to the hybrid action space. 
Q-PAMDP25 and Deep MAHHQN26 first solve for optimal discrete actions and then solve the corresponding 
optimal continuous actions. PADDPG27 and P-DQN28 solve the optimal continuous actions corresponding to 
all discrete actions and then solve the optimal discrete actions. However, making discrete actions continuous 
leads to a more complex action space, while making continuous actions high-dimensional discrete introduces 
accuracy errors and increases the computational burden.

To address the above problems, we propose A Hybrid Action Space-based Reinforcement Learning (HAS-
RL) method, which maps continuous and discrete actions to the policy space through two separate branches. 
Our proposed HAS-RL method is mainly based on the PPO algorithm29, which also employs the clipping 
mechanism and advantage function estimation to stabilize the training process and improve sample efficiency.

Agent
The agent in the proposed HAS-RL method is the actor-critic structure30, which consists of two sub-actor 
networks and a global critic network. The sub-actor network decides on transmit radar power allocation and 
receive radar selection according to the current radar state. The critic network evaluates the superiority of the 
policy. Fig. 2 depicts the structure of the agent. The sub-actor network decomposes the complex action space into 
discrete and continuous sub-spaces, each handled by a sub-actor network. The two sub-actors learn the policy 
that guides the action selection at its corresponding action space. These policies work together to determine the 
actions of the agent. The loss functions of these two branches are shown below:

	

LCLIP
d (θd) = Êt[min(rd

t (θd)Ât, clip(rd
t (θd), 1−, 1+)Ât)],

LCLIP
c (θc) = Êt[min(rc

t (θc)Ât, clip(rc
t (θc), 1−, 1+)Ât)],

� (19)

where rd
t (θd) stands for 

πθd
(a|st)

πθd(old)(a|st) , rc
t (θc) stands for πθc (xa|st)

πθc(old)(xa|st) , and Ât is the advantage function.

State
The state is a combination of the transmitted power of transmit radars and the selected state of receive radars. For 
the i-th transmit radar, its state value is continuous Si ∈ [0, 3000], indicating its transmitted power. When the 
state value is 0, it means this transmit radar is off. For the j-th receive radar, its state value is discrete Sj ∈ {0, 1}, 
indicating whether to turn on this radar.

Action
The action contains the transmit radar power allocation and the receive radar selection, which is a hybrid 
action space. For the transmit radar, its action space is continuous Ai ∈ [−δ, δ], and we set it as an additive or 

Fig. 2.  Schematic diagram of the proposed HAS-RL method.
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subtractive change to the transmitted power. For the receive radar, its action space is discrete Aj ∈ {0, 1}, where 
0 indicates keeping the current receive radar state and 1 indicates flipping the current receive radar state.

Reward
Traditional reinforcement learning methods tend to have a single reward. However, the single reward design can 
easily lead the agent to fall into a local optimum. Literature6 points out that the average power allocation is not 
an optimal solution for the radar system. Thus, we design two rewards by taking the CRLB under the average 
power allocation as the threshold, termed CRLBavg . When the current CRLB is larger than the threshold, the 
agent deviates from the correct optimization direction. Thus, we set the reward to encourage the agent to explore 
other possible solutions. When the current CRLB is smaller than the threshold, the agent explores in the correct 
direction. Thus, the reward with constraint mechanism is designed to to gradually guide the agent toward the 
optimal strategy in that local area. This two-stage reward strategy provides a more precise learning guidance for 
the agent in different states.

Specifically, the reward in the first phase encourages the agent to explore as large a solution area as possible. 
Therefore, the reward in this phase does not employ penalties but uses the rescale strategy to legalize the state 
that breaks the total power constraint. The rescale strategy can avoid too many penalties that may mislead the 
learning direction of the agent and constrain its exploration. The reward function in the first stage is shown in 
Eq. 20:

	 r1 = Dscale × α + ∥w∥0 if CRLBt ≥ CRLBavg,� (20)

where Dscale = CRLBt−1−CRLBt

CRLBt
 denotes the superiority of state update at different time steps. α is set as 500 

to control the exploration range of the agent, CRLBavg  is the threshold, and ∥w∥0 is the number of transmit 
radar.

