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Knee injuries are common in several people, frequently controlling for significant injuries and health 
care costs. This article explains the role of personalized exercise prescriptions in preventing knee 
injuries. For this purpose, we used the multicriteria decision-making (MCDM) technique to select 
the best alternative, including criteria such as level of muscle strength improvement, cardiovascular 
endurance, recovery time, and improvement in flexibility and range of motion. The complex q-rung 
orthopair fuzzy set (C-qROFS) is a prevailing tool for managing ambiguity by combining satisfactory, 
dissatisfactory, and complex phase data. It is the extent of fuzzy theories that characterize directional 
and magnitude-based uncertainties, allowing more significant decision-making. In existing research 
work, C-qROFS was defined with different aggregation operators. However, no work is available 
on combined Segeno Weber aggregation operator (AOs) and EDAS in the framework of C-qROFS. 
We propose some notion AOs such as C-qROF Sugeno Weber weighted averaging (C-qROFSWWA) 
and C-qROF Sugeno Weber weighted geometric (C-qROFSWWG) as essential properties. We have 
also proposed the EDAS technique for C-qROFS. The EDAS technique for C-qROFS certifies efficient 
decision-making by exploiting C-qROF information to assess alternatives based on proximity to an 
ideal solution. A real-life example is proposed for selecting the best-personalized exercise using our 
suggested aggregation operator. We take four alternatives after finding that rank strength training 
focused on quadriceps and hamstrings is the best alternative for preventing knee injuries. To check 
the superiority and validity of the suggested technique, a deep comparative study with the existing 
aggregation operator must be conducted.

Keywords  Complex q-rung orthopair fuzzy set, Sugeno Weber t-norm, t-conorm, EDAS technique, MCDM 
algorithm, Personalized exercise

Multicriteria decision making (MCDM) is the method in which one alternative is selected as the better option 
among many available alternatives. The citizens will also have to make decisions in many circumstances, 
highlighting the need to learn skills to make effective decisions. It is a field that has involved several researchers 
and experts, and relatively several such studies have been undertaken using different methods. In traditional 
decision-making, there is usually an exact, unambiguous data set. In practice, however, uncertainty introduces a 
scenario in which data is poorly defined. To resolve this unambiguous Information, Zaded1 proposed the idea of 
fuzzy set (FS) theory, which is symbolized by a satisfactory degree (SD) 

.

A (o) that allocated between [0, 1] and 
satisfied the condition 0 ≤

.

A (o) ≤ 1. This idea has the skill to access data in [0, 1]. In the decision-making 
process, FS considers a big revolution to access human ideas accurately. FS theory failed due to a dissatisfactory 
degree (DSD). It cannot access data if SDS is involved. To address this, Atanassov2 gave the notion of DSD to 
the fuzzy theory and introduced the intuitionistic fuzzy (IFS) concept. This theory contains both SD and DSD 
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lying between 0 and 1 and achieved the condition 0 ≤
.

A (o) +
..

β (o) ≤ 1. IFS theory provides a large range 
of Information for investigating human ideas. Further, many researchers use this idea in the application Khan 
et al.3 established the idea of circular IF preference relation with group decision making, and Kumar4 used 
IF to selecting stock. Further, many experts give such data of SD and DSD that cannot fulfill the condition 
0 ≤

.

A (o) +
..

β (o) ≤ 1, such as 0 ≤ 0.61 + 0.66 = 1.27 ≰ 1. To address this situation, Yagar5 provided the 

concept of Pythagorean fuzzy set (PyS) theory with the limitation that the 0 ≤
.

A
2

(o) +
..

β
2

(o) ≤ 1 means the 

square sum of SD 
.

A (o) and DSD lies between 0 and 1. Even while IFS and PyFS theory accomplished accurately 
defining ambiguous data, there are still some issues that they cannot handle; many experts give such data of SD 
and DSD that cannot fulfill the condition of IFS and PyFS theory, such as 0 ≤ 0.882 + 0.692 = 1.2505 ≰ 1 
exceeds 0 and 1. To order this problem, To address this situation, Yager6 discussed the q-rung orthopair fuzzy 
set theory (q-ROFS). This theory provides an extensive range as compared to IFS and PyFS theory for ambiguous 

data such as 0 ≤
.

A
q

(o) +
..

β
q

(o) ≤ 1. Farhadinia et al.7 investigate the family of similarity measures for 
q-ROFS, and Dhumras et al.8 established an application of green supplier selection using TOPSIS with R-norm 
q-rung picture fuzzy data and address the application to MCDM. Peng et al.9 proposed aggregation operators 
(AOs) and exponential operators based on q-ROFS and investigated the application with a new score function 
based on the decision-making process. Still, many scholars consider more advances than before notion, but 
under some conditions during the decision-making process, the theory, in which he splits the SD in terms of 

a complex set, where 
.

A (o) ∈ [0, 1] , and ′Ω .
A(o)

∈ [0, 1], also satisfy the term 0 ≤
[ .

A (o) , ′Ω .
A(o)

]
≤ 1. 

The C-FS is indicated by complex functions such as E =
(

.

A (o) .e
2π i′Ω .

