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lncRNAs are densely related to many human diseases. Identifying new lncRNA-disease associations 
(LDAs) conduces to better deciphering mechanisms of diseases, finding new biomarkers, and further 
promoting their diagnosis and treatment. In this manuscript, we devise an LDA prediction framework 
called LDA-GARB. LDA-GARB first combines nonnegative matrix factorization to extract linear 
features of lncRNAs and diseases. Next, it computes lncRNA similarity and disease similarity and 
adopts a graph autoencoder to extract nonlinear features of lncRNAs and diseases. Subsequently, 
the extracted features are concatenated as a vector. Finally, it takes the obtained vector as inputs 
and designs a noise-robust gradient boosting model to uncover potential associations from unknown 
lncRNA-disease pairs. To investigate the LDA-GARB performance, we used precision, recall, accuracy, 
F1-score, AUC, and AUPR as measurement metrics and performed multiple comparison experiments. 
First, it was benchmarked with four representative LDA prediction methods, i.e., SDLDA, LDNFSGB, 
LDAenDL, and LDA-VGHB, under 5-fold cross validations on lncRNAs, diseases, and lncRNA-disease 
pairs. Next, it was compared with four representative boosting models, i.e., XGBoost, AdaBoost, 
CatBoost, and LightGBM, under the above three different cross validations. Subsequently, the 
performance of LDA-GARB against LDA-LNSUBRW, GAMCLDA, LDA-VGHB, LDAGM, and GANLDA 
on imbalanced data was evaluated. We also performed parameter sensitivity analysis and ablation 
experiments. The results demonstrated that LDA-GARB improved LDA prediction. Finally, LDA-GARB 
was applied to predict potential associated lncRNAs for colorectal cancer and breast cancer. CCDC26 
and HAR1A have been inferred to have an association with the two cancers, respectively. As a useful 
LDA identification tool, LDA-GARB is freely available at https://github.com/smiling199/LDA-GARB.

Long non-coding RNAs (lncRNAs) are nucleotide sequences with length greater than 2001,2. lncRNAs are 
involved in many key physiological processes, for example, tissue development, tumorigenesis, and immune 
regulation. Furthermore, various human diseases have close associations with the dysregulation and mutation 
of lncRNAs3.

Particularly, lncRNAs demonstrate differential roles in the progress and development of cancers4. lncRNAs 
have been taken as potential therapeutic molecular targets and offered new opportunities for cancer targeted 
therapy5. Many lncRNAs have been validated to be able to modulate chemotherapy resistance in cancers6,7. 
Consequently, the discovery of potential relationships between diseases and lncRNAs facilitates understanding 
molecular mechanisms of human complex diseases from the aspect of lncRNAs, detecting disease biomarkers, 
assisting in their diagnosis and treatment, and further promoting the development of personalized medicine8.

However, potential lncRNA-disease association (LDA) identification is a huge challenge for biologists 
due to high cost and labor, and low success rate of in vivo experiments although biological experiments have 
yielded some LDAs9. Thus, computational techniques have been increasingly applied in association prediction 
tasks including LDA prediction3,10,11. Chen et al.12 constructed an LDA database and provided experimentally 
validated LDAs for 166 diseases. Depending on the database, Chen et al.13 inferred potential LDAs by combining 
lncRNA expressions. Following this work, many computational tools, mainly including network-based methods 
and machine learning-based methods, have been devised to uncover new LDAs14.
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Network-based methods first compute lncRNA similarity and disease similarity matrices according to their 
biological information, and then evaluate association score between each lncRNA-disease pair through network 
algorithms. These methods include Laplacian regularized least squares13, KATZ measure15, heterogeneous 
network model16, network consistency projection17, local random walk18, Laplacian normalized random walk 
with restart19 and bidirectional linear neighborhood label propagation20.

Machine learning has been broadly utilized in various linkage prediction fields including LDA 
identification21–23. They first learn features of lncRNAs and diseases and then classify unknown lncRNA-disease 
pairs. Traditional machine learning-based LDA prediction methods include rotation forest24, random forest25, 
multi-label learning26, matrix factorization27, inductive matrix completion28, weighted matrix factorization29, 
matrix decomposition30, collaborative filtering31, bipartite local model32, and heterogeneous Newton boosting 
machine2. Recently, deep learning algorithms have been gradually adopted to discover new LDAs due to the 
powerful representation learning ability, for example, collaborative deep learning33, deep belief network34, 
generative adversarial network35, graph contrastive learning36, deep neural network37–39, heterogeneous graph 
learning40, capsule network41, dual-net neural network42, graph convolutional autoencoder43, graph attention 
network44, and residual graph convolutional network with attention mechanism8.

Machine learning has promoted LDA prediction. However, LDA datasets are imbalanced and contain noises. 
Machine learning-based LDA prediction algorithms, especially traditional boosting models, remain limitations 
in label noise, imbalanced datasets, and LDA feature extraction. To address the above problems, in this 
manuscript, we develop a computational model called LDA-GARB to interpret potential LDAs by combining 
Nonnegative Matrix Factorization (NMF), Graph Autoencoder (GAE), and noise-Robust gradient Boosting. 
This work mainly has three contributions:

•	 To solve the limitations of label noise and data imbalance in LDA classification task, we present a noise-ro-
bust gradient boosting model to classify unobserved lncRNA-disease pairs by integrating Gradient Boosting 
Decision Trees (GBDT) and robust loss.

•	 To obtain abundant LDA features, we leverage NMF for extracting linear features and GAE for extracting 
nonlinear features.

•	 We predict that CCDC26 and HAR1A could have an association with colorectal cancer (CRC) and breast 
cancer, respectively.

Results
In this manuscript, as shown in Fig. 1, we proposed an LDA prediction method, LDA-GARB, by incorporating 
LDA feature extraction through NMF and GAE45 and LDA classification via the noise-Robust gradient Boosting 
model. Finally, we predicted associated lncRNAs for CRC and breast cancer through LDA-GARB.

Data preparation
Two human LDA datasets, Dataset 1 and Dataset 22,42, were used to evaluate the model and achieve predictions. 
lncRNAs, diseases, and experimentally confirmed LDAs in the two datasets were obtained from the 
lncRNADisease v2.046 and MNDR v2.047 databases, respectively. We removed diseases which have no MESH 
information or regular name, and lncRNAs which are lack of sequence data. After preprocessing, Dataset 1 
includes 92 lncRNAs, 157 diseases, and 605 LDAs. Dataset 2 includes 89 lncRNAs, 190 diseases, and 1,529 
LDAs. The preprocessed datasets are illustrated in Table 1. The association network was represented as a matrix 
Y ∈ ℜn×m where yij  is 1 when there is an association between the i-th lncRNA and the j-th disease, yij  is 0 
otherwise.

Experimental settings
Peng et al.2 designed multiple 5-fold Cross Validation (CV) ways and provided insights into evaluating the 
performance of linkage prediction models. Inspired by CVs proposed by Peng et al.2, we used three distinct 
5-fold CVs to test the model performance. The three CVs include 5-fold CV on lncRNAs (CV1), 5-fold CV on 
diseases (CV2), and 5-fold CV on lncRNA-disease pairs (CV3). In each round, they run experiments as follows:

•	 CV1: 20% of lncRNAs in Y  were randomly hidden for test and the rest for training.
•	 CV2: 20% of diseases in Y  were randomly hidden for test and the rest for training.
•	 CV3: 20% of lncRNA-disease pairs in Y  were randomly hidden for test and the rest for training.

To assess the prediction accuracy of LDA-GARB, we used six machine learning indictors. The six evaluation 
metrics were precision, recall, accuracy, F1-score, Area Under receiver operating characteristic (ROC) Curve 
(AUC), and Area Under Precision-Recall (PR) curve (AUPR), which were provided by Refs.2,48, respectively. All 
experiments were run on the Ubuntu system with 12th Gen Intel(R) Core (TM) i7-12650H, NVIDIA GeForce 
RTX 4060 Laptop GPU, and RAM of 32.0 GB. In addition, the version numbers of related softwares were 
Python version 3.8, Numpy version 1.23.2, Pandas version 2.1.4, scikit-learn version 1.3.0, and XGBoost version 
2.0.0, respectively. The parameters of LDA-GARB and four competing LDA prediction methods (i.e., SDLDA, 
LDNFSGB, LDAenDL, and LDA-VGHB) were shown in Table 2.

Baselines
We compared the performance of LDA-GARB and four state-of-the-art LDA prediction models on two datasets. 
The four comparison methods were SDLDA49, LDNFSGB50, LDAenDL37, and LDA-VGHB2, respectively. For 
one lncRNA-disease pair, SDLDA49 first learned its features by integrating singular value decomposition (SVD) 
and deep learning and then determined that it was associated or not through a full connection layer. LDNFSGB50 
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Fig. 1.  The pipeline for LDA prediction with LDA-GARB. (i) Feature extraction. Linear and nonlinear features 
of lncRNAs and diseases are extracted by NMF and GAE. And each LDA is depicted as a vector through 
concatenating the learned linear and nonlinear features. (ii) LDA classification. The noise-robust gradient 
boosting model is designed to classify unobserved LDAs based on the extracted LDA features..
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first reduced its feature dimension via an autoencoder and classified it through a gradient boosting algorithm. 
LDAenDL37 extracted its biological features by integrating graph convolutional network, convolutional neural 
network, and graph attention network, and then inferred its association through deep neural network and 
LightGBM. LDA-VGHB2 incorporated SVD and variational graph autoencoder for learning its features and 
heterogeneous Newton boosting machine for obtaining its class.

Additionally, similar to work2, LDA-GARB was compared with four representative boosting models under 
CV1, CV2, and CV3. These four boosting models include XGBoost51, AdaBoost52, CatBoost53, and LightGBM54. 
They correspond to Extreme Gradient Boosting, weak learning, categorical boosting algorithm, and boosting 
with one-side sampling along with exclusive feature bundling. The parameters in the four boosting algorithms 
were set to defaults.

To evaluate the ability of LDA-SCGB on imbalanced data, we compared it with five LDA prediction models, 
LDA-LNSUBRW55, GAMCLDA56, LDA-VGHB2, LDAGM43, and GANLDA44, where their parameters were set 
to defaults. LDA-LNSUBRW55 used an unbalanced bi-random walk for negative LDA selection. GAMCLDA56 
employed a cost-sensitive neural network to handle the problem of imbalance issue between positive LDAs and 
negative LDAs. LDA-VGHB is recent superior LDA identification model.