In the second stage, the agent explores the desired optimization direction. Therefore, we introduce the soft 
constraint mechanism, which penalties the illegal power allocation to ensure the exploration of the agent will not 
deviate from the desired optimization direction.

	 r2 = D + P enaltyradar + ∥w∥0 if CRLBt < CRLBavg,� (21)

where D = CRLBt−1 − CRLBt denotes the superiority of state update at different time steps. In the second 
stage, the agent is already close to the desired optimization direction, and the CRLB changes slightly in different 
time steps. Thus, we adopt the difference in CRLB as the primary reward to guide the agent’s exploration 
direction. P enaltyradar  denotes the penalty for the illegal power allocation, which is defined as follows:

	

P enaltyall_radar = −|Ptotal − Plim| if P ̸= Plim,

P enaltyper_radar = −
∑
i=1

min(|Pi − Pmax|, |Pi|) if Pi /∈ [0, Pmax], � (22)

where Ptotal denotes the current total transmitted power, Plim denotes the total transmitted power constraint, 
Pi denotes the power of the i-th transmit radar, and Pmax denotes the maximum transmitted power of a single 
transmit radar.

Simulations and analysis
Simulation setup
Radar system simulation scenario
Two different radar system simulation scenarios are introduced in this section. Fig. 3 illustrates the first 
simulation scenario, consisting of 8 transmit radars (red dots) and 10 receive radars (blue dots). Fig. 4 illustrates 
the second simulation scenario, which mainly consists of 5 transmit radars (red dots) and 7 receive radars (blue 
dots). The target in both two simulation scenarios is located in [350 km, 550 km, 9 km]. For the transmit radar, 
the power constraint is set as 3000W, the bandwidth is set as 30 MHZ, and the radar gain is set as 33 dB. As for 
the receive radar, the radar gain is also 33 dB. The target reflection cross section is set as the same value (i.e., 
hmn = 10) for different paths.

Hyper-parameter setting in our proposed method
The proposed HAS-RL method is trained for 500,000 steps, and the learning rate is set to 0.0003. The clipping 
range is set to 0.2 to maintain the stability of the strategy update. The entropy coefficient is set to 0.01 to balance 
the exploration and utilization of the agent. The discount factor is taken as 0.99 to trade off the long-term and 
short-term rewards of the agent. The advantage estimation coefficient is s as 0.95 to encourage the agent to 
consider more future information when estimating the advantage function.

Comparison experiments settings
In this paper, we select the Average Power Allocation (APA) method, the Random Power Allocation(RPA) 
method and the Simulated Annealing (SA) algorithm for comparison. The SA algorithm is a heuristic search 
algorithm that solves the optimization problem by simulating the annealing process in physics. We set the initial 
temperature of the SA algorithm as Tmax = 20, the annealing rate is taken as an exponential decrease with a 
decreased coefficient of 0.8, the termination temperature is set to Tmin = 0.1, and the number of iterations at 
each temperature T is set to L=50.
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Results and analysis
The first radar system simulation scenario
In the first simulation scenario, the distributed MIMO radar system contains 8 transmit radars and 10 receive 
radars, as shown in Fig. 3. We set the total transmitted power of the radar system to 16000W and constrain the 
number of receive radars to 8. Since the APA method applies uniform transmitted power for all transmit radars, 
we only need to consider the receive radar selection. In this simulation scenario, the solution space for the 
APA method is C8

10 = 45, and we employ the exhaustive method to obtain the minimum CRLB. For the RPA 
method, we randomly conduct experiments 100 times to obtain the CRLBs under different radar states. For the 
SA method and the proposed HAS-RL method, we repeat the experiment 10 times.

Table 1 shows the comparison results between different allocation strategies. Compared to the APA method, 
the other three methods can obtain a smaller minimum CRLB, which verifies the importance of the power 
allocation for the radar system. However, the average CRLB of the RPA method is higher than that of other 
methods due to its randomness. This is because the RPA method may select irrational radar states, substantially 
increasing the target localization error. On the contrary, the SA and the proposed HSA-RL method achieve 
more stable results in the multiple repeat experiments and further improve the target localization performance. 
Compared with other power allocation strategies, our proposed HSA-RL method achieves the best localization 
performance, demonstrating its effectiveness.

