
Evaluation of spatial visual 
perception of streets based on 
deep learning and spatial syntax
Mingyang Yu1, Xin Chen1, Xiangyu Zheng1, Weikang Cui1,2, Qingrui Ji1 & Huaqiao Xing1

Street visual quality improvement plays an important role in urban development. An important 
direction for street quality research lies in accurately perceiving the spatial quality of urban streets and 
exploring the connection with street constituents. This study applies deep learning to extract visual 
elements from street view images and uses a human-machine adversarial model to rate them across 
six dimensions (beautiful, wealthy, safety, lively, depressing, and boring). Through spatial visualization 
of street quality, overlay analysis with network accessibility, and multiple linear regression, it 
examines the correlations between street space quality and its constituent elements. The results 
indicate that the streets within the study area scored highly on the dimensions of beautiful and lively, 
this is attributed to the reasonable greening construction which characterized by the good layout 
and density of greenery. Such greening not only enhances aesthetics but also provides environmental 
benefits. Additionally, the orderly street layout reflects well-organized spatial arrangements of street 
elements, such as pathways and building facades. Positive visual perception such as beautiful, wealthy, 
safety, lively is positively correlated with plants and pedestrians, and negatively correlated with 
walls. It is important to address the distinct types of streets in urban planning, including high-quality/
accessibility streets found in urban centers, high-quality/low-accessibility streets at district junctions 
with sparse networks, low-quality/high-accessibility streets in the southwestern center and Low-
quality/accessibility peripheral areas characterized by outdated buildings. Strategies should prioritize 
improvements in street function, greening, building interfaces, and pedestrian connectivity. These 
measures will help enhance the overall spatial quality and vitality of the area. In summary, the findings 
provide data support for more precise urban street improvements and offer a reference for human-
centered urban planning research.
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Streets are essential public spaces for urban residents, providing a physical and social environment for 
daily interactions and recreation1. As vital connectors between people and the city, streets shape residents’ 
experiences, influencing mobility, safety, social interaction, and overall urban life. City managers increasingly 
focus on street design to enhance socio-economic and cultural activities, aiming to create more sustainable, 
livable environments2. City managers are paying increasing attention to the design and planning of urban 
streets as important hubs of socio-economic and cultural activities. A deep understanding of the intricate 
relationship between the components of urban streets and human perception is conducive to a harmonious and 
sustainable urban environment. Traditionally, planners and designers relied on labor-intensive methods such 
as on-site surveys or static maps, which provided limited insights into the visual and spatial qualities of streets. 
Inadequate technology for large-scale data processing and a lack of comprehensive data sources have hindered 
the development of scientific and rational street planning blueprints.

The emergence of streetscape imagery has overcome the previous limitations on the availability of data 
sources for assessing streets3,4. Streetscape images are electronic maps based on actual landscapes, and these 
maps provide richly detailed streetscape images with a wide range of coverage containing a large amount of 
information about city streets5,6. Therefore, these street view images have the potential to become an important 
form of supporting data for assessing the visual perception of city streets. Currently, a number of Internet 
companies such as Google, Microsoft, Baidu, and Tencent have launched online street view services7,8. In China, 
Baidu Maps’ online Street View service already covers a large number of streets in most cities.
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As a new data source, Street View images have gradually become a research hotspot. A large number of urban 
studies based on Street View images include 3D city reconstruction studies9,10, specific scene recognition11, 
perceptual safety assessment12, alcohol consumption data extraction13, assessment of visual perception of 
streets14, and other related areas. Among them, visual perception of streets is the basis for exploring urban 
planning and quality of life of residents15. Meanwhile, with the advancement in the field of computers, it is now 
possible to utilize convolutional neural networks for fast and accurate fine-grained processing of street images. 
This technique can effectively recognize various elements such as buildings, roads, pedestrians, and greenery16. 
Through the combination of deep learning technology and streetscape images, it can provide refined basic data 
for the study of street spatial quality, and at the same time, it can quickly process large-scale data, making it 
technically possible to quickly and accurately measure the visual quality of streets on a large scale.

However, current research still falls short in revealing the quantitative relationship between street components 
and human subjective perception, lacking both systematic approaches and scalability. Consequently, an urgent 
research gap exists regarding how to combine emerging large-scale street view data and deep learning technologies 
to achieve high-precision, wide-coverage measurement of street visual quality. Against this backdrop, this study 
endeavors to bridge the aforementioned gap: on the one hand, advanced methods such as deep learning and 
space syntax are employed to comprehensively quantify street visual quality and its constituent elements; on the 
other hand, subjective perception dimensions are integrated with objective quantitative metrics to systematically 
evaluate how the street environment influences residents’ daily lives and urban development. This integration 
enhances our understanding of the intricate relationship between street visual characteristics and residents’ 
experiences, thereby offering more targeted optimization strategies for urban planning and decision-making.

In this study, considering the subjective feelings of people who are the main users of streets and the objective 
physical characteristics of streets, an efficient evaluation model of urban street visual quality is constructed by 
using multi-source big data such as street view images and OSM street vector data, combined with deep learning, 
spatial syntax and Random Forest model. It can be used for large-scale and high-detailed evaluation of the visual 
quality of urban streets to better provide reference for urban planning assessment and assisted decision-making, 
as well as the improvement of the quality of the human environment.