Performance comparison under CV1
To evaluate the LDA-GARB performance when inferring diseases related to a target lncRNA under 
CV1, we randomly selected 80% of lncRNAs for training and the rest for test. Figure 2A and D demonstrate the 
classification accuracy of LDA-GARB, SDLDA, LDNFSGB, LDAenDL, and LDA-VGHB under CV1. Figure 3A 
and B delineated their ROC and PR curves on Dataset 1. Figure 3G and H delineated the ROC and PR curves 
on Dataset 2.

Table 3 shows their precision, recall, accuracy, F1-score, AUC, and AUPR under CV1. From the results in 
Table 3, we found that LDA-GARB outperformed other four methods. It calculated the highest recall, accuracy, 
F1-score, AUC, and AUPR, with AUCs (0.9180 and 0.9716) better 3.99% and 1.80% than LDA-VGHB on Datasets 
1 and 2, respectively, and AUPRs (0.9160 and 0.9723) better 2.30% and 1.09% than LDA-VGHB, respectively. In 
summary, it accurately inferred potential diseases related to a target lncRNA.

Performance comparison under CV2
To assess the LDA-GARB performance when inferring lncRNAs related to a target disease under CV2, we 
randomly selected 80% of diseases for training and the rest for test. Figure 2B and E demonstrate the classification 
accuracy of LDA-GARB, SDLDA, LDNFSGB, LDAenDL, and LDA-VGHB on two datasets under CV2, 
respectively. Figure 3C and D delineated their ROC and PR curves on Dataset 1 under CV2. Figure 3I and J 
delineated the ROC and PR curves on Dataset 2 under CV2.

Table 4 shows the performance of LDA-GARB and the above four baselines under CV2. From the results, 
we observed that LDA-GARB exceeded the four baselines. It calculated the highest recall, accuracy, F1-score, 
and AUC, with AUCs (0.9493 and 0.9817) better 3.99% and 1.80% than LDA-VGHB on Datasets 1 and 2, 
respectively, and AUPR with 0.9757 better 0.30 % than LDA-VGHB on Dataset 2. Although AUPR computed 
by LDA-GARB was slightly smaller than LDA-VGHB (0.9415 vs. 0.9429) on Dataset 1, their difference was very 

Method Parameter settings

SDLDA Pca dim = 64, pca maxiter = 200, learning rate = 0.001, batch size = 800, R layer1 num = 48, epoch num =  200,
L layer1 num = 48, L layer2 num = 32, R layer2 num = 32

LDNFSGB Encoding dim = 128, optimizer = ’adadelta’, loss = ’binary crossentropy’, epochs = 100, batch size = 128,
activation = ’sigmoid’, n estimators = 1200

LDAenDL
LightGBM: num leaves = 31, max depth = – 1, learning rate = 0.1, n  estimators = 100, min split gain = 0,
min child weight = 1e–3, min child samples = 20, subsample = 1
DNN: number of layers = 3, dropout = 0.2, activation  = ‘relu’, epochs = 450, optimizer = Adam(),
learning rate = 0.001

LDA-VGHB Objective = ’logloss’, num round = 1000, use gpu =True, gpu id = 1, learning rate = 0.001, min max depth = 1,
max max depth = 25, subsample = 0.8

LDA-GARB

NMF: s = 64, λ1  = λ2  = 0.01
GAE: epochs = 120, aggregator = ’GraphSAGE’, embedding size = 128, layers = 1, dropout = 0.4, slope = 0.1,
learning rate = 0.001
Noise-Robust Gradient Boosting: max depth = (2, 12), reg alpha = (1e-4, 1.0), reg lambda = (1e-4, 5.0),
learning rate = (1e–3, 1.0), n estimators = (10, 1200, 10), r = [0.0, 0.5, 1.0], q = [0.0, 0.1, 0.3, 0.5]

Table 2.  Parameter settings in SDLDA, LDNFSGB, LDAenDL, LDA-VGHB, and LDA-GARB.

 

Dataset lncRNA Disease Association

Dataset 1 92 157 605

Dataset 2 89 190 1529

Table 1.  Introduction of two LDA datasets.
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small. In summary, it relatively accurately predicted lncRNAs that may associate with a disease without known 
lncRNA data.

Performance comparison under CV3
To measure the performance of LDA-GARB when inferring potential LDAs under CV3, we randomly selected 
80% of lncRNA-disease pairs for training and the rest for test. Figure 2C and F demonstrate the classification 
accuracy of LDA-GARB, SDLDA, LDNFSGB, LDAenDL, and LDA-VGHB on two LDA datasets under CV3, 
respectively. Figure 3E and F delineated their ROC and PR curves on Dataset 1 under CV3. Figure 3K and L 
delineated their ROC and PR curves on Dataset 2 under CV2.

Table 5 shows the values corresponding to the six indictors under CV3. The results demonstrated that LDA-
GARB surpassed other four methods. It calculated the highest recall, accuracy, F1-score, and AUC, with AUCs 
(0.9459 and 0.9790) better 1.99% and 0.69% than LDA-VGHB on Datasets 1 and 2, respectively, and AUPR with 
0.9418 better 0.57% than LDA-VGHB on Dataset 1. Similar to CV2, although LDA-GARB computed slightly 
lower AUPR than LDA-GARB on Dataset 2, the difference was tiny. Thus, LDA-GARB could effectively capture 
new associations from unknown lncRNA-disease pairs.

Performance under different boosting algorithms
LDA-GARB used a noise-robust gradient boosting model for classifying unobserved lncRNA-disease pairs. To 
validate the LDA classification ability of the robust boosting model, we compared LDA-GARB with XGBoost, 
AdaBoost, CatBoost, and LightGBM under three different CVs. The results are shown in Tables 6, 7, 8 and Fig. 
4. On two datasets, LDA-GARB computed the highest performance in most cases under all three CVs, greatly 
outperforming other four boosting models. As a result, the noise-robust gradient boosting model can perform 
effective predictions.

Performance on imbalanced data
In the LDA matrix Y , known associations are very few and negative associations are very difficult to obtain. 
Consequently, most computational LDA prediction models randomly selected negative associations from 
unobserved lncRNA-disease pairs. However, these unlabeled pairs may contain positive samples, thereby 
severely affecting the model predictions. Thus, researchers have explored machine learning algorithms such 
as positive-unlabeled learning to select reliable negative associations, or devised a model with more robustness 

Fig. 2.  Performance of LDA-GARB and other four methods. (A–C) on Dataset 1 under CV1, CV2, and CV3, 
respectively. (D–F) on Dataset 2 under CV1, CV2, and CV3, respectively.
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to solve the data imbalance issue. In this section, we adopted a noise-robust gradient boosting model to run 
predictions on imbalanced LDA datasets.

To investigate the LDA classification accuracy of LDA-SCGB on imbalanced dataset, we compared it with 
five representative association prediction methods, i.e., LDA-LNSUBRW55, GAMCLDA56, LDA-VGHB2, 
LDAGM43, and GANLDA44. LDA-LNSUBRW55 adopted unbalanced bi-random walk for potential LDA 
inference. GAMCLDA56 employed graph autoencoder matrix completion to identify new LDAs. LDA-VGHB2 
classified unknown lncRNA-disease pairs through heterogeneous Newton boosting machine. LDAGM43 
learned deep topological features bases on linkages between lncRNA, diseases, and miRNA, and then devised a 
multi-view heterogeneous network to infer LDAs by combining graph convolutional autoencoder. GANLDA44 
presented a graph attention network to compute LDA score matrix. The five methods are representative LDA 
prediction models. Table 9 shows their AUCs and AUPRs on two LDA datasets under CV3. Figure 5 depicts 

Dataset SDLDA LDNFSGB LDAenDL LDA-VGHB LDA-GARB

Precision
Dataset 1 0.8514 ± 0.0509 0.7004±0.0639 0.8764 ± 0.0493 0.8741 ± 0.0484 0.8636 ± 0.0450

Dataset 2 0.9399 ± 0.0154 0.8552 ± 0.0393 0.9391 ± 0.0290 0.9250 ± 0.0201 0.9344 ± 0.0147

Recall
Dataset 1 0.6521 ± 0.0732 0.6092 ± 0.0790 0.7019 ± 0.0639 0.7180 ± 0.0713 0.7682 ± 0.0452

Dataset 2 0.8239 ± 0.0437 0.8021 ± 0.0498 0.8304 ± 0.0523 0.8602 ± 0.0395 0.8680 ± 0.0429

Accuracy
Dataset 1 0.7799 ± 0.0341 0.6769 ± 0.0423 0.7996 ± 0.0312 0.8123 ± 0.0384 0.8282 ± 0.0338

Dataset 2 0.8857 ± 0.0283 0.8323 ± 0.0230 0.8879 ± 0.0289 0.8947 ± 0.0258 0.9036 ± 0.0281

F1-score
Dataset 1 0.7365 ± 0.0563 0.6462 ± 0.0451 0.7768  ± 0.0399 0.7852 ± 0.0412 0.8117 ± 0.0312

Dataset 2 0.8775 ± 0.0278 0.8260 ± 0.0230 0.8804 ± 0.0334 0.8908 ± 0.0227 0.8995 ± 0.0266

AUC
Dataset 1 0.8023 ± 0.0477 0.7346 ± 0.0465 0.8701 ± 0.0339 0.8814 ± 0.0425 0.9180 ± 0.0219

Dataset 2 0.9366 ± 0.0195 0.8839 ± 0.0270 0.9490 ± 0.0220 0.9541 ± 0.0200 0.9716 ± 0.0134

AUPR
Dataset 1 0.8461 ± 0.0553 0.7239 ± 0.0626 0.8903 ± 0.0273 0.8949 ± 0.0322 0.9160 ± 0.0286

Dataset 2 0.9533 ± 0.0129 0.8832 ± 0.0307 0.9582 ± 0.0167 0.9617 ± 0.0131 0.9723 ± 0.0101

Table 3.  Performance comparison under CV1. The best performance is denoted as bold.

 

Fig. 3.  The ROC and PR curves of LDA-GARB and other four methods. A-B, C-D, and E-F denote their ROC 
and PR curves under CV1, CV2, and CV3 on Dataset 1, respectively. G-H, I-J and K-L denote their ROC and 
PR curves under CV under CV1, CV2, and CV3 on Dataset 2, respectively.
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the corresponding ROC and PR curves. The results elucidated that LDA-GARB obviously surpassed LDA-
LNSUBRW, GAMCLDA, LDA-VGHB, LDAGM, and GANLDA, demonstrating its powerful ability to solve with 
imbalanced datasets.