A(o)

)
. Buckley10 proposed a C-FS 

number. Rahman and Muhammad11 established aggregation operators based on a complex polytopic fuzzy 
model. Rahman and Muhammad12 proposed complex polytopic fuzzy AOs and improved decision-making 
through confidence levels. C-FS theory has more advances than before, but under some conditions during 
decision-making, C-FS cannot access the data by utilizing complex values. To address this issue, Alkouri 

and Salleh13 proposed the notion of complex IFS (C-IFS), in which he splits the SD and DSD in terms of a 

complex set, where 
.

A (o) ∈ [0, 1] , ′Ω .
A(o)

∈ [0, 1], 
..

β (o) ∈ [0, 1] and Ω ..
β(o)

∈ [0, 1] also satisfy the 

term 0 ≤
.

A (o) +
..

β (o) ≤ 1 and 0 ≤ ′Ω .
A(o)

+ Ω ..
β(o)

≤ 1. The C-IFS is indicated by complex function 

such as, db =
{(

.

A (o) .e
2π i′Ω .

A(o) ,
..

β (o) .e
2π iΩ ..

β(o)

)}
. Ahmad et al.14 established an application in 

decision making problems based on complex intuitionistic hesitant fuzzy data. At some situation the sum of real 
value of SD and real value of SDS exceed from 1. To handing the human opinion, Ullah et al.15 discussed the 
concept of complex Pythagorean fuzzy set (C-PyFS) where 

.

A (o) ∈ [0, 1] , ′Ω .
A(o)

∈ [0, 1], 
..

β (o) ∈ [0, 1] 

and Ω ..
β(o)

∈ [0, 1] and also satisfy the term 0 ≤
.

A
2

(o) +
..

β
2

(o) ≤ 1 and 0 ≤ ′Ω2
.
A(o)

+ Ω2
..
β(o)

≤ 1. 
Because they are more generalized than C-FS and C-IFSs, researchers have a lot of attention. Same problem 
arises in C-IFS and C-PyFS, when experts offer such kind of data, which cannot fulfill the condition 
of CIFS and C-PyFS such as 0 ≤ 0.812 + 0.632 = 1.053 ≦̸ 1, 0 ≤ 0.822 + 0.652 = 1.0949 ≦̸ 1 
and 0 ≤ 0.923 + 0.713 = 1.137 ≦̸ 1, 0 ≤ 0.883 + 0.773 = 1.138 ≦̸ 1. To resolve these types 
of problem, Liu et al.16 proposed the idea of complex q-ring orthopair fuzzy set (C-qROFS) which 

.

A (o) ∈ [0, 1] , ′Ω .
A(o)

∈ [0, 1], 
..

β (o) ∈ [0, 1] and Ω ..
β(o)

∈ [0, 1] and also satisfy the term 

0 ≤
.

A
q

(o) +
..

β
q

(o) ≤ 1 and 0 ≤ ′Ωq
.
A(o)

+ Ωq
..
β(o)

≤ 1. The C-qROFS is considered by a complex valued 

function, as Φ =
{(

.

A (o) .e
2π i′Ω .

A(o) ,
..

β (o) .e
2π iΩ ..

β(o)

)
: o ∈ Υ

}
. The C-qROFS provided large range 

from all above discuss notion and more flexible to handling the ambiguity. The comparison table of C-qROFS 
with other sets is discuss in (Table 1).

Importance of TNM and TCNM operations
In fuzzy set theory, the t-norm (TNM) and t-conorm (TCNM) operations are vital in modeling and managing 
ambiguous and uncertain data. TNM and TCNM are essential in describing how fuzzy sets relate, mainly in 
aggregation operations in fuzzy theory and the decision-making process. The Sugeno-Weber TNM and TCNM 
are significant in C-qROFS due to their flexibility and parameterized environment, which improve decision-
making abilities based on complex ambiguity. Sugeno-Weber AOs proposed a parameter Q, which allows for 
monitoring the collaboration between satisfactory and dissatisfactory degrees. In C-qROFS, in which ambiguity 
involves phase term and q-ROF limitations, this adaptive allows flexibility modification for different areas, such 
as risk analysis or personalized decision-making. The complex framework of C-qROFS needs innovative AOs 
to operate effectively in both magnitude and phase terms. Sugeno-Weber AOs can offer robust techniques for 
a combination of fuzzy data. It can make them suitable for MCDM when accurate modeling of collaboration 
properties is essential. Sugeno-Weber operations apply to C-qROFS in fields like Medical diagnosis, Engineering 
systems, and Risk management. They give a prevailing structure for effectively managing multi-dimensional 
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and phase-based hesitations in real-life problems. Thus, for the first time, the notion of triangular norm was 
discussed by Manger et al.17. He used FS theory to provide data scientists and mathematicians with a novel way to 
aggregate ambiguous data. Next, mathematicians formed several TNM and TCNM operations for various fuzzy 
contexts. For example, the concept of Dombi AOs for C-qROFS discussed by Ali and Mahmood18, Sun et al.19 
expressed an AHP model applying PYFS data for MCDM contests, Mandal and Seikh20 investigate Dombi AOs 
under interval-valued spherical fuzzy MABAC method and Ali21 proposed proposed an application for selection 
of sustainable supplier under spherical fuzzy framework with Aczel-Alsina prioritization. Akram et al.22 give the 
idea of C-IFS Hamacher TNM and TCNM for decision-making, and Khan et al.23 using Aczel-Alsina TNM and 
TCNM for intuitionistic fuzzy rough (IFR) prioritized AOs. To select robots based on IFR TOPSIS expending 
Einstein AOs presented by Qadir et al.24. We have assumed hypothetical weights for our information. Many other 
researcher use many AO operator for WV such as Turskis et al.25 used AHP for the selection of construction site 
selection, Khan et al.26 used Power AOs to find the WV and khan et al.27 used prioritize AOs to calculate the 
WV. Sugeno established this concept in his PHD thesis. Later on, Weber introduced the idea of Sugeno-Weber 
TNM and TCNM. Sugeno-Weber triangular norms are flexible and effective aggregation methods used to solve 
uncertain information about real-life problems in decision-making. For healthcare supply chain management, a 
group decision-making approach with Sugeno-Weber was introduced by Senapati et al.28. Sugeno-Weber TNM 
and TCN for spherical fuzzy set and their application in real-life problems proposed by Hussain and Ullah29.