Literature review
Traditional street quality study
The study of street space quality has its roots in the 1960s, with seminal contributions from urban theorists 
such as JACOBS J and LEFEBVRE H, who emphasized the human-scale perspective in urban design. Jacobs, 
in her work The Death and Life of Great American Cities (1961), critiqued the separation of functions in cities 
and argued that the vitality of streets is directly linked to their ability to support diverse, pedestrian-friendly 
environments17. Lefebvre, in The Production of Space (1974), introduced the idea that the spatial organization 
of cities is a socially constructed phenomenon, influencing both daily life and urban interactions18. These early 
studies laid the groundwork for understanding the importance of human-scale urban design, focusing on the 
street as a space of social interaction and pedestrian use.

Building on these foundations, Kevin Lynch’s influential book The Image of the City (1960) further explored 
the way individuals perceive and experience urban spaces. Lynch’s work emphasized the concept of “imageability” 
and how streets contribute to the legibility and identity of cities19. His framework categorized urban spaces into 
elements such as paths, edges, districts, nodes, and landmarks, providing a systematic approach for evaluating 
street spaces from a psychological and sensory perspective.

As urban studies progressed, research on street quality expanded to cover various types of urban 
environments, including commercial districts20, public squares21, and residential streets22. For example, studies 
have highlighted the role of pedestrian-friendly streets in enhancing social interaction and contributing to the 
economic vitality of city centers. In contrast, other research has examined the impact of traffic congestion, safety, 
and environmental factors on the perceived quality of streets in residential areas23. These studies have revealed 
that street quality is a multifaceted concept, encompassing physical, social, and psychological dimensions.

Over the past few decades, there has been a marked shift towards more objective and systematic methods of 
street quality evaluation. Traditional approaches, which relied heavily on manual measurement and subjective 
assessment, often faced challenges in scalability and precision. For instance, methods such as surveys and 
visual inspections were limited by researcher biases and logistical constraints, making large-scale and detailed 
assessments of street quality difficult to conduct. In response to these limitations, there has been a growing trend 
toward integrating quantitative techniques into street quality analysis24.

One significant milestone in the development of quantitative methods for street evaluation was the introduction 
of spatial syntax in 1984 by Bill Hillier and Julienne Hanson25. Spatial syntax focuses on the topological properties 
of street networks, enabling researchers to quantify and visualize accessibility, connectivity, and movement 
patterns within urban spaces. This approach provides valuable insights into the structural organization of streets, 
as well as their potential for fostering social interactions and facilitating efficient transportation. Today, spatial 
syntax remains an essential tool in urban planning and design, with applications ranging from large-scale city 
planning to micro-level pedestrian movement analysis26.

Street quality research incorporating big data
The rapid advancement of computer technology has greatly expanded the ways in which urban street quality 
can be analyzed. The diversification of data collection methods, particularly with the introduction of Point of 
Interest (POI) data, has enabled more comprehensive and precise quantitative evaluations of street spaces. POI 
data, which captures locations of notable urban features such as shops, public facilities, and cultural landmarks, 
has proven especially useful in urban studies. Zhang et al. (2019) leveraged POI data and public awareness tasks 
to map the accuracy of POI data to the linear space of streets, creating a detailed method for classifying street 
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types based on urban functions and use patterns27. This approach marked a significant step in fine-grained 
street quality assessment, allowing for a more nuanced understanding of how different types of streets serve 
their surrounding communities. Similarly, Liu et al. (2021) used POI data to analyze the relationship between 
urban street characteristics and economic activity, showing how street designs influence commercial vitality 
in urban areas28. Qin et al. (2020) explored the relationship between street vitality and urban data in tourist 
cities, combining POI data with Baidu heat maps and OpenStreetMap (OSM) road network data. Their study 
offered insights into how different types of urban spaces, such as tourist districts, are shaped by the dynamics of 
human activity and transportation networks29. Such studies show how big data can not only support basic spatial 
assessments but also provide dynamic metrics for understanding the vitality and usage patterns of streets in real 
time. Additionally, Zhao et al. (2021) extended this analysis by incorporating weather and traffic data, showing 
that street vitality in tourist districts is highly sensitive to external factors such as weather conditions and public 
transport availability30.

As the availability of data sources has grown, quantitative measurement techniques for street quality have 
become increasingly diverse. Geographic Information Systems (GIS) remain one of the most widely adopted 
methods, offering powerful tools for spatial analysis and integration of various datasets, such as road networks, 
POI, and demographic data. GIS-based evaluations are commonly employed to assess street accessibility, 
walkability, and the distribution of urban amenities. Research by Xiao et al. (2021) demonstrated how GIS-based 
models, integrating POI and traffic data, can be used to assess the accessibility and pedestrian comfort of city 
streets31. These approaches, coupled with demographic data, have allowed for a deeper understanding of how 
street designs impact the accessibility and inclusivity of urban spaces. Similarly, Wang et al. (2022) applied GIS 
to assess the impact of green spaces on urban street quality, finding that areas with higher green coverage tend 
to exhibit better pedestrian experiences and overall street satisfaction32.