Sensitivity of parameters
LDA-GARB used GAE to extract nonlinear features of lncRNAs and diseases. Consequently, the embeddings of 
lncRNAs and diseases are particularly important to LDA prediction performance. Thus, we analyzed the impact 

Dataset XGBoost AdaBoost CatBoost LightGBM LDA-GARB

Precision
Dataset 1 0.8285 ± 0.0450 0.8014 ± 0.0467 0.8436 ± 0.0386 0.8359 ± 0.0537 0.8636±0.0450

Dataset 2 0.9094 ± 0.0203 0.8945 ± 0.0250 0.9200 ± 0.0224 0.9007 ± 0.0240 0.9344±0.0147

Recall
Dataset 1 0.7627 ± 0.0615 0.7407 ± 0.0855 0.7772±0.0541 0.7624 ± 0.0668 0.7682 ± 0.0452

Dataset 2 0.8739 ± 0.0305 0.8605 ± 0.0432 0.8761±0.0427 0.8755 ± 0.0346 0.8680 ± 0.0429

Accuracy
Dataset 1 0.8083 ± 0.0325 0.7946 ± 0.0312 0.8191 ± 0.0322 0.8190 ± 0.0268 0.8282±0.0338

Dataset 2 0.8935 ± 0.0241 0.8795 ± 0.0263 0.8997 ± 0.0288 0.8895 ± 0.0293 0.9036±0.0281

F1-score
Dataset 1 0.7925 ± 0.0410 0.7681 ± 0.0626 0.8077 ± 0.0352 0.7964 ± 0.0550 0.8117±0.0312

Dataset 2 0.8910 ± 0.0205 0.8764 ± 0.0248 0.8969 ± 0.0266 0.8876 ± 0.0251 0.8995±0.0266

AUC
Dataset 1 0.8938 ± 0.0263 0.8528 ± 0.0386 0.9099 ± 0.0214 0.8988 ± 0.0277 0.9180±0.0219

Dataset 2 0.9629 ± 0.0125 0.9421 ± 0.0265 0.9660 ± 0.0133 0.9574 ± 0.0212 0.9716±0.0134

AUPR
Dataset 1 0.8799 ± 0.0421 0.8558 ± 0.0591 0.9053 ± 0.0275 0.8939 ± 0.0582 0.9160±0.0286

Dataset 2 0.9660 ± 0.0097 0.9495 ± 0.0189 0.9674 ± 0.0111 0.9628 ± 0.0135 0.9723±0.0101

Table 6.  Performance of different boosting algorithms under CV1. The best performance is denoted as bold.

 

Dataset SDLDA LDNFSGB LDAenDL LDA-VGHB LDA-GARB

Precision
Dataset 1 0.8782 ± 0.0306 0.7782 ± 0.0270 0.8637 ± 0.0312 0.8597 ± 0.0269 0.8743 ± 0.0284

Dataset 2 0.9178 ± 0.0154 0.8548 ± 0.0156 0.9351 ± 0.0157 0.9270 ± 0.0143 0.9348 ± 0.0130

Recall
Dataset 1 0.7256 ± 0.0376 0.8169 ± 0.0408 0.8234 ± 0.0314 0.8388 ± 0.0332 0.8724 ± 0.0305

Dataset 2 0.8824 ± 0.0198 0.8818 ± 0.0204 0.8999 ± 0.0179 0.9088 ± 0.0169 0.9373 ± 0.0137

Accuracy
Dataset 1 0.8120 ± 0.0216 0.7916 ± 0.0256 0.8462 ± 0.0229 0.8504 ± 0.0189 0.8729 ± 0.0204

Dataset 2 0.9015 ± 0.0114 0.8658 ± 0.0127 0.9186 ± 0.0126 0.9185 ± 0.0110 0.9359 ± 0.0085

F1-score
Dataset 1 0.7939 ± 0.0260 0.7965 ± 0.0262 0.8426 ± 0.0232 0.8485 ± 0.0198 0.8728 ± 0.0204

Dataset 2 0.8996 ± 0.0119 0.8679 ± 0.0129 0.9171 ± 0.0130 0.9177 ± 0.0112 0.9359 ± 0.0085

AUC
Dataset 1 0.8774 ± 0.0200 0.8578 ± 0.0234 0.9110 ± 0.0197 0.9271 ± 0.0144 0.9459 ± 0.0109

Dataset 2 0.9560 ± 0.0081 0.9346 ± 0.0074 0.9708 ± 0.0062 0.9722 ± 0.0056 0.9790 ± 0.0051

AUPR
Dataset 1 0.8952 ± 0.0177 0.8489 ± 0.0289 0.9166 ± 0.0203 0.9364 ± 0.0157 0.9418 ± 0.0136

Dataset 2 0.9639 ± 0.0063 0.9273 ± 0.0098 0.9743 ± 0.0058 0.9761 ± 0.0051 0.9744 ± 0.0100

Table 5.  Performance comparison under CV3. The best performance is denoted as bold.

 

Dataset SDLDA LDNFSGB LDAenDL LDA-VGHB LDA-GARB

Precision
Dataset 1 0.8854 ± 0.0377 0.7548 ± 0.0639 0.9135 ± 0.0317 0.8917 ± 0.0316 0.8724 ± 0.0365

Dataset 2 0.9232 ± 0.0331 0.8005 ± 0.0625 0.9528 ± 0.0225 0.9300 ± 0.0251 0.9321 ± 0.0277

Recall
Dataset 1 0.7182 ± 0.0694 0.7309 ± 0.0646 0.6649 ± 0.0814 0.8415 ± 0.0449 0.8699 ± 0.0377

Dataset 2 0.8579 ± 0.0655 0.6936 ± 0.0794 0.4616 ± 0.1702 0.9190 ± 0.0397 0.9409 ± 0.0262

Accuracy
Dataset 1 0.8187 ± 0.0282 0.7552 ± 0.0291 0.8005 ± 0.0381 0.8737 ± 0.0177 0.8744 ± 0.0255

Dataset 2 0.9043 ± 0.0174 0.7670 ± 0.0432 0.7196 ± 0.0821 0.9305 ± 0.0153 0.9409 ± 0.0158

F1-score
Dataset 1 0.7917 ± 0.0519 0.7407 ± 0.0526 0.7664 ± 0.0593 0.8651 ± 0.0304 0.8707 ± 0.0316

Dataset 2 0.8886 ± 0.0475 0.7402 ± 0.0577 0.6032 ± 0.1612 0.9242 ± 0.0298 0.9363 ± 0.0243

AUC
Dataset 1 0.8788 ± 0.0274 0.8329 ± 0.0273 0.8953 ± 0.0284 0.9406 ± 0.0154 0.9493 ± 0.0160

Dataset 2 0.9559 ± 0.0160 0.8603 ± 0.0363 0.9157 ± 0.0420 0.9741 ± 0.0106 0.9817 ± 0.0083

AUPR
Dataset 1 0.8934 ± 0.0387 0.8163 ± 0.0537 0.9061 ± 0.0254 0.9429 ± 0.0233 0.9415 ± 0.0228

Dataset 2 0.9561 ± 0.0354 0.8292 ± 0.0680 0.9122 ± 0.0436 0.9728 ± 0.0204 0.9757 ± 0.0176

Table 4.  Performance comparison under CV2. The best performance is denoted as bold.
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of different embedding dimensions k of lncRNAs and diseases and the number of different encoder layers N on 
the model performance.

Tables 10, 11, 12, 13, 14, 15, 16, 17 and 18 show the performance of LDA-GARB when k was set to 64, 
128, and 256 and N was set to 1, 2, 3, 4, and 5 under CV1, CV2, and CV3, respectively. We comprehensively 
considered the performance of LDA-GARB under different embedding dimensions and different encoder layer 
number, and found that LDA-GARB obtained relatively good performance when k = 64 and N = 1. Therefore, 
we set k = 64 and N = 1.

In addition, the noise-robust gradient boosting model fully utilized robust focal loss and thus had high 
robustness to effectively address the issues of label noise and data imbalance. Moreover, during training, the model 
automatically optimized parameters based on the proportion of noises and used the optimized parameters for 
testing. Therefore, we didn’t additionally analyze the impact of the model parameters on the model performance. 
The related parameters were shown in Table 2.

Ablation study
The proposed LDA-GARB method extracted LDA linear features through NMF and nonlinear features through 
GAE. To measure the effect of different feature selection methods on the LDA prediction performance, we 
conducted ablation experiments. Tables 19, 20, 21 and Fig. 6 give the performance of LDA-GARB with linear 
features, nonlinear features, their combination under CV1, CV2, and CV3, respectively. As shown in Tables 19, 
20, 21 and Fig. 6, under most conditions, LDA-GARB with the two types of features outperformed LDA-GARB 
only with linear features and LDA-GARB only with nonlinear features. Thus, the combination of the two types 
of features assists in improving LDA prediction.

Case study
CRC and breast cancer are two cancers which severely affect human health. Identifying potential lncRNAs 
for them helps their diagnosis and therapy. We have validated the LDA-GARB performance after multiple 
experiments. Subsequently, we adopted LDA-GARB to infer associated lncRNAs for CRC and breast cancer.

Dataset XGBoost AdaBoost CatBoost LightGBM LDA-GARB

Precision
Dataset 1 0.8624 ± 0.0222 0.8085 ± 0.0251 0.8737 ± 0.0285 0.8531 ± 0.0267 0.8743±0.0284

Dataset 2 0.8983 ± 0.0156 0.9041 ± 0.0155 0.9121 ± 0.0173 0.9070 ± 0.0130 0.9348±0.0130

Recall
Dataset 1 0.8450 ± 0.0334 0.8147 ± 0.0338 0.8590 ± 0.0320 0.8245 ± 0.0303 0.8724±0.0305

Dataset 2 0.9052 ± 0.0144 0.8596 ± 0.0193 0.9073 ± 0.0144 0.9115 ± 0.0148 0.9373±0.0137

Accuracy
Dataset 1 0.8547 ± 0.0178 0.8103 ± 0.0197 0.8668 ± 0.0189 0.8408 ± 0.0201 0.8729±0.0204

Dataset 2 0.9012 ± 0.0118 0.8841 ± 0.0129 0.9097 ± 0.0104 0.9089 ± 0.0089 0.9359±0.0085

F1-score
Dataset 1 0.8531 ± 0.0192 0.8110 ± 0.0207 0.8657 ± 0.0192 0.8381 ± 0.0208 0.8728±0.0204

Dataset 2 0.9016 ± 0.0117 0.8811 ± 0.0135 0.9096 ± 0.0102 0.9091 ± 0.0090 0.9359±0.0085

AUC
Dataset 1 0.9260 ± 0.0131 0.8788 ± 0.0168 0.9427 ± 0.0109 0.9163 ± 0.0141 0.9459±0.0109

2 0.9679 ± 0.0050 0.9580 ± 0.0065 0.9723 ± 0.0045 0.9689 ± 0.0053 0.9790±0.0051

AUPR
Dataset 1 0.9240 ± 0.0145 0.8750 ± 0.0194 0.9411 ± 0.0108 0.9135 ± 0.0174 0.9418±0.0136

Dataset 2 0.9690 ± 0.0048 0.9601 ± 0.0065 0.9732 ± 0.0046 0.9696 ± 0.0061 0.9744±0.0100

Table 8.  Performance of different boosting algorithms under CV3. The best performance is denoted as bold.