Applications of the EDAS technique in fuzzy set theory
EDAS is a decision-making method that is especially applicable to MCDM problems. EDAS is used to select the 
best alternative from many providers based on distance from the averaging solution. This technique can handle 
human judgment and expert opinion. EDAS technique is essential for many real-life problems where human 
opinion plays a vital role. Using the EDAS technique on IFR for multicriteria group decision-making (MCGDM) 
proposed by Yahya et al.30. Li et al.31. introduced the concept of the EDAS technique for MCGDM based on 
q-ROF context31. and Qiyas et al.32 presented the idea of C-qROF rough Hamacher AOs by the EDAS method. 
Dhumras and Bajaj33 proposed a picture of fuzzy soft Dombi AOs and Improved EDAS technique for MCDM 
in robotic agrifarming. Khan and Wang34 proposed application to decision-making and generalized and group-
generalized parameter Fermatean fuzzy AOs.

Importance of case study
According to case studies, personalized knee therapy provides significant benefits of customized exercise plans 
to the individual. It highlights the significance of a person-centered method, which leads to improved results, 
decreases the hazard of reinjury, and improves durable usefulness. Clinicians, patients, and researchers benefit 
significantly from meaningful how personalized exercise exists custom-made following every patient’s specific 
individuality. This case study investigates how fuzzy theory improves decision-making in customized exercises. 
Its primary goals are to maximize muscle strength improvement, Cardiovascular Endurance, Recovery Time, 
and Improvement in flexibility and range of motion. Duong et al.35 proposed the Evaluation and handling 
of knee pain, prevention, and management of injuries on exercise prescription for exercise and sport science 
position presented by Beck et al.36 and improve the treatment of sports knee injuries based on personalized 
exercise prescription presented by Chen et al.37. Plans for the prevention of knee injuries were presented by Roos 
and Arden38. The study of prevention from knee injuries by physical activities offered by Bendrik et al.39. Figure 
1 shows the Knee rehabilitation exercises.

Research gap and motivation
We detected that the Sugeno Weber TNM, TCNM, and EDAS methods for C-qROF data were not explored. 
Nevertheless, the C-qROFS is wider-ranging than some existing ones, such as C-FS, C-IFS, and C-PyFS, and 
based on Sugeno Weber, TNM TCNM and EDAS are superior to other AOs. So, it is necessary to define a few 
novel AOs for the C-qROFS environment using the Sugeno Weber TNM, TCNM, and EDAS techniques. Finally, 
we proposed C-qROFS Sugeno-Weber weighted averaging (C-qROFSWWA) and C-qROF Sugeno-Weber 
weighted geometric (C-qROFSWWG) aggregation operator and EDAS technique to fill this gap. These tools 
are advanced tools for decision-making in ambiguous environments. The C-qROFSWWA and EDAS aggregate 
satisfactory and dissatisfactory degrees in C-qROFS by allocating weight. The C-qROFSWWG calculates 
Information by multiplication and highlights proportional change while recollecting the impact of individual 

Model Satisfactory Dissatisfactory Hesitancy degree q- parameter Handles higher uncertainty Satisfactory in the complex plane Phase data (real + imag)

FS Yes No No No Low No No

IFS Yes Yes Yes No Moderate No No

PyFS Yes Yes Yes q = 2 High No No

q-ROFS Yes Yes Yes q ≥ 1 Higher No No

C-FS Yes No No No Moderate Yes Yes

C-IFS Yes Yes Yes No Higher Yes Yes

C-PyFS Yes Yes Yes q = 2 Higher Yes Yes

C-profs Yes Yes Yes q ≥ 1 Highest Yes Yes

Table 1.  Provides the comparison of C-qROFS with other fuzzy frameworks.
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elements. The operators recognize the C-qROF properties, certifying the sum of power q of satisfactory and 
dissatisfactory degrees cannot exceed 1. We applied our work to numerical examples. The main aids of our 
suggested AOs are described below:

1) if we have put q = 2 in C-qROFS, our suggested AOs have been changed to C-PyFS.
2) if we have put q = 1 in C-qROFS, our suggested AOs are changed to C-IFFS.
3) If we have taken q = 2 and ′Ω .

