Table 3 Machine learning algorithms and parameters.

From: Hybrid machine learning and physics-based model for estimating lettuce (Lactuca sativa) growth and resource consumption in aeroponic systems

FW sub-model w1: Random Forest

Number of trees

21

Criterion

MSE

Maximal depth

70

FW sub-model w2: Random Forest

Number of trees

11

Criterion

MSE

Maximal depth

90

FW sub-model w3: Random Forest

Number of trees

41

Criterion

MSE

Maximal depth

29

T-LA sub-model w1: Random Forest

number of trees

90

Criterion

MSE

Maximal depth

60

T-LA sub-model w2: Random Forest

number of trees

60

Criterion

MSE

Maximal depth

21

T-LA sub-model w3: Random Forest

number of trees

70

Criterion

MSE

Maximal depth

70

N sub-model w1: Deep Neural Network

Activation function

ReLU

Number of layers

3

Number of neurons

50

Learning rate

0.4

Loss function

MSE

Optimizer

SGD

Epochs

100

N sub-model w2: Random Forest

Number of trees

21

Criterion

MSE

Maximal depth

29

N sub-model w3: SVM

Kernel function

ANOVA

C

-1

Gamma

700