 

Dataset XGBoost AdaBoost CatBoost LightGBM LDA-GARB

Precision
Dataset 1 0.8609 ± 0.0409 0.8172 ± 0.0457 0.8621 ± 0.0391 0.8565 ± 0.0393 0.8724±0.0365

Dataset 2 0.8966 ± 0.0316 0.8805 ± 0.0367 0.9126 ± 0.0271 0.9052 ± 0.0341 0.9321±0.0277

Recall
Dataset 1 0.8230 ± 0.0422 0.8271 ± 0.0581 0.8342 ± 0.0444 0.8358 ± 0.0503 0.8699±0.0377

Dataset 2 0.9026 ± 0.0345 0.8569 ± 0.0597 0.9126 ± 0.0271 0.9063 ± 0.0354 0.9409±0.0262

Accuracy
Dataset 1 0.8486 ± 0.0239 0.8283 ± 0.0245 0.8533 ± 0.0251 0.8515 ± 0.0252 0.8744±0.0255

Dataset 2 0.9055 ± 0.0161 0.8815 ± 0.0161 0.9177 ± 0.0116 0.9122 ± 0.0143 0.9409±0.0158

F1-score
Dataset 1 0.8406 ± 0.0315 0.8214 ± 0.0468 0.8473 ± 0.0350 0.8449 ± 0.0345 0.8707±0.0316

Dataset 2 0.8994 ± 0.0306 0.8681 ± 0.0461 0.9094 ± 0.0305 0.9056 ± 0.0326 0.9363±0.0243

AUC
Dataset 1 0.9291 ± 0.0168 0.8926 ± 0.0246 0.9424 ± 0.0162 0.9325 ± 0.0171 0.9493±0.0160

Dataset 2 0.9666 ± 0.0098 0.9521 ± 0.0116 0.9731 ± 0.0076 0.9702 ± 0.0093 0.9817±0.0083

AUPR
Dataset 1 0.9258 ± 0.0274 0.8859 ± 0.0477 0.9420±0.0222 0.9242 ± 0.0282 0.9415 ± 0.0228

Dataset 2 0.9603 ± 0.0233 0.9463 ± 0.0296 0.9687 ± 0.0198 0.9649 ± 0.0310 0.9757±0.0176

Table 7.  Performance of different boosting algorithms under CV2. The best performance is denoted as bold.
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Predicting associated lncRNAs for CRC
CRC is one of the most frequent cancers worldwide. Recently, CRC incidences have increased rapidly in patients 
with age less than 50 years57. Thus, we want to predict potential lncRNAs for CRC. As shown in Table 22 and Fig. 
7a, we predicted the top 20 lncRNAs that could associate with CRC on Dataset 1. Among the top 20 lncRNAs, 
13 lncRNAs have been verified to associate with CRC. Particularly, we predicted that lncRNA CCDC26 could 
have an association with CRC. CCDC26 is a novel biomarker58 and can inhibit myeloid leukemia cell59. Its 
silencing suppresses the growth and migration of glioma cells60. Its downregulation helps imatinib resistance in 
gastrointestinal stromal tumors61.

Identifying new lncRNAs for breast cancer
Breast cancer62 is the most frequent women cancer. It has been estimated to be 2.3 million new cases and more 
than 666,000 deaths in 202263. During the past two decades, survival rates of breast cancer have been markedly 
improved, but its incidence have still risen. Thus, its effective therapy is making an essential problem.

As shown in Table 23 and Fig. 7b, we inferred the top 20 lncRNAs which could associate with breast cancer 
on Dataset 2. Among the 20 lncRNAs, 12 lncRNAs have been verified to have association with breast cancer. 

Dataset LDA-LNSUBRW GAMCLDA LDA-VGHB LDAGM GANLDA LDA-GARB

AUC
Dataset 1 0.9456 ± 0.0017 0.9495 ± 0.0042 0.9281 ± 0.0031 0.9084 ± 0.0096 0.8751 ± 0.0047 0.9788±0.0016

Dataset 2 0.8794 ± 0.0039 0.9721 ± 0.0022 0.9757 ± 0.0008 0.9466 ± 0.0093 0.9425 ± 0.0033 0.9892±0.0005

AUPR
Dataset 1 0.8262 ± 0.0031 0.7111 ± 0.0146 0.6242 ± 0.0074 0.5755 ± 0.0661 0.4656 ± 0.0185 0.7743±0.0085

Dataset 2 0.4891 ± 0.0064 0.8389 ± 0.0145 0.9116 ± 0.0021 0.8213 ± 0.0113 0.7804 ± 0.0138 0.9336±0.0022

Table 9.  Performance comparison of different methods on imbalanced datasets under CV3. The best 
performance is denoted as bold.

 

Fig. 4.  Performance comparison of other four boosting algorithms under CV1, CV2, and CV3. (A-C) Dataset 
1. (D-F) Dataset 2.
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Dataset k = 64, N = 1 k = 64, N = 2 k = 64, N = 3 k = 64, N = 4 k = 64, N = 5

Precision
Dataset 1 0.8636 ± 0.0450 0.8502 ± 0.0510 0.8513 ± 0.0391 0.8697 ± 0.0422 0.8764±0.0419

Dataset 2 0.9344 ± 0.0147 0.9342 ± 0.0155 0.9277 ± 0.0186 0.9315 ± 0.0164 0.9403±0.0183

Recall
Dataset 1 0.7682 ± 0.0452 0.7716±0.0501 0.7690 ± 0.0570 0.7469 ± 0.0642 0.7552 ± 0.0677

Dataset 2 0.8680 ± 0.0429 0.8633 ± 0.0439 0.8698±0.0374 0.8620 ± 0.0430 0.8459 ± 0.0498

Accuracy
Dataset 1 0.8282±0.0338 0.8241 ± 0.0298 0.8218 ± 0.0325 0.8234 ± 0.0394 0.8281 ± 0.0350

Dataset 2 0.9036±0.0281 0.9010 ± 0.0264 0.9011 ± 0.0257 0.8990 ± 0.0259 0.8957 ± 0.0289

F1-score
Dataset 1 0.8117±0.0312 0.8077 ± 0.0394 0.8066 ± 0.0370 0.8017 ± 0.0424 0.8088 ± 0.0392

Dataset 2 0.8995±0.0266 0.8967 ± 0.0244 0.8974 ± 0.0230 0.8948 ± 0.0251 0.8897 ± 0.0280

AUC
Dataset 1 0.9180±0.0219 0.9167 ± 0.0244 0.9144 ± 0.0249 0.8988 ± 0.0324 0.8998 ± 0.0269

Dataset 2 0.9716±0.0134 0.9709 ± 0.0121 0.9714 ± 0.0123 0.9692 ± 0.0120 0.9669 ± 0.0110

AUPR
Dataset 1 0.9160±0.0286 0.9048 ± 0.0395 0.9119 ± 0.0303 0.9014 ± 0.0323 0.9007 ± 0.0324

Dataset 2 0.9723 ± 0.0101 0.9706 ± 0.0096 0.9730 ± 0.0090 0.9701 ± 0.0095 0.9660 ± 0.0113

Table 10.  Performance of LDA-GARB with k = 64 and different N on two datasets under CV1. The best 
performance is denoted as bold. The second-best performance is denoted as underline.

 

Fig. 5.  Performance comparison of different methods on imbalanced datasets under CV3. (A, B) Dataset 1, 
(C, D) Dataset 2..
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Dataset k = 128, N = 1 k = 128, N = 2 k = 128, N = 3 k = 128, N = 4 k = 128, N = 5

Precision
Dataset 1 0.8528 ± 0.0432 0.8543 ± 0.0434 0.8569 ± 0.0490 0.8432 ± 0.0453 0.8635±0.0394

Dataset 2 0.9259 ± 0.0197 0.9200 ± 0.0246 0.9261 ± 0.0191 0.9188 ± 0.0225 0.9325±0.0183

Recall
Dataset 1 0.7631±0.0585 0.7520 ± 0.0673 0.7605 ± 0.0621 0.7385 ± 0.0714 0.7320 ± 0.0684

Dataset 2 0.8579 ± 0.0434 0.8624±0.0400 0.8607 ± 0.0456 0.8527 ± 0.0475 0.8448 ± 0.0466

Accuracy
Dataset 1 0.8207 ± 0.0349 0.8180 ± 0.0400 0.8234±0.0341 0.8090 ± 0.0367 0.8122 ± 0.0374

Dataset 2 0.8944 ± 0.0268 0.8933 ± 0.0269 0.8959±0.0270 0.8887 ± 0.0313 0.8915 ± 0.0270

F1-score
Dataset 1 0.8041±0.0415 0.7980 ± 0.0456 0.8038 ± 0.0412 0.7855 ± 0.0499 0.7902 ± 0.0444

Dataset 2 0.8899 ± 0.0252 0.8896 ± 0.0236 0.8914±0.0261 0.8839 ± 0.0309 0.8856 ± 0.0258

AUC
Dataset 1 0.9128±0.0271 0.9090 ± 0.0317 0.9116 ± 0.0249 0.8947 ± 0.0268 0.8733 ± 0.0389

Dataset 2 0.9635 ± 0.0164 0.9618 ± 0.0163 0.9654±0.0158 0.9587 ± 0.0178 0.9600 ± 0.0148

AUPR
Dataset 1 0.9132±0.0362 0.9093 ± 0.0395 0.9064 ± 0.0376 0.8877 ± 0.0469 0.8888 ± 0.0348

Dataset 2 0.9647 ± 0.0128 0.9637 ± 0.0125 0.9677±0.0116 0.9603 ± 0.0152 0.9628 ± 0.0106

Table 13.  Performance of LDA-GARB with k = 128 and different N on two datasets under CV1. The best 
performance is denoted as bold. The second-best performance is denoted as underline.