A(o)
= Ω ..

β(o)
= 0 in C-qROFS, our suggested AOs are changed to PyFS.

4) If we take q = 1 and ′Ω .
A(o)

= Ω ..
β(o)

= 0 in C-qROFS, our suggested AOs have been changed to IFS.

Advantages of the proposed method

	1.	 The proposed technique is based on C-qROFS, Sugeno Weber, and EDAS operators, expanding decision 
correctness by taking more ambiguity and imprecision in Knee injury data.

	2.	 C-qROFS realistically contracts with vagueness and unsatisfactory data. C-qROFS creates the development 
suitable for real-world Knee injury healing.

	3.	 The Sugeno Weber aggregation operator suggests a more stable aggregation by mutuality among criteria, 
leading to more dependable decision outcomes.

	4.	 EDAS offers a modest and operative way to rank alternatives by associating their distances with an average 
solution.

	5.	 The proposed model is optimal for high-order Knee injury data examination, where numerous criteria 
should be evaluated.

	6.	 The proposed method can apply to numerous real-life applications, such as Environmental Impact Assess-
ment, Artificial Intelligence & Decision Support Systems, Healthcare Decision Making, Supplier or Vendor 
Selection, and Engineering Design and Evaluation.

Organization of proposed theory
The main structure of this article is as follows: In Sect. 2, we explain previous definitions related to our article 
and propose the basic idea and concepts, such as the Sugeno Weber based on C-qROFS and their operational 
laws. In Sect. 3, we propose some aggregation operators, such as C-qROFSWWA and C-qROFSWWG, using 
C-qROFS, Information corresponding to the operational laws of Sugeno weber TNM and TCN and also discuss 
some essential properties of these operators. Section 4 uses C-qROFSWWA and C-qROFSWWG operators to 
investigate the MCDM problem with C-qROF data, using MCDM to solve real-life examples and discuss the 
EDAS technique and algorithm. In Sect. 5, we compare our suggested operator with various existing operators. 
In Sect. 6, the Conclusion is discussed.

Preliminaries
Here, we review essential definitions relevant to our articles, such as C-FS, C-IFS, C-PyFS, and C-qROFS, and 
their laws. Table 2 is for clarification of symbols used in our article.

Definition 140  Consider fix set Υ, and the C-FS is described on Υ as: 

	
E =

{(
.

A (o) .e
2π i′Ω .

A(o)

)
: o ∈ Υ

}

where 
.

A (o) and ′Ω .
A(o)

represented the amplitude and phase term of satisfactory degree (SD), also 
.

A (o) , ′Ω .
A(o)

∈ [0, 1] . where i =
√

−1.

Fig. 1.  Show the best exercises for the knee. Address: ​h​t​t​p​s​:​​/​/​w​w​w​.​​p​i​n​t​e​r​​e​s​t​.​c​o​​m​/​p​i​n​​/​r​e​m​e​d​​i​e​s​-​-​9​​0​5​6​4​6​4​​2​4​9​4​
6​0​1​2​4​9​/.
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Definition 241  Consider fix set Υ, and the C-IFS is described on Υ as follows:

	
Z =

{(
.

A (o) .e
2π i′Ω .

A(o) ,
..

β (o) .e
2π iΩ ..

β(o)

)
: o ∈ Υ

}

where 
.

A (o), ′Ω .
A(o)

, 
..

β (o) and Ω ..
β(o)

 represented the amplitude and phase term of SD and dissatisfactory 

degree (DSD), Also 0 ≤
.

A (o) +
..

β (o) ≤ 1, 0 ≤ ′Ω .
A(o)

+ Ω ..
β(o)

≤ 1 and 
.

A (o) , e
2π i′Ω .

A(o) ,
..

β (o) and 

e
2π iΩ ..

β(o)  from [0, 1]. Where i =
√

−1. The hesitancy grade is described as δ = 1 −
( .

A (o) +
..

β (o)
)

 and 

δ = 1 −
(

′Ω .
A(o)

+ Ω ..
β(o)

)
.

Definition 315  Consider fix set Υ, and the C-PyFS is described on Υ as follows:

	
Z =

{(
.

A (o) .e
2π i′Ω .

A(o) ,
..

β (o) .e
2π iΩ ..

β(o)

)
: o ∈ Υ

}

where 
.

A (o), ′Ω .
A(o)

, 
..

β (o) and Ω ..
β(o)

 represented the amplitude and phase term of SD and DSD, also 

0 ≤
.

A
2

(o) +
..

β
2

(o) ≤ 1, 0 ≤ ′Ω2
.
A(o)

+ Ω2
..
β(o)

≤ 1 and 
.

A (o) , e
2π i′Ω .

A(o) ,
..

β (o) and e
2π iΩ ..