Furthermore, the integration of 3D modeling and virtual reality (VR) technologies into street quality research 
has provided new possibilities for spatial analysis. In recent years, 3D modeling techniques have gained popularity 
for their ability to represent urban streets in high detail. 3D models, particularly those generated using virtual 
reality (VR) and augmented reality (AR) technologies, allow for immersive and interactive experiences that aid 
in evaluating street environments. Studies like those by Zhao et al. (2022) have explored how 3D simulations 
can be used to assess not only the visual appeal of streets but also their functionality in terms of pedestrian 
movement, traffic flow, and environmental conditions33. This method offers a more comprehensive approach to 
street evaluation, incorporating both physical and experiential aspects of street quality. Furthermore, Liu and 
Wang (2023) developed a 3D GIS model that enables real-time evaluation of urban streets, incorporating traffic 
data, pedestrian flow, and environmental attributes to create a holistic street quality assessment framework34.

While these advancements have enhanced the capabilities of street quality research, there remain challenges 
related to the vast amounts of data involved and the complexity of processing such data. Large-scale refinement 
of urban street evaluations, using diverse data types such as POI, heat maps, GIS layers, and 3D models, presents 
significant difficulties in data integration and analysis. The variability of data formats, inconsistencies in data 
quality, and the need for advanced computational tools to process and synthesize these complex datasets continue 
to pose obstacles. Nonetheless, the combination of big data and advanced spatial analysis techniques holds 
great potential for revolutionizing the study of urban street environments. Recent studies have also emphasized 
the importance of machine learning (ML) techniques to overcome these challenges. For example, Wang et al. 
(2023) employed deep learning algorithms to automatically classify and analyze street images and POI data, 
significantly improving the efficiency and accuracy of street quality assessments35. Such approaches represent 
the next frontier in urban research, where automation and advanced analytics play a key role in handling the 
complexity of big data in urban planning.

Street quality research based on big data and artificial intelligence
In recent years, the rapid development of big data technologies and artificial intelligence (AI) has significantly 
transformed the field of urban street quality research. Traditionally, street quality assessment relied on manual 
evaluations and qualitative metrics. However, with the advent of big data and machine learning (ML), the 
scope of analysis has expanded dramatically, allowing for more efficient, scalable, and objective evaluations of 
urban streets. Among the most promising techniques are deep learning algorithms, particularly convolutional 
neural networks (CNNs), which have demonstrated substantial success in image analysis and spatial pattern 
recognition.

Machine learning, a concept introduced by Samuel in 1959, has paved the way for intelligent systems that 
learn from data and improve over time36. Deep learning, a subfield of ML, has taken this further by enabling 
computers to process and interpret vast amounts of visual and behavioral data. Algorithms such as Fully 
Convolutional Networks (FCNs), ResNet and SegNet now allow for sophisticated analysis of images and spatial 
data. These models can extract visual features from street-level imagery, such as roads, buildings, sidewalks, trees, 
and green spaces, enabling researchers to assess street quality in a manner that was previously impossible37,38.

The application of deep learning to urban research is particularly evident in the analysis of streetscape 
imagery. Through deep learning techniques, researchers are now able to automatically identify and classify 
various urban elements, which can then be used to quantify street quality and inform urban design decisions. 
A notable project, the “Place Pulse” initiative, launched by MIT’s Media Lab, collected public evaluations of 
cityscapes through online surveys and paired photos. This project provided a large dataset (over 1.17 million 
image pairs) that has become a valuable resource for understanding public perceptions of urban environments39. 
By analyzing this data, researchers can examine how different visual elements of streetscapes (e.g., the presence 
of greenery, building heights, and overall design) contribute to perceptions of aesthetic appeal and urban quality.

Zhang (2020) utilized deep learning methods and the Place Pulse dataset to evaluate urban street quality 
in Beijing and Shanghai. By correlating visual elements with public perception scores, the study identified key 
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features that influence perceptions of street environments. The results highlighted the significant role of visual 
factors such as trees, greenery, and the built environment in shaping perceptions of street quality and urban 
livability. Additionally, the study considered multiple dimensions, including beautiful, wealthy, safety, lively, 
depressing, and boring, which all play a crucial role in shaping the overall perception of street environments40. 
Other studies, such as those by Liu et al. (2021) and Li and Guo (2021), have followed similar approaches, 
expanding the use of deep learning to other urban quality indicators like safety, walkability, and environmental 
comfort41,42.

In addition to visual perception analysis, AI and big data are increasingly being used to predict various factors 
that influence street quality. In 2021, Wang et al. applied deep learning models to predict street walkability 
in Beijing, incorporating factors such as street view images, traffic patterns, and environmental data43. Their 
work demonstrated the ability of AI to assess how street design and environmental factors impact pedestrian 
comfort and overall street vitality. This predictive capability allows urban planners to identify areas in need of 
improvement and to make data-driven decisions regarding urban infrastructure.

The integration of big data and artificial intelligence in street quality research is highly relevant to current 
trends in urban studies, urban planning, and smart city development. As cities continue to grow and face 
increasingly complex challenges related to sustainability, mobility, and livability, AI and big data offer critical 
tools for understanding and improving urban spaces. The ability to quantify street quality, predict environmental 
changes, and optimize urban design based on data-driven insights is central to the development of more resilient 
and adaptable cities. Moreover, the insights derived from AI-driven analysis can inform policy-making and 
urban planning strategies, promoting the creation of more sustainable, inclusive, and livable urban environments.

As the field progresses, there is an increasing emphasis on using AI and big data to create “smart cities” where 
real-time data is collected and analyzed to optimize urban living. This research trend aligns with the global 
push towards data-driven decision-making in urban development, marking a paradigm shift in how cities are 
planned, designed, and experienced.

