Table 3 Machine learning algorithms and parameters.
FW sub-model w1: Random Forest | |
Number of trees | 21 |
Criterion | MSE |
Maximal depth | 70 |
FW sub-model w2: Random Forest | |
Number of trees | 11 |
Criterion | MSE |
Maximal depth | 90 |
FW sub-model w3: Random Forest | |
Number of trees | 41 |
Criterion | MSE |
Maximal depth | 29 |
T-LA sub-model w1: Random Forest | |
number of trees | 90 |
Criterion | MSE |
Maximal depth | 60 |
T-LA sub-model w2: Random Forest | |
number of trees | 60 |
Criterion | MSE |
Maximal depth | 21 |
T-LA sub-model w3: Random Forest | |
number of trees | 70 |
Criterion | MSE |
Maximal depth | 70 |
N sub-model w1: Deep Neural Network | |
Activation function | ReLU |
Number of layers | 3 |
Number of neurons | 50 |
Learning rate | 0.4 |
Loss function | MSE |
Optimizer | SGD |
Epochs | 100 |
N sub-model w2: Random Forest | |
Number of trees | 21 |
Criterion | MSE |
Maximal depth | 29 |
N sub-model w3: SVM | |
Kernel function | ANOVA |
C | -1 |
Gamma | 700 |