β(o)  

from [0, 1]. Where i =
√

−1. The hesitancy degree is defined as δ =
√

1 −
( .

A
2

(o) +
..

β
2

(o)
)

 and 

δ =

√
1 −

(
′Ω2

.
A(o)

+ Ω2
..
β(o)

)
.

Definition 416  Consider fix set Υ; The C-qROFS is described on Υ as follows:

	
Φ =

{(
.

A (o) .e
2π i′Ω .

A(o) ,
..

β (o) .e
2π iΩ ..

β(o)

)
: o ∈ Υ

}

where 
.

A (o), ′Ω .
A(o)

, 
..

β (o) and Ω ..
β(o)

 represented the amplitude and phase term of SD and DSD, also 

0 ≤
.

A
q

(o) +
..

β
q

(o) ≤ 1, 0 ≤ ′Ωq
.
A(o)

+ Ωq
..
β(o)

≤ 1 and 
.

A (o) , e
2π i′Ω .

A(o) ,
..

β (o) and e
2π iΩ ..

β(o)  

from [0, 1]. Where i =
√

−1. The hesitancy degree is defined as δ =
√

1 −
( .

A
q

(o) +
..

β
q

(o)
)

 and 

δ = q

√
1 −

(
′Ωq

.
A(o)

+ Ωq
..
β(o)

)
. For the easiness, C-qROFS write as 

(
.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
.

Definition 516  Consider any sets of C-qROFS, such as 
Φi =

(
.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
, 

Φ1 =
(

.

A1.e
2π i′Ω .

A1 ,
..

β1.e
2π iΩ ..

β1

)
 and Φ2 =

(
.

A2.e
2π i′Ω .

A2 ,
..

β2.e
2π iΩ ..

β2

)
 with γ > 0. So: 

Name Symbol Name Symbol

Amplitude term of SD
.

A
i

Phase term of SD ′Ω .
Ai

Amplitude term of the DSD
..

βi
Phase term of the DSD Ω ..

βi

Alternatives L Criteria T
C-qROFS Φi C-FS E
C-IFS db C-PyFS Z

Hesitancy degree δ Sugeno Weber TNM SQ

Score function SF (Φ) Accuracy function AF (Φ)

Sugeno Weber TCNM NQ Averaging solution G

Positive distance from averaging Jxy Negative distance from averaging Pxy

Weight sum negative distance from averaging RL Weight sum of the positive distance from DL

Normalize positive distance averaging. ΛL Normalize negative distance averaging. ΛNL

Table 2.  Explanation of symbol.

 

Scientific Reports |        (2025) 15:22499 5| https://doi.org/10.1038/s41598-025-03327-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


1) 

	

Φ1 ⊕ Φ2 =


 q

√
.

A
q

1 +
.

A
q

2 −
.

A
q

1
.

A
q

2.e
2π i q

√
′Ωq

.
A1

+′Ωq
.
A2

−′Ωq
.
A1

′Ωq
.
A2

,
..

β1.
..

β2.e
2π iΩ ..

β1
.Ω ..

β2




2) 

	

Φ1 ⊗ Φ2 =




.

A1.
.

A2.e
2π i′Ω .

A1
.Ω ..

β1

,
q

√
..

β
q

1 +
..

β
q

2 −
..

β
q

1

..

β
q

2.e
2π i q

√
Ωq

..
β1

+Ωq
..
β2

−Ωq
..
β1

Ωq
..
β2




3) 

	

γΦ1 =




q

√
1 −

(
1 −

.

A
q

1

)γ

.e
2π i q

√
1−(1−′Ωq

1)γ

,
( ..

β1

)γ

.e
2π i

(
Ω ..

β1

)γ




4) 

	

Φγ
1 =




( .

A1

)γ

.e
2π i

(
′Ω .

A1

)γ

, q

√
1 −

(
1 −

..

β
q

1

)γ

.e

2π i q

√
1−

(
1−Ωq

..
β1

)γ




Definition 616  Consider any set of C-qROFS, such as 
Φi =

(
.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
, the score function 

SF (Φ) and accuracy function AF (Φ) defined below: 

	
SF (Φ) =

.

A
q

i −
..

β
q

i + ′Ωq
.
Ai

− Ωq
..
βi

2 : SF (Φ) ∈ [−1, 1]� (1)

	
AF (Φ) =

.

A
q

i +
..

β
q

i + ′Ωq
.
Ai

+ Ωq
..
βi

2 : AF (Φ) ∈ [−1, 1]� (2)

The score value function measures the overall performance of each alternative by combining its criteria values 
into a single comparable score. This helps rank alternatives accurately based on multiple criteria.

Definition 716  Consider any sets of C-qROFS, such as Φ1 =
(

.

A1.e
2π i′Ω .

A1 ,
..

β1.e
2π iΩ ..

β1

)
 and 

Φ2 =
(

.

A2.e
2π i′Ω .

A2 ,
..

β2.e
2π iΩ ..