Materials and methods
Study area
This research focuses on Jinan (Fig. 1), the capital of Shandong Province, covering 7,200 square kilometers with a 
population of approximately 9 million. As a key political, economic, cultural, and transportation center, Jinan has 
seen significant urban development in recent years, the municipal government has implemented various policies 
and programs aimed at improving street infrastructure, environmental functions, and the urban landscape. 
Notably, these initiatives include road network upgrades, the expansion of green spaces, the introduction of 
smart city technologies for traffic management, and efforts to enhance pedestrian-friendly environments. These 
policies have significantly contributed to the improvement of street quality and the overall urban landscape.

Jinan was selected for this study due to its recent urban improvements and availability of high-quality street 
image data, which enhances the accuracy of street quality assessments. While other Chinese cities also have 
ample street image data, Jinan stands out due to its comprehensive urban development initiatives, making it a 
representative case for studying street quality in rapidly urbanizing cities.

Fig. 1.  Study area.
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Research framework
The study proposes a large-scale quantitative assessment method for street spatial visual perception (Fig. 2) to 
explore the intrinsic connection between different street components and human perception and to further 
supplement the results of spatial perception of streets with spatial syntax. The research framework consists of 
three main processes: (1) Using the free and open API interface of Baidu Maps to obtain street view images, and 
constructing the street view image dataset in the study area. (2) The elemental composition of urban streets is 
extracted using the SegNet semantic segmentation model, and the human-computer confrontation model is 
used to quantitatively analyze the spatial visual perception of streets, and the spatial syntax is used to process the 
urban street network, and the accessibility of each street is measured on the basis of the 500 m accessibility radius 
(the average walking distance of residents). (3) The results of street accessibility analysis and visual perception 
scores are superimposed and analyzed to establish an evaluation matrix based on the dimensions of “quality 
evaluation” and “accessibility” to find out “streets with potential for renewal” in the study area. The results are 
used to identify “streets with renewal potential” in the study area, and to provide refined technical support for 
urban micro-renewal.

Constructing street view image dataset
In recent years, street view data has been widely used in urban planning studies44, and street view images 
present information about urban infrastructure from a pedestrian perspective45. Street view platforms provide 
APIs that allow users to batch download street view data and provide street view browsing services. In order to 
comprehensively measure the visual perception evaluation of street space by residents in the study area, the study 
set up street view data collection points at 50 m intervals. Throughout the study area, 57,527 Street View collection 
points were generated within the OSM street network. A total of 30, 511 street view images were collected using 
Python and the Baidu Street View Map API (https://api.map.Baidu.com/panorama/v2?ak=YOURKEY).

In order to accurately simulate the residents’ perception, the specific parameters for retrieving Baidu street 
view images from the API were set as follows: the vertical angle (pitch) was set to 20° and the field of view width 
(fov) was set to 90°. For each sampling point, a 360° panoramic view of the street was obtained by stitching the 
views in four directions. An example of the downloaded street view image is shown in (Fig. 3).

Deep learning based semantic segmentation of street view images
This study uses an improved semantic segmentation model based on the encoder-decoder structure SegNet, an 
open-source deep convolutional neural network released in 2015 by researchers at the University of Cambridge. 

Fig. 2.  Research framework.
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SegNet model is due to its demonstrated efficiency and accuracy in processing high-resolution images, and its 
structural flexibility allows it to effectively adapt to the complex backgrounds and diverse elements found in 
urban visual analysis. Compared to other potential models such as U-Net and Fully Convolutional Networks 
(FCN), SegNet has significant advantages in maintaining spatial information and detail recovery, which are 
crucial for accurately identifying various visual elements in street scenes46. The encoder part of SegNet consists 
of multiple convolutional and pooling layers, which progressively reduce the size of the feature map and extract 
abstract features. The decoder part, on the other hand, consists of an upsampling layer and a convolutional layer, 
which are used to map the features extracted by the encoder back to the size of the original image and generate 
pixel-level classification results47. The semantic segmentation model used in this study was trained and tested 
on the ADE 20 K dataset, achieving 82.538% pixel accuracy on the training dataset and 68.432% pixel accuracy 
on the test dataset.

The backbone encoder network in the model is ResNet50, which consists of a convolution (conv) module 
and an identity module. The conv module has different input and output dimensions and cannot be placed 
in series, whereas the identity module has the same input and output dimensions as the other modules and 
can be used in series. The structure of the network model is shown in Table 1. The neural network is divided 
into four parts: input, encoding, decoding, and output. The input layer reshapes any pixel image to a size of 
416 × 416, with the input image elements having three dimensions: R, G, and B. Conv2D is used to construct a 
convolutional layer to extract features from the input high-dimensional array. The batch normalization method 
proposed by Ioffe and Szegedy in 2015 is used to improve the training speed and generalization ability of the 
network48. MaxPooling2D is used to reduce the image dimensions and neuron parameters without sacrificing 
image features. UpSampling2D is used to restore the original image size. The encoder resizes the image to a size 
of 43,264 (208 × 208). Softmax calculates the probability of a particular semantic classification for each pixel 
across 150 categories.

The ADE 20 K dataset (Fig. 4) was used as the training dataset because the images contain 150 objects from 
everyday life, such as the sky, roads, cars, and plants. Each image is labeled with pixel-level scene segmentation 
labels to indicate different objects and regions in the image. Using this dataset to train the model significantly 
improves the experimental accuracy.