 

Dataset k = 64, N = 1 k = 64, N = 2 k = 64, N = 3 k = 64, N = 4 k = 64, N = 5

Precision
Dataset 1 0.8743 ± 0.0284 0.8714 ± 0.0289 0.8704 ± 0.0269 0.8711 ± 0.0274 0.8835±0.0260

Dataset 2 0.9348 ± 0.0130 0.9413±0.0132 0.9336±0.0138 0.9327 ± 0.0125 0.9343 ± 0.0104

Recall
Dataset 1 0.8724 ± 0.0305 0.8689 ± 0.0309 0.8781 ± 0.0346 0.8767 ± 0.0292 0.8806±0.0343

Dataset 2 0.9373 ± 0.0137 0.9407±0.0132 0.9335 ± 0.0134 0.9329 ± 0.0160 0.9365 ± 0.0147

Accuracy
Dataset 1 0.8729 ± 0.0204 0.8698 ± 0.0208 0.8733 ± 0.0225 0.8731 ± 0.0223 0.8819±0.0225

Dataset 2 0.9359 ± 0.0085 0.9409±0.0090 0.9335 ± 0.0096 0.9327 ± 0.0094 0.9353 ± 0.0090

F1-score
Dataset 1 0.8728 ± 0.0204 0.8696 ± 0.0208 0.8737 ± 0.0231 0.8735 ± 0.0221 0.8816±0.0231

Dataset 2 0.9359 ± 0.0085 0.9409±0.0090 0.9335 ± 0.0096 0.9327 ± 0.0095 0.9353 ± 0.0091

AUC
Dataset 1 0.9459 ± 0.0109 0.9462 ± 0.0133 0.9479±0.0134 0.9367 ± 0.0174 0.9409 ± 0.0174

Dataset 2 0.9790 ± 0.0051 0.9824±0.0034 0.9801 ± 0.0046 0.9790 ± 0.0048 0.9798 ± 0.0050

AUPR
Dataset 1 0.9418 ± 0.0136 0.9449±0.0161 0.9432 ± 0.0192 0.9331 ± 0.0206 0.9371 ± 0.0214

Dataset 2 0.9744 ± 0.0100 0.9818±0.0040 0.9787 ± 0.0061 0.9781 ± 0.0060 0.9790 ± 0.0065

Table 12.  Performance of LDA-GARB with k = 64 and different N on two datasets under CV3. The best 
performance is denoted as bold. The second-best performance is denoted as underline.

 

Dataset k = 64, N = 1 k = 64, N = 2 k = 64, N = 3 k = 64, N = 4 k = 64, N = 5

Precision
Dataset 1 0.8724 ± 0.0365 0.8686 ± 0.0332 0.8897 ± 0.0272 0.8747 ± 0.0248 0.8980±0.0278

Dataset 2 0.9321 ± 0.0277 0.9339 ± 0.0228 0.9264 ± 0.0269 0.9381±0.0225 0.9379 ± 0.0268

Recall
Dataset 1 0.8699 ± 0.0377 0.8784±0.0393 0.8764 ± 0.0317 0.8535 ± 0.0455 0.8630 ± 0.0422

Dataset 2 0.9409 ± 0.0262 0.9448±0.0233 0.9411 ± 0.0237 0.9357 ± 0.0235 0.9343 ± 0.0251

Accuracy
Dataset 1 0.8744 ± 0.0255 0.8760 ± 0.0210 0.8855±0.0221 0.8689 ± 0.0243 0.8845 ± 0.0239

Dataset 2 0.9409 ± 0.0158 0.9432 ± 0.0136 0.9371 ± 0.0149 0.9409±0.0113 0.9403 ± 0.0131

F1-score
Dataset 1 0.8707 ± 0.0316 0.8729 ± 0.0292 0.8826±0.0227 0.8634 ± 0.0298 0.8795 ± 0.0282

Dataset 2 0.9363 ± 0.0243 0.9392±0.0209 0.9336 ± 0.0225 0.9368 ± 0.0203 0.9359 ± 0.0219

AUC
Dataset 1 0.9493 ± 0.0160 0.9516 ± 0.0137 0.9558±0.0138 0.9340 ± 0.0202 0.9474 ± 0.0164

Dataset 2 0.9817 ± 0.0083 0.9824 ± 0.0063 0.9800 ± 0.0066 0.9817 ± 0.0066 0.9828±0.0064

AUPR
Dataset 1 0.9415 ± 0.0228 0.9468 ± 0.0219 0.9548±0.0160 0.9316 ± 0.0219 0.9475 ± 0.0194

Dataset 2 0.9757 ± 0.0176 0.9774 ± 0.0146 0.9752 ± 0.0126 0.9754 ± 0.0202 0.9793±0.0143

Table 11.  Performance of LDA-GARB with k = 64 and different N on two datasets under CV2. The best 
performance is denoted as bold. The second-best performance is denoted as underline.

 

Scientific Reports |        (2025) 15:19178 11| https://doi.org/10.1038/s41598-025-03269-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Dataset k = 256, N = 1 k = 256, N = 2 k = 256, N = 3 k = 256, N = 4 k = 256, N = 5

Precision
Dataset 1 0.8466 ± 0.0399 0.8486 ± 0.0543 0.8447 ± 0.0507 0.8307 ± 0.0485 0.8657±0.0417

Dataset 2 0.9340 ± 0.0154 0.9323 ± 0.0173 0.9280 ± 0.0177 0.9273 ± 0.0202 0.9364±0.0176

Recall
Dataset 1 0.7521 ± 0.0575 0.7587±0.0614 0.7369 ± 0.0708 0.7404 ± 0.0609 0.7334 ± 0.0612

Dataset 2 0.8648 ± 0.0421 0.8672±0.0385 0.8632 ± 0.0467 0.8449 ± 0.0559 0.8489 ± 0.0534

Accuracy
Dataset 1 0.8123 ± 0.0371 0.8205±0.0307 0.8087 ± 0.0394 0.8012 ± 0.0373 0.8165 ± 0.0382

Dataset 2 0.9018 ± 0.0277 0.9019±0.0269 0.8980 ± 0.0301 0.8890 ± 0.0354 0.8952 ± 0.0295

F1-score
Dataset 1 0.7947 ± 0.0344 0.7996±0.0484 0.7850 ± 0.0499 0.7809 ± 0.0406 0.7924 ± 0.0416

Dataset 2 0.8976 ± 0.0260 0.8982 ± 0.0244 0.8938 ± 0.0287 0.8832 ± 0.0342 0.8894±0.0290

AUC
Dataset 1 0.9012 ± 0.0307 0.9163±0.0225 0.8999 ± 0.0300 0.8931 ± 0.0284 0.8883 ± 0.0307

Dataset 2 0.9648 ± 0.0172 0.9653 ± 0.0135 0.9665±0.0157 0.9566 ± 0.0237 0.9601 ± 0.0163

AUPR
Dataset 1 0.9019 ± 0.0244 0.9117±0.0414 0.8992 ± 0.0487 0.8949 ± 0.0365 0.8934 ± 0.0389

Dataset 2 0.9673 ± 0.0130 0.9684 ± 0.0093 0.9700±0.0109 0.9630 ± 0.0154 0.9649 ± 0.0118

Table 16.  Performance of LDA-GARB with k = 256 and different N on two datasets under CV1. The best 
performance is denoted as bold. The second-best performance is denoted as underline.

 

Dataset k = 128, N = 1 k = 128, N = 2 k = 128, N = 3 k = 128, N = 4 k = 128, N = 5

Precision
Dataset 1 0.8631 ± 0.0282 0.8631 ± 0.0234 0.8626 ± 0.0267 0.8584 ± 0.0291 0.8733±0.0285

Dataset 2 0.9329 ± 0.0117 0.9367 ± 0.0127 0.9293±0.0129 0.9310 ± 0.0130 0.9375 ± 0.0140

Recall
Dataset 1 0.8694 ± 0.0326 0.8653 ± 0.0309 0.8583 ± 0.0336 0.8620 ± 0.0309 0.8750±0.0328

Dataset 2 0.9329 ± 0.0169 0.9378±0.0131 0.9283 ± 0.0135 0.9303 ± 0.0154 0.9357 ± 0.0147

Accuracy
Dataset 1 0.8653 ± 0.0228 0.8636 ± 0.0190 0.8603 ± 0.0212 0.8593 ± 0.0213 0.8735±0.0213

Dataset 2 0.9328 ± 0.0101 0.9371±0.0091 0.9287 ± 0.0091 0.9306 ± 0.0093 0.9366 ± 0.0089

F1-score
Dataset 1 0.8658 ± 0.0229 0.8637 ± 0.0196 0.8599 ± 0.0218 0.8596 ± 0.0211 0.8736±0.0216

Dataset 2 0.9328 ± 0.0103 0.9372±0.0091 0.9287 ± 0.0091 0.9306 ± 0.0094 0.9365 ± 0.0089

AUC
Dataset 1 0.9356 ± 0.0159 0.9370 ± 0.0134 0.9345 ± 0.0140 0.9381±0.0146 0.9317 ± 0.0152

Dataset 2 0.9812 ± 0.0049 0.9817±0.0038 0.9789 ± 0.0042 0.9765 ± 0.0048 0.9790 ± 0.0047

AUPR
Dataset 1 0.9258 ± 0.0222 0.9355 ± 0.0146 0.9300 ± 0.0168 0.9359±0.0184 0.9333 ± 0.0172

Dataset 2 0.9812 ± 0.0056 0.9816±0.0041 0.9796 ± 0.0045 0.9749 ± 0.0065 0.9799 ± 0.0050

Table 15.  Performance of LDA-GARB with k = 128 and different N on two datasets under CV3. The best 
performance is denoted as bold. The second-best performance is denoted as underline.