β2

)
, the comparison between any C-qROFS is listed following: 

1) SF (Φ1) > SF (Φ2), then Φ1 > Φ2.
2) SF (Φ1) < SF (Φ2), then Φ1 < Φ2.
3) SF (Φ1) = SF (Φ2), then

	 i)	 AF (Φ1) < AF (Φ1), then Φ1 < Φ2.
	ii)	 AF (Φ1) > AF (Φ1), then Φ1 > Φ2.
	iii)	 AF (Φ1) = AF (Φ1), then Φ1 = Φ2.

Sugeno Weber T-norm and T-conorm
Here, we discussed Sugeno Weber TNM and TCNM and some critical rules based on C-qROFS that are essential 
for this study.

Definition 842  Sarkar et al.42 proposed Sugeno Weber TNM and TCNM described as:
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SQ =




SℲ (c, r) , if Q = −1,

max
(

0,
c+r−1+crQ

1+Q

)
, if − 1 < Q < +∞

Sβ (c, r) , if Q = +∞
,� (3)

And

	

NQ =





N F(I, r) , if Q = −
1,

min
(

1, I + r − Q
1+QIr

)
, if − 1 < Q < +∞ ,

Nβ (I, r) , if Q = +∞

� (4)

Here S F(I, r) and N F(I, r) represent the drastic TNM and TCNM. Also Sβ (I, r) and Nβ (I, r) show 
the sum of TNM and TCNM.

The Sugeno Weber TNM patterns the fuzzy intersection by combining inputs with a flexible parameter that 
corrects interaction strength. The Sugeno Weber TCNM patterns the fuzzy union permitting for a measured 
combination of ambiguity across criteria.

Definition 9  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
, 

Φ1 =
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A
1

.e
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..
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)
 and Φ2 =
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A
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.e
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A
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..

β
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.e

2π iΩ ..
β

2

)
 with γ > 0. Some essential laws 

based on Sugeno Weber TNM and TCNM are described following:

1) 

	

Φ1 ⊕ Φ2 =
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2) 
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3) 

	

γΦi =
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4) 
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Complex q-rung orthopair fuzzy Sugeno Weber aggregation operators
We proposed some aggregation operators, such as C-qROFSWWA and C-qROFSWWG, using C-qROFS 
information corresponding to the operational laws of Sugeno Weber TNM explained in definition 9. We have 
defined some of these operators’ essential properties.

Definition 10  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 i = 1, 2, . . . , ξ. 

The C-qROFSWWA operator is described in the following:

	
C − qROFSWWA (Φ1, Φ2, . . . , Φξ) =

∑
ξ
i=1γiΦi� (5)

Here γi = (γ1, γ2, . . . , γξ) be the weight vector with γi ∈ [0, 1] and 
∑ ξ

i=1γi = 1.

Theorem 1  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 i = 1, 2, . . . , ξ, when 

we are applied C-qROFSWWA outcome is also C-PyFVs, as:

	

C − qROFSWWA (Φ1, Φ2, . . . , Φξ) =
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� (6)

Proof  Proof of this theorem is given in the appendix.

The C-qROFSWWA Eq. (4) calculates the score by multiplying each value by its assigned weight, summing the 
outcomes, and allotting by the total weights. It helps reflect the relative importance of each criterion in decision-
making.

Theorem 2  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 i = 1, 2, . . . , ξ, 

which implies Φi = Φ. So, we have:

	 C − qROFSWWA (Φ1, Φ2, . . . , Φξ) = Φ� (7)

Proof  Proof of this theorem is given in the appendix.

Theorem 3  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 and, 

︷︸︸︷
Φ i =




︷︸︸︷
.

A i.e
2π i

︷︸︸︷
′Ω .

Ai ,

︷︸︸︷
..

β i.e
2π i
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Ω ..

βi


 i = 1, 2, . . . , ξ. So, Φi ≥

︷︸︸︷
Φ i So, we have:
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C − qROFSWWA (Φ1, Φ2, . . . , Φξ) ≥ C − qROFSWWA

(︷︸︸︷
Φ i1,

︷︸︸︷
Φ i2, . . . ,
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Φ iξ

)
� (8)

Proof  Proof of this theorem is given in the appendix.

Theorem 4  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 

i = 1, 2, . . . , ξ, here Φ− =


min

( .

Ai

)
.e

2π imin
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)
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)
, min

( ..
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2π imin

(
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)
 , we can write

	 Φ− ≤ C − qROFSWWA (Φ1, Φ2, . . . , Φξ) ≤ Φ+� (9)

Proof  Proof of this theorem is given in the appendix.

Definition 11  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 i = 1, 2, . . . , ξ. 

The C-qROFSWWG operator is described in the following:

	
C − qROFSWWG (Φ1, Φ2, . . . , Φξ) =

∑
ξ
i=1 (Φi)

γi

� (10)

Here γi = (γ1, γ2, . . . , γξ) be the weight vector with γi ∈ [0, 1] and 
∑ ξ

i=1γi = 1.

Theorem 5  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 i = 1, 2, . . . , ξ, when 

we can apply C-qROFSWWG outcome is also C-PyFVs, as:
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� (11)

Proof  To prove this theorem, follow all the steps of (Theorem 1).

The C-qROFSWWG multiplies each value raised to the power of its assigned weight. It helps combine ratios or 
percentages while preserving proportional relationships.