Perceptual scoring of street view images using a Human- machine adversarial scoring framework
This study refers to the human-machine adversarial scoring framework proposed by Yao to predict visual 
perception scores49, which is able to more comprehensively assess the quality of different dimensions of visual 
perception in cities by combining the results of subjective human scoring and automatic machine scoring. Two-
thirds of the sample data in the scoring model were randomly selected for model fitting, while the remaining 
one-third was used as test data to assess the accuracy of the overall model.

The Place Pulse project at the MIT Media Lab rated street images in six emotional perceptions: beautiful, 
wealthy, safe, lively, depressing, and boring50,51, which are six dimensions that provide a comprehensive picture 

Fig. 3.  Example of the BSVIs collection process.
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of the quality of visual perception of streets from the residents’ perspective. Additionally, based on these six 
urban street perception dimensions, an increasing number of scholars have conducted extensive studies related 
to human perception of cities52,53. A high or low score for each dimension represents the degree of perceptual 
recognition by residents, with higher scores indicating stronger perceptions of the dimension. We further 
categorized these six dimensions into positive and negative spatial perceptions to assess the quality of urban 
streets from the residents’ perspective. Therefore, the six perception types mentioned above were utilized to 
explore the quality of visual perception of urban streets with a people-oriented approach. In order to more 
accurately determine the perception of street quality in the study area, 128 volunteers were recruited to conduct 
the urban perception assessment.

The schematic diagram of using the human-computer adversarial model to assess the quality of urban streets 
is shown in (Fig. 5). The volunteers first used the human-machine adversarial model to rate the six dimensions 
of beauty, boredom, depression, liveliness, affluence, and safety on a scale ranging from 0 to 6, with higher scores 
representing greater congruence with the rated dimensions. This scale was chosen because it provides a balance 
between perceptual differentiation and ease of understanding for the volunteers. Although some studies such 
as Wang et al.(2022) used a scale from 1 to 100, the choice of a 0–6 range was deemed more appropriate for this 
context which focus on the primary emotional perceptions rather than highly granular distinctions, it facilitates 
broader categorization while minimizing cognitive load for participants54.

During the implementation of the human-machine adversarial scoring framework and volunteer assessments, 
several potential biases could arise. Firstly, volunteer subjectivity and inconsistent scoring standards may lead 
to variability in the scoring results, reducing the reliability of the assessments. Volunteers might have different 
interpretations of the rating scales or personal preferences that influence their evaluations. Secondly, the Random 
Forest model, while robust, may encounter challenges such as overfitting, especially if the training data lacks 

Fig. 4.  ADE20K dataset (ADE20K dataset (mit.edu)).

 

Framework Layer type Output shape Neuronal parameters

Input Input layer (None, 416, 416, 3) 0

Encoder

Conv2D (None, 208, 208, 64) 9472

Batch normalization (None, 208, 208, 64) 256

Activation (None, 208, 208, 64) 0

MaxPooling2D (None, 103, 103, 64) 0

……

ZeroPadding2D (None, 28, 28, 1024) 0

Decoder

Conv2D (None, 26, 26, 512) 4,719,104

Batch normalization (None, 26, 26, 512) 2048

UpSampling2D (None, 52, 52, 512) 0

ZeroPadding2D (None, 54, 54, 512) 0

……

Batch normalization (None, 208, 208, 64) 256

Output Softmax (None, 43,264, 150) 0

Total parameters: 14,947,414

Table 1.  Structure of the neural network architecture.
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sufficient diversity, which can impair its ability to generalize to new, unseen data. Additionally, the model might 
misclassify complex or ambiguous street view images, affecting the overall accuracy of the visual quality scores.

To address potential biases, we implemented the following strategies: Comprehensive Training and 
Standardization—Volunteers underwent extensive training sessions where clear guidelines and standardized 
scoring criteria were provided. This aimed to harmonize the understanding and application of the rating scales, 
thereby minimizing individual subjective differences. We utilized cross-validation to evaluate the model’s 
performance across different subsets of data, ensuring that the Random Forest model maintained high accuracy 
and stability. Additionally, feature importance analysis was conducted to identify and prioritize the most 
influential visual elements, enhancing the model’s interpretability and robustness.

Each volunteer was asked to subjectively rate the first 1,000 street view images for each dimension, after 
which the model constructed a random forest dataset. Random Forest, as an ensemble learning method, 
effectively handles high-dimensional data and captures complex nonlinear relationships between variables by 
constructing multiple decision trees and combining their prediction results. In this study, Random Forest was 
utilized to analyze the relationship between volunteer scores and the extracted visual elements in the street 
view images, thereby predicting visual quality scores for unscored images. Specifically, the model first used the 
volunteer-scored data as the training set to learn the influence of different visual elements (such as sky, buildings, 
plants, etc.) on the scores for each perception dimension. Then, the trained Random Forest model was applied to 
predict the scores for the test set, and its performance and stability were evaluated through cross-validation and 
feature importance analysis. This process not only enhanced the accuracy of score predictions but also improved 
the model’s generalizability across different urban environments, enabling reliable visual quality assessments 
in a broader range of application scenarios. The selection of 1,000 images was based on considerations of time 
constraints, volunteer fatigue, and ensuring sufficient variability in the visual elements. Starting with 1,001 street 
view images, the model recommended scores for the specified dimensions based on the relationship between the 
volunteer’s previous scores and the visual elements in the street view images.