 

Dataset k = 128, N = 1 k = 128, N = 2 k = 128, N = 3 k = 128, N = 4 k = 128, N = 5

Precision
Dataset 1 0.8729 ± 0.0380 0.8603 ± 0.0341 0.8514 ± 0.0324 0.8709 ± 0.0361 0.8808±0.0320

Dataset 2 0.9270 ± 0.0262 0.9290 ± 0.0249 0.9329 ± 0.0266 0.9354 ± 0.0276 0.9362±0.0272

Recall
Dataset 1 0.8720 ± 0.0431 0.8617 ± 0.0349 0.8620 ± 0.0340 0.8722±0.0385 0.8537 ± 0.0414

Dataset 2 0.9371 ± 0.0228 0.9384 ± 0.0281 0.9398±0.0261 0.9328 ± 0.028 0.9357 ± 0.0256

Accuracy
Dataset 1 0.8766±0.0239 0.8621 ± 0.0252 0.8575 ± 0.0231 0.8749 ± 0.0238 0.8708 ± 0.0236

Dataset 2 0.9359 ± 0.0137 0.9379 ± 0.0163 0.9402±0.0145 0.9394 ± 0.0153 0.9397 ± 0.0159

F1-score
Dataset 1 0.8720±0.0348 0.8604 ± 0.0258 0.8561 ± 0.0253 0.8709 ± 0.0291 0.8663 ± 0.0263

Dataset 2 0.9319 ± 0.0224 0.9335 ± 0.0239 0.9362±0.0243 0.9339 ± 0.0251 0.9358 ± 0.0233

AUC
Dataset 1 0.9505±0.0159 0.9423 ± 0.0153 0.9332 ± 0.0171 0.9436 ± 0.0161 0.9330 ± 0.0193

Dataset 2 0.9817±0.0067 0.9813 ± 0.0074 0.9804 ± 0.0076 0.9815 ± 0.0070 0.9799 ± 0.0079

AUPR
Dataset 1 0.9405±0.0299 0.9363 ± 0.0199 0.9267 ± 0.0230 0.9346 ± 0.0241 0.9338 ± 0.0205

Dataset 2 0.9776 ± 0.0146 0.9777 ± 0.0151 0.9746 ± 0.0200 0.9783±0.0156 0.9770 ± 0.0158

Table 14.  Performance of LDA-GARB with k = 128 and different N on two datasets under CV2. The best 
performance is denoted as bold. The second-best performance is denoted as underline.
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Dataset Linear feature Nonlinear feature LDA-GARB

Precision
Dataset 1 0.8708 ± 0.0479 0.8174 ± 0.0598 0.8636 ± 0.0450

Dataset 2 0.9321 ± 0.0182 0.9144 ± 0.0180 0.9344 ± 0.0147

Recall
Dataset 1 0.7507 ± 0.0583 0.8004 ± 0.0581 0.7682 ± 0.0452

Dataset 2 0.8430 ± 0.0566 0.8703 ± 0.0347 0.8680 ± 0.0429

Accuracy
Dataset 1 0.8248 ± 0.0387 0.8223 ± 0.0319 0.8282 ± 0.0338

Dataset 2 0.8906 ± 0.0290 0.8946 ± 0.0232 0.9036 ± 0.0281

F1-score
Dataset 1 0.8046 ± 0.0413 0.8070 ± 0.0463 0.8117 ± 0.0312

Dataset 2 0.8841 ± 0.0320 0.8914 ± 0.0212 0.8995 ± 0.0266

AUC
Dataset 1 0.8960 ± 0.0327 0.9084 ± 0.0240 0.9180 ± 0.0219

Dataset 2 0.9576 ± 0.0169 0.9637 ± 0.0147 0.9716 ± 0.0134

AUPR
Dataset 1 0.9005 ± 0.0350 0.8768 ± 0.0579 0.9160 ± 0.0286

Dataset 2 0.9569 ± 0.0150 0.9664 ± 0.0106 0.9723 ± 0.0101

Table 19.  Performance when using different feature selection methods under CV1. The best performance is 
denoted as bold.

 

Dataset k = 256, N = 1 k = 256, N = 2 k = 256, N = 3 k = 256, N = 4 k = 256, N = 5

Precision
Dataset 1 0.8683 ± 0.0265 0.8687 ± 0.0229 0.8591 ± 0.027 0.8609 ± 0.0251 0.8816±0.0254

Dataset 2 0.9354±0.0121 0.9238 ± 0.0134 0.9230 ± 0.0141 0.9213 ± 0.0138 0.9349 ± 0.0119

Recall
Dataset 1 0.8744 ± 0.0345 0.8593 ± 0.0336 0.8645 ± 0.0293 0.8687 ± 0.0316 0.8868±0.0301

Dataset 2 0.9297 ± 0.0148 0.9271 ± 0.0146 0.9262 ± 0.0166 0.9196 ± 0.0155 0.9321±0.0156

Accuracy
Dataset 1 0.8704 ± 0.0211 0.8643 ± 0.0186 0.8610 ± 0.0211 0.8638 ± 0.0210 0.8834±0.0190

Dataset 2 0.9327 ± 0.0103 0.9252 ± 0.0097 0.9244 ± 0.0113 0.9204 ± 0.0103 0.9335±0.0092

F1-score
Dataset 1 0.8708 ± 0.0217 0.8634 ± 0.0198 0.8614 ± 0.0211 0.8643 ± 0.0214 0.8837±0.0192

Dataset 2 0.9324 ± 0.0105 0.9254 ± 0.0097 0.9245 ± 0.0114 0.9203 ± 0.0104 0.9334±0.0094

AUC
Dataset 1 0.9410 ± 0.0128 0.9392 ± 0.0128 0.9390 ± 0.0140 0.9374 ± 0.0133 0.9413±0.0151

Dataset 2 0.9810±0.0042 0.9774 ± 0.0044 0.9768 ± 0.0054 0.9735 ± 0.0048 0.9781 ± 0.0054

AUPR
Dataset 1 0.9316 ± 0.0180 0.9335 ± 0.0162 0.9402±0.0143 0.9374 ± 0.0159 0.9387 ± 0.0195

Dataset 2 0.9811±0.0049 0.9776 ± 0.0047 0.9776 ± 0.0056 0.9743 ± 0.0053 0.9799 ± 0.0049

Table 18.  Performance of LDA-GARB with k = 256 and different N on two datasets under CV3. The best 
performance is denoted as bold. The second-best performance is denoted as underline.

 

Dataset k = 256, N = 1 k = 256, N = 2 k = 256, N = 3 k = 256, N = 4 k = 256, N = 5

Precision
Dataset 1 0.8708 ± 0.0298 0.8697 ± 0.0356 0.8805 ± 0.0341 0.8618 ± 0.0363 0.8866±0.0332

Dataset 2 0.9344 ± 0.0260 0.9241 ± 0.0272 0.9234 ± 0.0329 0.9226 ± 0.0323 0.9459±0.0269

Recall
Dataset 1 0.8693 ± 0.0389 0.8560 ± 0.0354 0.8710 ± 0.0370 0.8713±0.0350 0.8586 ± 0.0408

Dataset 2 0.9460±0.0219 0.9346 ± 0.0240 0.9347 ± 0.0330 0.9297 ± 0.0265 0.9337 ± 0.0300

Accuracy
Dataset 1 0.8729 ± 0.0239 0.8670 ± 0.0213 0.8778 ± 0.0229 0.8698 ± 0.0195 0.8786±0.0199

Dataset 2 0.9434 ± 0.0145 0.9326 ± 0.0161 0.9352 ± 0.0162 0.9309 ± 0.0167 0.9444±0.0147

F1-score
Dataset 1 0.8696 ± 0.0283 0.8623 ± 0.0286 0.8751±0.0261 0.8660 ± 0.0284 0.8717 ± 0.0293

Dataset 2 0.9400±0.0213 0.9292 ± 0.0235 0.9288 ± 0.0308 0.9260 ± 0.0269 0.9396 ± 0.0251

AUC
Dataset 1 0.9477 ± 0.0150 0.9479 ± 0.0139 0.9484±0.0142 0.9433 ± 0.0135 0.9350 ± 0.0149

Dataset 2 0.9838±0.0063 0.9796 ± 0.0075 0.9802 ± 0.0078 0.9761 ± 0.0085 0.9798 ± 0.0077

AUPR
Dataset 1 0.9423 ± 0.0197 0.9471±0.0199 0.9432 ± 0.0193 0.9387 ± 0.0240 0.8934 ± 0.0389

Dataset 2 0.9807±0.0121 0.9759 ± 0.0140 0.9745 ± 0.0208 0.9712 ± 0.0199 0.9766 ± 0.0165

Table 17.  Performance of LDA-GARB with k = 256 and different N on two datasets under CV2. The best 
performance is denoted as bold. The second-best performance is denoted as underline.
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Based on the rankings in Table 23 and Fig. 7, we predicted that HAR1A may be associated with breast cancer. 
HAR1A can inhibit non-small cell lung cancer progression64, regulate oral cancer development65, and affect 
brain development66. The association between breast cancer and HAR1A needs further validation.

Discussion
lncRNAs are closely associated with many important physiological processes and have been regarded as potential 
biomarkers of cancers. Identifying potential LDAs promotes us to better understand complex molecular 
mechanisms of human diseases, find new biomarkers, and further facilitate disease diagnosis and therapy.

In this manuscript, we proposed a computational framework called LDA-GARB for LDA prediction. LDA-
GARB first calculated disease similarity based on their semantic features and GAPK, and lncRNA similarity 
based on their functional information and GAPK. Subsequently, LDA-GARB extracted linear features through 
NMF and their nonlinear features via similarity matrices and GAE for lncRNAs and diseases. Finally, LDA-
GARB took the extracted features as inputs and designed a noise-robust gradient boosting model to decipher 
potential associations from unknown lncRNA-disease pairs.

To ascertain the LDA-GARB performance, we conducted multiple comparison experiments. First, LDA-
GARB was compared with four representative LDA prediction methods under three distinct CVs. These 
four methods include SDLDA, LDNFSGB, LDAenDL, and LDA-VGHB. LDNFSGB and LDA-VGHB are two 
boosting-based LDA classification models. SDLDA and LDAenDL are two deep learning-based LDA inference 
algorithms. LDA-GARB obviously outperformed the two boosting-based models and the two deep learning-
based methods, demonstrating its better LDA inference accuracy and feature learning ability.

Next, LDA-GARB was compared with four boosting models under the three CVs, i.e., XGBoost, AdaBoost, 
CatBoost, and LightGBM. XGBoost is a scalable end-to-end extreme gradient boosting system. AdaBoost 
performs highly accurate prediction by integrating multiple weak rules. CatBoost is a unbiased model for 
categorical feature learning. LightGBM is a highly efficient GBDT. The four methods are classical and wide-used 
boosting algorithms. LDA-GARB surpassed the four models, elucidating the powerful LDA classification ability 
of the noise-robust gradient boosting model.

Dataset Linear feature Nonlinear feature LDA-GARB

Precision
Dataset 1 0.8714 ± 0.0283 0.8361 ± 0.0271 0.8743 ± 0.0284

Dataset 2 0.9328 ± 0.0119 0.9082 ± 0.0177 0.9348 ± 0.0130

Recall
Dataset 1 0.8731 ± 0.0301 0.8555 ± 0.0286 0.8724 ± 0.0305

Dataset 2 0.9330 ± 0.0149 0.8994 ± 0.0180 0.9373 ± 0.0137

Accuracy
Dataset 1 0.8717 ± 0.0227 0.8433 ± 0.0197 0.8729 ± 0.0204

Dataset 2 0.9328 ± 0.0095 0.9041 ± 0.0121 0.9359 ± 0.0085

F1-score
Dataset 1 0.8719 ± 0.0227 0.8452 ± 0.0193 0.8728 ± 0.0204

Dataset 2 0.9328 ± 0.0097 0.9036 ± 0.0122 0.9359 ± 0.0085

AUC
Dataset 1 0.9315 ± 0.0159 0.9256 ± 0.0143 0.9459 ± 0.0109

Dataset 2 0.9782 ± 0.0049 0.9710 ± 0.0057 0.9790 ± 0.0051

AUPR
Dataset 1 0.9257 ± 0.0224 0.9186 ± 0.0204 0.9418 ± 0.0136

Dataset 2 0.9762 ± 0.0063 0.9712 ± 0.0061 0.9744 ± 0.0100

Table 21.  Performance when using different feature selection methods under CV3. The best performance is 
denoted as bold.