Theorem 6  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 i = 1, 2, . . . , ξ, 

which implies Φi = Φ. So, we have:

	 C − qROFSWWG (Φ1, Φ2, . . . , Φξ) = Φ� (12)

Proof  To prove this theorem, follow all the steps of Theorem 2.

Theorem 7  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 and, 
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
 i = 1, 2, . . . , ξ. So, Φi ≥
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Φ ii, So, we have:
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C − qROFSWWG (Φ1, Φ2, . . . , Φξ) ≥ C − qROFSWWG

(︷︸︸︷
Φ i1,

︷︸︸︷
Φ i2, . . . ,

︷︸︸︷
Φ iξ

)
� (13)

Proof  To prove this theorem, follow all the steps of (Theorem 3).

Theorem 8  Consider any sets of C-qROFS, such as Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 

i = 1, 2, . . . , ξ, here Φ− =
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)
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)
, we can write

	 Φ− ≤ C − qROFSWWG (Φ1, Φ2, . . . , Φξ) ≤ Φ+� (14)

Proof  To prove this theorem, follow all the steps of (Theorem 4).

A proposed approach to the MCDM problem based on C-qROF data
C-qROFSWWA and C-qROFSWWG operators are used to investigate the MCDM problem with 
C-qROF data. Assume L = {L1, L2, . . . , Lξ} (ξ = 1, 2, . . . , i) be the group of alternatives and 
T = {T1, T2, . . . , Tξ} be the group of criteria. All the attributes with weight vector γi = {γ1, γ2, . . . , γξ} 

with 
∑ ξ

i=1γi = 1 and γi ∈ [0, 1] (ξ = 1, 2, . . . , i). Assume the decision matrix W = (ΦLT)x× y , take 
Φi =
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)
 represent the C-qROFVs, 

.

Ai and e
2π i′Ω .

Ai  denotes the amplitude and 
phase term of SD of alternatives and 

..

βi and e
2π iΩ ..

βi  denotes the amplitude and phase term of the DSD of 
alternatives. Now, we can build a decision matrix in the arrangement:
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In this decision matrix, 


 .

A
xy

.e

2π i′Ω .
A

xy ,
..

β
xy

.e2π iΩ xy


 be the C-qROFVs. Next, we can apply our introduced 

C-qROFSWWA and C-qROFSWWG operators to find the best alternatives in real-life problems. For this resolve, 
we can use the algorithm defined in (Fig. 2):

Figure 2 shows the algorithm to select the best alternative by assessing numerous criteria through fuzzy 
aggregation techniques. The procedure starts by gathering Information and applying the C-qROFSWWA and 
C-qROFSWWG operators to account for uncertainty. Finally, the score function ranks the alternatives and 
identifies the one with the highest score.

Step 1. Generally, all data about an attribute is divided into beneficial and non-beneficial types. Before the 
aggregation procedure, we must change all the data to the same type by normalizing the decision matrix using 
the following formula.

	

Φi =





.

A
i
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βi.e
2π iΩ..

βi if beneficial type

..
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2π iΩ..

βi ,
.

A
i

.e
2π i′Ω .

Ai if non − beneficial type

Step 2. We can use our suggested C-qROFSWWA and C-qROFSWWG operators to aggregate the decision 
matrix. We take parameters in our article q = 3 and Q = 2 for both C-qROFSWWA and C-qROFSWWG.
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C − qROFSWWA (Φ1, Φ2, . . . , Φξ) =
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Step 3. In this step, use definition 5 to calculate the score value.
Step 4. Rank all the score values to select the better alternative.
Step 5. End.

Case study
The algorithm for choosing the best alternative is highly essential in the framework of personalized exercise 
prescription for preventing knee injury because it certifies that decisions are created based on individualized 
criteria such as the level of muscle strength improvement, Cardiovascular Endurance, Recovery Time, and 

Fig. 2.  Algorithm for the selection of best alternative.

 

Scientific Reports |        (2025) 15:22499 11| https://doi.org/10.1038/s41598-025-03327-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Improvement in flexibility and range of motion. By using advanced fuzzy combination approaches like the 
C-qROFSWWA, C-qROFSWWG, and the EDAS technique, the algorithm can handle the hesitation and 
inconsistency inherent in human health data. This leads to more accurate and personalized exercise prescriptions, 
vital for effectively preventing knee injuries in diverse populations.

Knee injuries are common in sportspersons, older adults, and biomechanical situations. Personalized exercise 
prescriptions approach avoiding these injuries by modifying activities and therapy for each person’s needs. In 
the following, four doctors provide complete awareness of how tailored exercise strategies, a key component of 
personalized exercise, can help avoid knee injuries.

Orthopedic surgeon
Orthopedic surgeons point out that the most important cause of knee injuries can be muscle imbalances, 
mainly in the hamstrings and quadriceps. A personalized exercise plan provides defensive exercises for these 
muscles. Personalized exercise meaningfully decreases the risk of knee problems. Muscle strengthening around 
the knee joint is vital. However, balance is equally significant. Numerous People ignore their hamstrings and 
overdevelop their quadriceps, leading to injury and uncertainty. An experienced establishment plan can prevent 
this imbalance.