Street accessibility analysis and combined street quality portfolio analysis
Spatial syntax allows complex street designs to be represented as a mathematical graph containing various nodes 
in order to study the characteristics of their spatial structure55, and is also commonly used in the analysis of 
urban spaces with axial and segmental models56. Although axial models have been used in previous studies, 
they have limitations in performing studies with large-scale urban applications57. In particular, these models 
do not consider the scale of urban space58, modeling data cannot be obtained directly from existing urban data, 
and the modeling time cost is large, making it difficult to cope with large spatial scales of research. In addition, 
this study aims to study the accessibility of urban residents during their daily trips, so it is necessary to consider 
the daily walking distance of urban residents as the accessibility radius, which is not supported by the axial 
model. Therefore, this study uses a segmentation model based on the axial model to measure the accessibility 
of urban streets. The segmentation model provides three modes to comprehensively analyze the topological 
geometry, angles and distances of the street network. The difference between these analysis modes is the different 
mathematical definitions of the shortest path. In the angular mode of the line segment model, the shortest path 
is the path with the smallest combined turning angle between two line segments, which is one of the most 
commonly used analytical modes in the line segment model. In his study, Hillier concluded that there is a high 
correlation between the deflection angle of a roadway network and pedestrian trips, and the angular mode is 
more in line with people’s perceptions under natural trips than the other models59. Residents do not have a God-
like perspective of urban space and therefore do not deliberately choose routes that are closer together. Instead, 

Fig. 5.  Overview of the spatial perception scoring process for urban streets based on a machine learning.
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streets with small turning angles are perceived as long and straight, tend to have a stronger sense of direction, 
may be visually closer, wider in scale, and are habitually more likely to be selected60. In contrast, Ye explored the 
accessibility of urban streets in Singapore using the angular pattern of segmental modeling in order to determine 
the distribution of greenscapes in space from a human-centered perspective61.

Based on the advantages of this model, this study utilizes it to assess the accessibility of urban streets. OSM 
line data was used as the raw data for spatial syntax, and GIS tools were employed to apply buffering to the roads. 
The centerline was then extracted from the buffer to construct a new road network. Finally, street merging, street 
simplification, and topology processing were performed on the road network to ensure accurate accessibility 
calculation. According to the accessibility formula (Eq.  1) proposed by Hillier & Hanson we calculated the 
accessibility value for each space62.

Equation (1) is as follows:

	
Ci =

∑ n−1

p

∑ n

q

dpd (i)
dpd

� (1)

Ci is the reachability value of space i, dpd refers to the shortest path from space p to space q. dpd (i) denotes the 
shortest path between spaces p and q containing space i(p < q, p = 1, 2, 3…, n − 1, q = 2,3, 4…, n).

The study uses depthmapX to visualize street accessibility and applies it to the calculation of various urban 
street scales. Using the daily walking distance of residents as the reachability radius, a review of related studies 
found that the average daily walking distance of residents in first- and second-tier cities in China is about 500 m63. 
Therefore, we set 500 m as the reachability radius and calculated the reachability of each street accordingly.

The street quality score was obtained by adding the scores of positive street perception and subtracting 
the negative perception score, and the street space was comprehensively evaluated by combining with the 
street accessibility analysis, and finally the street renewal measures were proposed by analyzing the quality 
characteristics of the streets under different levels of evaluation.

Analysis of results
Analysis of street view image components
The study utilizes a deep learning model for semantic segmentation of street view images to identify and 
categorize various street visual elements at each street data point. For each element type, the proportion within 
a street image is calculated as the mean value across all sampled images. The top eight elements by proportion 
are defined as follows:

•	 Sky: The area of the image depicting the sky, including both clear and cloudy conditions. This encompasses all 
visible portions above the horizon line, excluding any obstructions such as buildings or trees.

•	 Building: All structures adjacent to the street, including residential, commercial, and industrial buildings. This 
category includes facades, rooftops, and any architectural elements that are part of the built environment.

•	 Plant: Vegetation elements such as trees, shrubs, and landscaped greenery along the streetscape. This includes 
street trees, planter boxes, green walls, and any other plant-based features that contribute to the urban green-
ery.

•	 Motorized road: Roadways designated for motor vehicle traffic, excluding pedestrian areas. This includes lanes 
for cars, buses, trucks, and other motorized vehicles, as well as associated infrastructure like traffic signals and 
signage.

•	 Vehicle: Motor vehicles present on the streets, including cars, buses, trucks, bicycles, and motorcycles. This 
category captures both stationary and moving vehicles within the street view images.

•	 Wall: Walls used to control traffic flow or protect pedestrian safety, such as isolation walls at the edges of side-
walks, protective barriers in the center of roads.

•	 Sidewalk: Pedestrian pathways adjacent to the streets, designated for foot traffic. This includes sidewalks, 
crosswalks, pedestrian islands, and any other infrastructure intended for pedestrian use.

•	 Person: Individuals walking along the streets, captured in the images. This includes single persons, groups, 
and any visible human activity within the street view.

The spatial distribution of these elements is illustrated in Fig.  6, demonstrating their prevalence and 
arrangement across different urban street areas. By clearly defining each visual element, this study ensures that 
the categorization process is transparent and reproducible, facilitating consistent analysis and comparison across 
different datasets and study areas.