 

Dataset Linear feature Nonlinear feature LDA-GARB

Precision
Dataset 1 0.9040 ± 0.0261 0.8464 ± 0.0409 0.8724 ± 0.0365

Dataset 2 0.9251 ± 0.0318 0.8944 ± 0.0473 0.9321 ± 0.0277

Recall
Dataset 1 0.8621 ± 0.0411 0.8633 ± 0.0444 0.8699 ± 0.0377

Dataset 2 0.9351 ± 0.0343 0.8929 ± 0.0537 0.9409 ± 0.0262

Accuracy
Dataset 1 0.8876 ± 0.0214 0.8564 ± 0.0260 0.8744 ± 0.0255

Dataset 2 0.9343 ± 0.0164 0.9044 ± 0.0209 0.9409 ± 0.0158

F1-score
Dataset 1 0.8820 ± 0.0278 0.8541 ± 0.0347 0.8707 ± 0.0316

Dataset 2 0.9297 ± 0.0288 0.8934 ± 0.0489 0.9363 ± 0.0243

AUC
Dataset 1 0.9459 ± 0.0139 0.9266 ± 0.0193 0.9493 ± 0.0160

Dataset 2 0.9745 ± 0.0108 0.9679 ± 0.0138 0.9817 ± 0.0083

AUPR
Dataset 1 0.9467 ± 0.0205 0.9047 ± 0.0370 0.9415 ± 0.0228

Dataset 2 0.9646 ± 0.0244 0.9578 ± 0.0419 0.9757 ± 0.0176

Table 20.  Performance when using different feature selection methods under CV2. The best performance is 
denoted as bold.
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Rank lncRNA Evidence

1 BCYRN1 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

2 CCAT2 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

3 HIF1A-AS1 Lnc2Cancer3.0, RNADisease

4 KCNQ1DN Lnc2Cancer3.0, RNADisease

5 IGF2-AS RNADisease

6 CCDC26 Unknown

7 ADAMTS9-AS2 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

8 MINA Unknown

9 PTENP1 RNADisease

10 HCP5 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

11 WT1-AS Lnc2Cancer3.0, RNADisease

12 HIF1A-AS2 Lnc2Cancer3.0, RNADisease

13 DNM3OS Unknown

14 MIR31HG Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

15 LINC00032 Unknown

16 TCL6 Unknown

17 MIR155HG Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

18 IFNG-AS1 Unknown

19 CBR3-AS1 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

20 PCA3 Unknown

Table 22.  The predicted top 20 lncRNAs associated with CRC on Dataset 1.

 

Fig. 6.  Performance when using different feature selection methods under CV1, CV2, and CV3. (A–C) on 
Dataset 1. (D–F) on Dataset 2.
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After that, to analyze the performance of LDA-GARB on imbalanced data, it was compared with LDA-
LNSUBRW, GAMCLDA, LDA-VGHB, LDAGM, and GANLDA. The five methods utilized unbalanced bi-
random walk, graph autoencoder matrix completion, heterogeneous Newton boosting machine, multi-view 
heterogeneous network, and graph attention network. LDA-GARB outperformed the five model and exhibited 
better classification ability on imbalanced datasets. Finally, to discern the effect of the proposed feature extraction 
techniques on predictions, LDA-GARB also conducted ablation experiments. The outcomes indicated that the 
combination of NMF-based linear feature extraction and GAE-based nonlinear feature extraction improved 
LDA prediction.

CRC and breast cancer are two of the most frequent cancers worldwide. After determining the performance, 
LDA-GARB was applied to predict possible lncRNAs for CRC and breast cancer. The results showed that CRC 
could have an association with lncRNA CCDC26 and breast cancer may be associated with HAR1A. The above 
results provided new potential biomarker for CRC and breast cancer.

LDA-GARB demonstrated two main advantages when deciphering possible LDAs. (i) It could effectively 
reduce the effect of label noises on predictions. Machine learning requires negative samples when predicting 
LDAs. However, current data resources do not provide negative samples due to experiment limitations. Thus, 
most machine learning-based LDA prediction models had to obtain negative associations from unlabeled 

Algorithm 1  LDA classification algorithm.

 

Fig. 7.  (a) The top potential 20 lncRNAs for CRC on Dataset 1. (b) The top 20 potential lncRNAs for breast 
cancer on Dataset 2. Solid line denotes an LDA that can be predicted and validated. Dashed line denote an 
LDA that can be predicted but not validated, respectively..
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lncRNA-disease pairs through random selection. However, these unlabeled lncRNA-disease pairs may contain a 
handle of positive LDAs, which causes label noises and severely affects the model performance. To solve the issue, 
LDA-GARB adopted a noise-robust gradient boosting algorithm to alleviate the effect of label noises on LDA 
prediction. (ii) It was more appropriate to solve imbalanced LDA datasets. Current LDA datasets are imbalanced 
while existing boosting models are limited to imbalanced datasets. To address this issue, LDA-GARB used non-
convex loss function and exhibited the powerful adaptability on imbalanced LDA datasets.

Although LDA-GARB calculated better predictions, it remains limitations. During LDA prediction, we need 
learn feature vectors of lncRNAs and diseases from their biological information. However, several diseases have 
no directed acyclic graphs, resulting in that we can’t compute their biological similarity based on their MESH 
descriptors. So, we had to use GAPK to measure disease similarity and extract their feature vectors from GAPK 
similarity matrix, which have been widely applied to various disease-related association prediction. But GAPK 
similarity was computed based on association information, which may cause data leakage during test. The data 
leakage is a common issue in disease-related association tasks and is urgent to solve. Text mining techniques 
can effectively capture information hidden in unstructured text data. As a result, in the future, we will design 
a text mining algorithm to obtain semantic features for all diseases especially diseases without directed acyclic 
graph from diverse health and medical literatures. By doing so, we can effectively avoid data leakage during LDA 
prediction and boost the performance of various association prediction models.

Conclusion
In this manuscript, we presented a computational model called LDA-GARB for identifying potential LDAs 
by integrating NMF, GAE, and the noise-robust gradient boosting model. Compared to four state-of-the-art 
LDA identification methods, four classical boosting models, and five imbalanced data solution algorithms, 
LDA-GARB computed better predictions under three distinct CVs (i.e., CV1, CV2, and CV3). Moreover, LDA-
GARB inferred that lncRNAs CCDC 26 and HAR1A could separately associate with CRC and breast cancer 
and may be their biomarkers, which provided clues of treatment for the two cancers. As a useful computational 
tool for identifying potential lncRNAs for human diseases, we anticipate that LDA-GARB can help to find new 
biomarkers for various complex diseases and further promote their diagnosis and therapy.

Materials and methods
LDA-GARB mainly contain two procedures: (i) LDA feature extraction. First, LDA-GARB employs NMF and 
LDA information to extract linear features of each lncRNA and disease. Next, LDA-GARB computes disease 
similarity based on semantic features and Gaussian association profile kernel (GAPK) similarity, and lncRNA 
similarity based on functional information and GAPK similarity. By combining disease similarity and lncRNA 
similarity, LDA-GARB proposes a GAE model to extract nonlinear features of lncRNAs and diseases. And the 

Rank lncRNA Evidence

1 DGCR5 RNADisease, LncRNADisease v3.0

2 HAR1A Unknown

3 TUG1 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

4 PINK1-AS RNADisease

5 IGF2-AS RNADisease, LncRNADisease v3.0

6 MIR155HG RNADisease

7 NPTN-IT1 Lnc2Cancer3.0, RNADisease

8 BOK-AS1 Unknown

9 PCAT1 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

10 PTENP1 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

11 HULC Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

12 KCNQ1DN Unknown

13 MINA Unknown

14 HIF1A-AS1 Unknown

15 EPB41L4A-AS1 Lnc2Cancer3.0, RNADisease

16 ATXN8OS Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

17 ZFAT-AS1 Unknown

18 ADAMTS9-AS2 Lnc2Cancer3.0, RNADisease,
LncRNADisease v3.0

19 DISC2 Unknown

20 PSORS1C3 Unknown

Table 23.  The predicted top 20 lncRNAs associated with breast cancer in the dataset 2.
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extracted linear and nonlinear features of lncRNA are concatenated as a vector to depict the lncRNA. Similarly, 
the learned linear and nonlinear features of one disease are concatenated as a vector to depict the disease. And 
the concatenation of lncRNA features and disease features is used to character each lncRNA-disease pair. (ii) 
LDA classification. LDA-GARB takes the obtained feature vector as input and devises a noise-robust gradient 
boosting to perform predictions.

Linear feature extraction based on NMF
NMF can effectively reduce feature dimensionality by combining the non-negativity constraint42,67. Here, we 
adopt NMF to learn linear representations of lncRNAs and diseases. First, we decompose an LDA matrix Y  into 
two low-rank matrices U = Rn×s and V = Rs×m. Next, to make U  and V  more smooth, we add a weighted 
matrix W ∈ Rn×m and perform L2 regularization. Thus, we build an objective function with regularization 
parameters λ1 and λ2 to learn lncRNA linear features U  and disease linear features V  by Eq. (1):

	
min

U≥0,V ≥0
∥W ⊙ (Y − UV )∥2

F + λ1∥U∥2
F + λ2∥V ∥2

F � (1)

where ⊙ is the Hadamard product, U ≥ 0, and V ≥ 0.