In this simulation scenario, the total transmitted power of the radar system is 16000 W, and the transmitted 
power of each individual transmit radar is limited to 3000 W. Hence, the radar system at least contains 6 transmit 
radars. The 2nd to 4th rows of Table 1 report the comparision results of the RPA method under different 
numbers of transmit radars. We can see that selecting only 6 transmit radars for power allocation achieves better 
target localization performance than other settings for RPA. This is because selecting fewer transmit radars for 
power allocation make the transmitted power more concentrated on critical transmit radars (those closer to the 
target), leading to better target localization performance. However, selecting fewer transmit radars for power 
allocation may also ignore some important transmit radars, resulting in significant deviations among multiple 
repeat experiments.

Fig. 4.  The distribution of target and radars in the second radar system simulation scenario.

 

Fig. 3.  The distribution of target and radars in the first radar system simulation scenario.

 

Scientific Reports |        2025 15:19593 7| https://doi.org/10.1038/s41598-025-02698-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Furthermore, Table 2 shows the detailed power allocation results corresponding to the minimum CRLB 
value under different allocation strategies. We can see that the SA method and the proposed HSA-RL method 
tend to allocate more transmitted power to T0, T1, T3, T6, and T7, since these transmit radars are closer to the 
target, while the T2, T4, and T5 transmit radars are far away from the target.

The second radar system simulation scenario
In the second simulation scenario, the distributed MIMO radar system contains 5 transmit radars and 7 receive 
radars, as shown in Fig. 4. We set the total transmitted power of the radar system to 10000W and constrain the 
number of receive radars to 5. In this simulation scenario, the solution space for the APA method is C5

7 = 21, 
and the exhaustive method is adopted to obtain the minimum CRLB. For the RPA method, SA method and the 
proposed HAS-RL method, we still follow the same setting as the first simulation scenario.

Table 3 demonstrates the comparison results between different power allocation methods in the second 
simulation scenario. We can see that the proposed HAS-RL method still achieves the smallest CRLB value, 
demonstrating the effectiveness of our proposed method again. In addition, compared with the first simulation 
scenario, the second simulation scenario contains fewer transmit and receive radars, resulting in poor target 
localization performance. Table 4 shows the detailed power allocation results corresponding to the minimum 
CRLB value under different allocation strategies.

Discussion
In this section, we discuss the differences and advantages of the proposed HAS-RL method over the decomposition 
optimization methods and SA methods.

Comparison with decomposition optimization methods
The typical paradigm of decomposition optimization methods is to transform the joint resource optimization 
problem into sub-optimization problems and solve them step by step. Ma et al.14 transformed the joint 
optimization problem of transmit radar selection and transmitted power allocation into two sub-optimization 
problems by pre-setting the number of selected transmit radars. Xie et al.17 performed the transmit power 
allocation by sequentially increasing the number of selected transmit radars and achieved the resource allocation 
results until the objective function no longer decreased. In contrast, we model the joint transmitted power and 
transmit radar selection problem as a single optimization problem of transmitted power, avoiding the additional 
hyperparameter settings and complex solution steps.

Method Transmitter radar power allocation Reciver radar selection

APA [2000 W, 2000 W, 2000 W, 2000 W, 2000 W, 2000 W, 2000 W, 2000 W] [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]

RPA
[2030 W, 2269 W, 1144 W, 2258 W, 2634 W, 685 W, 2792 W, 2188 W] [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]

(with 8 transimitter radars)

RPA
[3000 W, 1701 W, 0 W, 2992 w, 3000 w, 377 w, 2577 w, 2353 w] [1, 1, 1, 1, 0, 1, 1, 1, 1, 0]

(with 7 transimitter radars)

RPA
[3000 W, 2118 W, 3000 W, 3000 W, 0 W, 0 W, 1882 W, 3000 W] [1, 1, 1, 1, 0, 0, 1, 1, 1, 1]

(with 6 transimitter radars)

SA [3000 W, 3000 W, 0 W, 3000 W, 1252 W, 0 W, 2748 W, 3000 W] [0, 1, 0, 1, 1, 1, 1, 1, 1, 1]

Ours [3000 W, 3000 W, 0 W, 3000 W, 1000 W, 0 W, 3000 W, 3000 W] [1, 0, 1, 1, 1, 1, 1, 1, 1, 0]

Table 2.  Detailed allocation under different power allocation strategies in the first simulation scenario. The 
power allocation results are rounded to the nearest integer.