Analysis of visual perception of streets based on BSVI
The human-computer adversarial model’s predicted scores for the six emotional dimensions of perception were 
visualized in Arcgis using kriging linear interpolation (Fig. 7). The urban streets in Jinan received high scores 
on beauty and liveliness owing to the well-designed greening efforts and orderly street layout. The wealthy 
perception score reflects the fact that the economic development of Jinan urban area is centered on Lixia and 
Shizhong districts, radiating to the surrounding high-tech district, Tianqiao district and other urban areas, 
forming an interactive relationship between the geometric central area and the peripheral areas. Second. The 
spatial distribution of street safety scores is somewhat similar to affluence scores, i.e., the level of economic 
development has a direct impact on law and order and residents’ sense of security, and the more economically 
developed, the better the law and order is in relative terms. Most of the places with high depressing perception 
scores are located in old urban areas, where relatively narrow streets as well as dense building complexes cause 
residents’ depressing perceptions to increase. Areas with high boring perception scores are mainly distributed 
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along the city’s main roads, indicating that they are built in a monolithic way, which may be related to the urban 
function of the area. Instead of creating landscape features, customization and uniformity are pursued during 
the planning and construction of major urban roads.

Multiple regression analysis of visual perception and visual elements
This study explored the impact of various components of urban streets (sky, Motorized Roads, vehicles, plants, 
buildings, walls, sidewalks, and pedestrians) on different visual perception dimensions (beautiful, wealthy, safety, 
lively, depressing, and boring) through multiple linear regression analysis. The regression analysis results are 
shown in Table 2, where the asterisk next to the coefficient indicates its statistical significance level (***P < 0.001: 
indicates significant results at a 99.9% confidence level, with extremely high statistical significance, **P < 0.01: 
indicates that the result is significant at a 99% confidence level and highly significant, *P < 0.05: Indicates that the 
result is significant at a 95% confidence level).

This study utilizes regression analysis to uncover the impact mechanisms of various components of urban 
streets on different dimensions of visual perception, providing data-driven insights for urban planning and 
street design. By optimizing greenery, adjusting wall designs, improving roads and sidewalks, and promoting 
pedestrian activities, the visual quality of streets and residents’ life satisfaction can be effectively enhanced, 
thereby fostering more human-centered and sustainable urban development.

Fig. 7.  Analysis of the six dimensions of emotional perception in the study area.

 

Fig. 6.  Spatial distribution of streetscape constituent elements.
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•	 Optimize greenery design: Research results indicate that plant coverage has a significant positive impact on 
perceptions of beauty, liveliness, and safety. Therefore, urban planners should prioritize increasing street 
greenery, such as planting trees and installing green walls, to enhance the overall visual quality of streets and 
residents’ satisfaction.

•	 Adjust wall design: Walls have a significant negative impact on multiple dimensions of visual perception, in-
cluding beauty, liveliness, safety, wealth, and boredom, indicating that wall designs may need optimization. It 
is recommended to use more aesthetically pleasing and functional wall materials or reduce the use of walls to 
minimize their negative impact on visual quality.

•	 Improve motorized roads and sidewalks: Good motorized road and sidewalk design positively influences mul-
tiple perception dimensions, including beauty, liveliness, safety, and wealth. Urban planning should focus 
on maintaining motorized roads and expanding sidewalk designs to enhance street accessibility and visual 
quality.

•	 Promote pedestrian activities: Pedestrian activity has a significant positive impact on perceptions of liveliness 
and safety. By increasing recreational facilities on streets and establishing convenient pedestrian pathways, 
pedestrian activities can be promoted, thereby enhancing the overall liveliness and safety of streets.

Overlay analysis of street accessibility and street quality
The accessibility of urban streets in Jinan city is presented based on the daily walking distance of residents of 
500 m (Fig. 8), the range of 0 to 6 in the map indicates the level of road accessibility, with 0 representing the 
lowest accessibility and 6 representing the highest accessibility. Most of the highly accessible streets are urban 
arterials, which bear the main traffic flow of the city, connecting urban areas with important regions, with high 
vehicle and pedestrian traffic, and are usually designed with multiple lanes. Secondly, compared with the central 
and western regions, the distribution of highly accessible streets in the southeast region is relatively sparse. With 
the advancement of urban development planning, urbanization in the Southeast region has accelerated, and 
street accessibility has been improved by increasing the number of lanes, constructing pedestrian paths, and 
strengthening transportation infrastructure. Overall, major transportation arteries basically cover the urban 
area, with a well-developed transportation network and high connectivity within and outside the region, which 
promotes economic development and facilitates the flow of people and goods.

Combining the measurement of street quality and the overlay analysis of street network accessibility, the aim 
is to evaluate the current spatial status of streets using the “accessibility-quality” evaluation dimension, and to 
discuss which streets have high quality and accessibility and good spatial quality of places, and which streets have 
high pedestrian accessibility but unsatisfactory quality, indicating that although they have good potential for 
pedestrian activities, they still need to be improved in terms of perceived quality. The evaluation of streets with 
high accessibility and good spatial quality of place, and those with high walkability but poor quality, indicates 
that although they have good potential for walking activities, they still need to be improved in terms of perceived 
quality, thus identifying potential problems in improving the quality of the streets.