Nonlinear feature extraction based on GAE and similarity computation
Similarity computation
To extract nonlinear features of lncRNAs and diseases based on GAE, we need to compute disease similarity 
and lncRNA similarity. First, we compute disease semantic similarity Ssem

d  using the IDSSIM method68 based 
on MeSH descriptors. Since the MeSH database does not provide directed acyclic graph for some diseases, we 
can’t measure their similarity according to their directed acyclic graphs. Thus, we adopt GAPK to compute their 
similarity. Specially, for diseases di and dj , their Gaussian association profiles are represented as Y .i( the i-th 
column of Y ) and Y .j( the j-th column of Y ), respectively. And their GAPK similarity is defined by Eq. (2):

	

Gd(i, j) = exp
(
−θd ∥Y .i − Y .j) ∥2)

θd = 1
m

m∑
i=1

∥Y .i∥2 � (2)

Consequently, disease similarity matrix D is built by integrating their semantic similarity and GAPK similarity 
by Eq. (3):

	
D (i, j) =

{ Ssem
d

(i,j)+Gd(i,j)
2 if Ssem

d (i, j) ̸= 0

Gd (i, j) otherwise
� (3)

lncRNA similarity is computed based on their functional similarity and GAPK similarity2,42. lncRNA functional 
similarity Sfun

l  is measured through the IDSSIM method68 based on Ssem
d . lncRNA GAPK similarity matrix 

Gl is calculated by Eq. (4):

	

Gl(i, j) = exp
(
−θl ∥Y i. − Y j.) ∥2)

θl = 1
n

n∑
i=1

∥Y i.∥2 � (4)

where Y i. and Y j. denote the i-th and j-th rows of Y , respectively.
Consequently, lncRNA similarity matrix matrix L is built by incorporating their functional similarity and 

GAPK similarity by Eq. (5):

	

L (i, j) =




Sfun
l

(i,j)+Gl(i,j)
2 if Sfun

l (i, j) ̸= 0

Gl (i, j) otherwise.
� (5)

Nonlinear feature extraction
GAE is a novel graph neural network model and can effectively learn graph embedding features69. Here, we 
extract nonlinear features of lncRNAs and diseases based on the following five steps:

Step 1 Bipartite graph construction
First, a bipartite graph is constructed based on known LDA matrix Y . The constructed bipartite graph 

contains two types of nodes, i.e., lncRNAs and diseases. Features of nodes can be represented based on their 
similarity matrix. And edge represents relationship between each lncRNA and disease.

Step 2 Feature projection
Both lncRNAs and diseases are projected to the space of vector with the same dimension based on a linear 

transformation matrix Q∅. Taken lncRNA nodes as an example, lncRNAs are projected to a k-dimensional 
vector space by Eq. (6):
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	 Ql = Q∅l
· Tl� (6)

where Ql, Tl, and Q∅l
 denote lncRNA projected features, lncRNA similarity matrix, and linear transformation 

matrix which can be solved by minimizing the loss function, respectively.
Similarly, diseases are still projected into a k-dimensional vector space.
Step 3 Feature aggregation
An encoder is employed to yield the embeddings of lncRNAs and diseases by combining neighborhood node 

information. Given an lncRNA li, the aggregation Qc
li

 of features related to its direct neighbors {d1, d2, ...} is 
depicted by an aggregate function f(·) defined by Eq. (7):

	
Qc

li
= 1

Dli

f (Qd1 , Qd2 , . . . )� (7)

where we usually use sum(·) as aggregator. Dli  indicates the degree of li.
Step 4 Feature concatenation
The aggregated features Qc

li
 in Eq. (7) and the projected features Qli  in Eq. (6) are concatenated to update 

features Q′
li  of li by a multi-layer perceptron by Eq. (8):

	
Q′

li = LeakyReLU
(

g
(

Qli

⊕
Qc

li

))
� (8)

where 
⊕

 denotes the concatenation operation, g(·) is a multi-layer perceptron layer with LeakyReLU(·) and k 
outputs.

Similarly, the aggregated features Q′
di  of diseases are updated.

Step 5 lncRNA and disease embedding learning
To incorporate abundant neighbor features and boost the model classification ability, we use an encoder 

based on stacking graph neural network with N layers to achieve the final embeddings (QN
l  and QN

d ) of lncRNAs 
and diseases.

Subsequently, a bilinear decoder is used to decode the input graph based on the association score ŷij  between 
li and dj  by Eq. (9):

	
ŷij = sigmoid

(
QN

dj
H

(
QN

li

)T
)

.� (9)

where H is a k × k parameter matrix. Consequently, we obtain nonlinear features QN
l  of lncRNAs and QN

d  of 
diseases.

During nonlinear feature learning, a cross-entropy loss Loss is used to evaluate whether the model effectively 
encodes LDA features and accurately reconstructs the input graph by Eq. (10):

	

Loss = −
∑

i,j∈Y +∪Y −

(yij log ŷij + (1 − yij) log (1 − ŷij)) .� (10)

where yij  denotes the known relationship between li and dj  in a dataset, Y + and Y − indicate positive LDAs 
and negative LDAs, respectively. By minimizing the loss function defined by Eq. (10), we can solve the linear 
transformation matrix in Eq. (6).

LDA prediction
The gradient boosting decision tree models, such as XGBoost and LightGBM, effectively combine powerful 
learners and optimization methods, and thus improve the model classification accuracy, accelerate the model 
training, and enhance the model ability to handle intricate datasets. These models overcome the computational 
efficiency limitations that inhibit current boosting models. Thus, they have been taken as the most efficient 
classification tools and the most preferred choices to solve practical problems. However, when using the cross 
entropy loss, these models have nonsymmetric and unbounded features. As a result, they are sensitive to label 
noises, making the effect of noise be amplified70. To address the above problems, we devise a noise-robust 
gradient boosting model for LDA classification.

For an LDA dataset D = {(xi, y′
i)}

N
i=1, suppose that xi and y′

i denote the i-th training sample (i.e., lncRNA-
disease pair) and its label. xi is represented a feature vector by concatenating linear and nonlinear features of 
lncRNA and linear and nonlinear features of disease. y′

i = 1 when the i-th pair has a link, otherwise y′
i = 0. As 

shown in Algorithm 1, we perform predictions through the following five steps:
Step 1 Model initialization
Let ft+1 denotes a new decision tree, zt

i = z0
i + α

∑t

j=1fj(xi) denotes the model’s raw prediction with 

the initial prediction z0
i , and pt+1

i = S(zt+1
i ) = 1/(1 + e−zt+1

i ) is computed based on the Sigmoid function. 
Particularly, z0

i  is set to zero (for all i = 1, 2, · · · , n) to reduce impact of the model on the final prediction.
Step 2 Residual calculation
Let l(y′

i, p) indicate the loss function for LDA classification, where p is the probability that the i-th lncRNA-
disease pair is labeled as positive class. Consequently, limp→0 l(0, p) = 0 and limp→1 l(1, p) = 1. At the (t + 1)
-th iteration (t ≥ 0), the objective function with the learning rate α is defined as Eq. (11):
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L t+1 =

n∑
i=1

l(yi, pt+1
i ) =

n∑
i=1

l(y′
i, S(zt+1

i )) =
n∑

i=1

l(yi, S(zt
i + αft+1(xi))) � (11)

For convenience, we define the probability p̂ for the ground-truth class as

	
p̂ =

{
p, y = 1
1 − p, y = 0 � (12)

Consequently, l(y, p) is written as l(1, p̂)( l(p̂) for simplicity) and limp→1 l(p̂) = 0, ∀y ∈ {0, 1}.
Step 3 Calculating gradient and Hessian
The Newton’s method is adopted to optimize the regularized objective (13) with regularization parameter 

Ω(ft+1) for the boosting model:

	
L̃ t+1 =

n∑
i=1

[gt
ift+1(xi) + 1

2ht
ift+1(xi)2] + Ω(ft+1)� (13)

where gt
i  and ht

i  denote the gradient and the Hessian, respectively. They are defined by Eq. (14):

	

gt
i = ∂l

∂zt
i

= ∂l

∂p̂t
i

∂p̂t
i

∂pt
i

∂pt
i

∂zt
i

= ∂l

∂p̂t
i

(2y
′
i − 1)(p̂t

i(1 − p̂t
i))

ht
i = ∂2l

∂(zt
i )2 = ∂2l

∂(p̂t
i)2 (p̂t

i(1 − p̂t
i))2 + ∂l

∂p̂t
i

(p̂t
i(1 − p̂t

i)(1 − 2p̂t
i))

� (14)

and

	
∂pt

i

∂zt
i

= pt
i(1 − pt

i) = p̂t
i(1 − p̂t

i)� (15)

Step 4 Calculating the optimal weight of the leaves
For a decision tree with fixed structure, ft+1(x) is written as ft+1(x) =

∑J

j=1 wjIj , where Ij  denotes an 

instance set involved to leaf j. Suppose that Ω(ft+1) = 1
2 λ

∑J

j=1 w2
j , λ ≥ 0, the optimal objective is rewritten 

as Eq. (16):

	

L̃ t+1 =
n∑

i=1

[gt
ift+1(xi) + 1

2ht
ift+1(xi)2] + Ω(ft+1) =

J∑
j=1

[(
∑
i∈Ij

gt
i)wj + 1

2(
∑
i∈Ij

ht
i + λ)w2

j ]� (16)

f(x) is separable for each leaf, thus, the optimal weight w∗
j  of leaf j can be computed by Eq. (17):

	
w∗

j =
−

∑
i∈Ij

gt
i∑

i∈Ij
ht

i + λ
� (17)

and the corresponding optimal objective is defined by Eq. (18):

	
L̃ ∗

j = −1
2

(
∑

i∈Ij
gt

i)2

∑
i∈Ij

ht
i + λ

� (18)

Step 5 Finding the best tree structure
We use the information gain to assess whether the tree will be grown and to identify the split feature as well as 
split value by Eq. (19):

	
gain = 1

2

[
(
∑

i∈IL
gi)2

∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)2

∑
i∈IR

hi + λ
−

(
∑

i∈I
gi)2

∑
i∈I

hi + λ

]
� (19)

where IL and IR denote the left node instance set and the right node instance set after the split, respectively. 
I = IL ∪ IR denotes the sample set related to their father nodes. IL, IR and I are used to limit the leaf split and 
alleviate the overfitting risk from the following three situations:

•	 If the number of samples for a leaf is not enough, the leaf split will be stopped.
•	 If the sum of hessian 

∑
i∈Ij

ht
i  within a leaf is less than a small threshold ϵ, i.e., 

∑
i∈Ij

ht
i < ϵ, the growth 

of the tree will be stopped.
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•	 If both the above two situations are satisfied, but gain < δ, the growth process will be also stopped to prevent 
overfitting.

Additionally, we adopt a novel loss function called the Robust Focal Loss lRF L to increase the model robustness 
by Eq. (20):

	
lRF L = (1 − p̂)r 1 − p̂q

q
� (20)

where hyperparameter r ≥ 0, q ∈ (0, 1).
The randomly selected negative LDAs may contain a small number of positive associations. Thus, the model 

optimizes its parameters by dealing with different levels of noises during training. When the optimal parameters 
are determined, LDA prediction is achieved.

Data availability
The datasets and codes for this study are available on GitHub at https://github.com/smiling199/LDA-GARB.
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