 

Method

CRLB

Mean value Minimum value

APA 2347.65 m 1197.26 m

RPA
4011.85 m 1137.44 m

(with 8 transimitter radars)

RPA
5777.93 m 1052.28 m

(with 7 transimitter radars)

RPA
5810.04 m 1036.30 m

(with 6 transimitter radars)

SA 992.40 m 988.27 m

15 Ours 15982.08 m 15980.65 m

Table 1.  Comparison performance between different power allocation methods in the first simulation 
scenario. The bold item indicates the optimal results.
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Comparison with SA method
As shown in the Table 5, the proposed HAS-RL method exhibits stronger robustness and achieves more stable 
results in multiple repeat experiments. Specifically, in the first simulation scenario, our proposed HAS-RL 
method exhibits a standard deviation of 0.799m, while that of the SA method is 4.224m. Our proposed method 
also maintains the consistent stability advantage in the second scenario. In terms of convergence speed, the SA 
method exhibits a faster convergence speed than the proposed HAS-RL method. In the first simulation scenario, 
the SA requires about 22 seconds to reach the convergence condition. While the proposed HAS-RL method 
takes about 12 minutes to finish the training phase, yielding satisfactory power allocation results.

Conclusion
This paper considers the resource allocation problem in distributed MIMO radar systems. We establish a 
constrained optimization model to minimize the target localization error under the constraints of transmitted 
power and the number of receive radars and propose a hybrid action space reinforcement learning method to 
solve it. Experiments in different simulation scenarios show that our proposed method can effectively allocate 
resources for better target localization performance.

Our future work will mainly focus on the following two aspects: (1) introducing more metrics to 
comprehensively evaluate the target localization performance of the MIMO radar system, and (2) improving the 
convergence speed of the proposed HSA-RL method.

Data availability
The datasets used and/or analysed during the current study available at: “​h​t​t​p​s​:​​​/​​/​f​i​g​s​h​a​r​​e​.​c​o​​m​/​a​r​​t​i​c​l​​e​​s​/​d​a​t​a​​s​​e​t​/​R​​
a​​d​a​r​_​​s​y​s​​t​e​​m​_​s​i​m​u​​l​a​​t​i​o​n​​_​s​c​e​n​​​a​r​i​​o​_​z​i​p​/​2​8​3​5​8​5​3​1”.
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Method

Mean value of CRLB

First simulation scenario Second simulation scenario

SA 992.40 m ±  4.224 m 1799.33 m ± 5.508 m

Ours 982.08 m ± 0.799 m 1752.55 m ± 0.918 m

Table 5.  Stability performance comparison between the proposed method and simulated annealing (SA) 
algorithm in the two simulation scenarios. The bold item indicates the optimal results.

 

Method Transmitter radar power allocation Reciver radar selection

APA [2000 W, 2000 W, 2000 W, 2000 W, 2000 W] [1, 0, 1, 1, 0, 1, 1]

RPA
[3000 W, 386 W, 3000 W, 2616 W, 998 W] [1, 1, 1, 0, 1, 1, 0]

(with 5 transimitter radars)

RPA
[3000 W, 0 W, 3000 W, 3000 W, 1000 W] [1, 1, 1, 1, 0, 0, 1]

(with 4 transimitter radars)

SA [3000 W, 498 W, 3000 W, 3000 W, 502 W] [1, 1, 1, 1, 0, 0, 1]

Ours [3000 W, 1000 W, 3000 W, 3000 W, 0 W] [1, 1, 0, 1, 0, 1, 1]

Table 4.  Detailed allocation under different power allocation strategies in the second simulation scenario. The 
power allocation results are rounded to the nearest integer.

 

Method

CRLB

Mean value Minimum value

APA 6252.80 m 2025.77 m

RPA
6390.81 m 1794.85 m

(with 5 transimitter radars)

RPA
4609.64 m 1757.62 m

(with 4 transimitter radars)

SA 1799.33 m 1756.82 m

 Ours 1752.55 m 1751.14 m

Table 3.  Comparison performance between different power allocation methods in the second simulation 
scenario. The bold item indicates the optimal results.
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