In this overlay analysis, the median value of road accessibility in the study area was used to categorize 
accessibility into “high accessibility” and “low accessibility”, and the median value of street quality measures was 
used to categorize spatial quality into “high quality” and “low quality”. The median value of the street quality 
measurement results is used to categorize the spatial quality into “high quality” and “low quality”, and the two 
dimensions can be integrated to divide the streets into four major categories: high quality/high accessibility; 
high quality/low accessibility; low quality/high accessibility; low quality/low accessibility; and their distribution 
is shown in Fig. 9.

High quality/accessibility: These streets score well in both environmental quality and pedestrian accessibility, 
offering strong spatial potential. They are relatively few and primarily located in urban centers. High quality/
low accessibility: found mainly at district junctions, these streets feature high greening rates and well-developed 
infrastructure, contributing to strong quality scores. However, their sparse surrounding road networks result 
in low pedestrian accessibility. Low quality/high accessibility: these streets, often situated southwest of the city 
center, benefit from good pedestrian accessibility but lack essential street furniture and greenery, leading to 
lower quality scores. Low quality/low accessibility: these streets require particular attention in urban planning. 
Predominantly located on the city’s periphery, they are characterized by aging buildings, low structures, and 
fragmented street networks, which hinder accessibility. To enhance these areas, urban planning efforts should 
prioritize functional improvements, building façade renovations, and increased greenery. Strengthening street 
quality and vitality while gradually expanding the pedestrian network will be key to their transformation.

Sky Motorized road vehicles Plant Buildings Walls Sidewalks Person

Beautiful 0.010 0.025** − 0.007** 0.282*** − 0.075** − 0.259*** − 0.086*** 0.055***

Lively − 0.298*** − 0.022*** 0.039** 0.120*** − 0.393*** − 0.164*** − 0.060*** 0.154***

Safety − 0.052*** 0.071*** 0.0012** 0.350*** − 0.020* − 0.179*** 0.106** 0.23**

Wealthy − 0.110*** 0.075*** 0.013*** 0.104*** 0.112** − 0.138*** 0.041*** 0.033**

Depressing − 0.139*** − 0.159*** 0.012** − 0.099*** 0.250** 0.169*** 0.012*** − 0.023***

Boring 0.288*** − 0.028** − 0.026* − 0.068*** 0.236*** 0.236*** 0.043*** − 0.044

Table 2.  Results of the multivariate linear regression analysis for the visual elements and perception scores. 
Beta coefficient *p < 0.05, **p < 0.01 ,***p < 0.001
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Conclusion
This study constructs a method for evaluating the visual perception of urban streets using spatial syntax theory 
and artificial intelligence technology, with a human-centered approach. The evaluation of street quality and 
micro-renewal potential is carried out through accessibility analysis and overlay analysis of urban streets. 
Additionally, the study employs a visual perception score combined with multiple regression analysis to reveal 
the influence mechanisms of street components on visual perception. The methodology applied in this study 
provides an effective way to measure the spatial quality of urban streets, offering data-driven suggestions for 
improving street quality. The analysis of spatial perception and visual elements can be applied to various stages 
of urban street development and management, contributing valuable insights for future urban planning.

As an emerging technology in urban analysis, this approach has significant advantages in large-scale, human-
centered planning and design. First, in terms of data acquisition, using streetscape images to study the spatial 
quality and vitality of urban spaces is more time- and cost-efficient than traditional methods such as manual 
surveying or photography. Second, in terms of research methodology, using large-scale streetscape data for 
quantitative analysis offers more reliable results than traditional qualitative research or small-scale audits. Third, 
from a research perspective, combining objective streetscape data with residents’ subjective perceptions allows 
for efficient and scientifically informed urban analysis, addressing urban issues in a problem-oriented manner. 
This approach contributes to a more rational and data-driven process in urban planning and design.

Furthermore, the findings of this study have practical applications for policymakers and urban planners. 
For instance, the identification of streets with high accessibility but low visual quality can inform targeted 
interventions to enhance these areas. By implementing targeted greening measures, such as increasing street 
tree density or adding green walls, policymakers can improve pedestrian safety and overall street aesthetics. 
Additionally, the insights gained from the multiple regression analysis can help in designing micro-renewal 
projects that address specific visual and functional deficiencies, thereby fostering more vibrant and sustainable 
urban environments.

Despite the advantages of this approach, the study does have some limitations. Due to constraints in data 
sources, the street view data was collected and photographed from the viewpoint of the roadway, which may 
introduce discrepancies when compared with the actual pedestrian perspective, as much of the public space 
used by people for daily activities is primarily located along walking paths. Additionally, limitations in the 
machine learning algorithms and the resolution of the street view data meant that certain key elements, which 
could impact spatial quality, were not included in this analysis. This resulted in some potential inaccuracies 

Fig. 8.  Accessibility of the streets within a walking distance of 500 m for urban residents in the study area.
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and limitations in the quality evaluation, we will incorporate advanced analysis algorithms to address these 
shortcomings in the future research. Furthermore, the data from different times could be used to analysis the 
trends in the spatial quality of urban streets over time. By analyzing urban street planning and development 
from both spatial and temporal dimensions, we aim to predict future trends and improve the accuracy of urban 
planning decisions. Future studies could also explore the integration of real-time data sources and temporal 
street view images to capture dynamic changes in urban environments, thereby providing a more comprehensive 
understanding of how visual perception evolves over time.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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