Physical therapist
Physical Therapists highlight that preserving full knee mobility and flexibility is essential for preventing knee 
injuries, mostly in older people or pre-existing knees. If muscles such as calves and hip flexors are tight and 
muscles have less flexibility, it causes knee injuries in movement. Mobility and flexibility exercises prevent long-
lasting injuries. He offered hip flexor stretches and a regular calf regimen to keep the knee joint flexible, tied with 
low-impact movements and hamstring.

Sports medicine specialist
The Sports Medicine Specialist technique is based on proprioception, the body’s ability to sense action, 
movement, and location. The possibility of knee injuries will increase if there is a Loss of proprioception, mostly 
in sportspersons. Incorporating exercise control can immensely lower the risk of knee injuries and anterior 
cruciate ligament. A personalized exercise strategy should include drills that challenge balance and coordination. 
He advises participants on plyometrics, agility drills, and single-leg balance exercise training.

Rheumatologist
The rheumatologist highlights that if a person has extra weight, it puts more stress on the knee joint and increases 
the risk of injury. To solve this problem, personalized exercise is vital in reducing weight. Each extra weight 
puts more stress on joints, and injury problems will be increased. To reduce the pressure on the knee joint, he 
provides exercise plans for losing weight, depth training, and management plans to avoid knee injuries. He 
offered low-impact exercise plans such as aquatic therapy, walking, or riding for people who are overweight. 
Strength training also helps the knee joint without extra joint burden.

Experimental case study
In this section, MCDM approaches help to select the optimal exercise prescription from different alternatives 
evaluated across criteria. The MCDM method of handling human doubt and medical data is essential in decision-
making. This real-life problem considers four alternatives. L = {L1, L2, . . . , Lξ} Listed below:

L1  =Balance and proprioception exercises
An unbalanced body and unstable movements cause the injuries. Proprioception and balance help prevent knee 
injuries. Proprioception helps the body retain its proper position during movement. Good balance decreases the 
possibility of falling, which can cause stress in the knee muscles. For this purpose, exercises are balance bean, 
stability disc, Bosu ball, dynamic stability, single-leg stands, and agility exercise. It helps muscle around the knee 
and prevents knee injuries. Balance and joint stability are beneficial for both older adults and sportspersons. 
Figure 3 Show the exercise for Balance and proprioception exercises.

L2 =Flexibility and stretching routines
Enhancing the extensibility of your knee cases makes the tissues less stiff, and, in turn, more excellent motion 
is integrated into that joint. Flexible systems ensure that the knees can operate and not risk any harm through 
their range of motion. Flexible muscles and position provide a full range of motion without stress on the knee. 
For this purpose, exercises such as static stretching, hip flexor and calf stretches, and dynamic stretching: lunges 
with a twist, Leg swings, walking knee hugs, and foam rolling support muscle tightness and flexibility in tissue. It 
decreases the risk of acute injuries. Figure 4 shows the flexibility and stretching routines exercise.

L3 =Aerobic conditioning with low-impact activities
Improve muscle strength and cardiovascular health while, at the same time, decreasing the stress on the knee 
joint by low-impact activities. Aerobic conditioning improves cardiovascular and blood flow, which can help 
people recover from injuries. It can also help individuals prevent injuries to the knee. For this purpose, exercises 
include elliptical training, cycling, walking, elliptical training, Aquatic exercises, and rowing. These exercises 
support strengthening muscles, and during long activities, they support and stabilize the knee joint. Figure 5 
shows the best Aerobic conditioning with low-impact activities.
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L4 =Strength training focused on quadriceps and hamstrings
Strength training improves the stability of knee joints by quadriceps and hamstrings. During movement, the 
quadriceps support the knee joint, and the hamstrings stabilize the knee joint. The weak muscles cause injuries 
to the knee joint, especially during sudden direction changes when jumping and running. The quadriceps and 
hamstrings help to reduce the risk of knee injuries. For this purpose, glute bridges, deadlifts, squats, step-ups, 
leg presses, and lunges are exercises. It helps muscles around the knee and reduces the stress on the knee joint. 
If these exercises are done incorrectly and without proper balance between the quadriceps and hamstrings, they 
cause knee injuries. Figure 6 show the Strength training focused on the quadriceps and Fig. 7 Show the top ten 
hamstring exercises.

The mentioned four types of personalized exercise are assessed across four criteria, which are listed following: 

	1)	 T1 = level of muscle strength improvement
	2)	 T2 = cardiovascular endurance
	3)	 T3 = recovery time
	4)	 T4 = improvement in flexibility and range of motion

C-qROF presents the principles related to all alternatives and criteria by weight vector allocated to all 
requirements to show the importance of the requirements. The expert gives 0.31 weight to the level of muscle 
strength improvement, 0.28 to Cardiovascular Endurance, 0.22 to Recovery Time, and 0.19 to flexibility and 
range of motion improvement. The AOs calculate the total fuzzy performance for each biometric authentication 
method.

The decision matrix for the experimental case study is shown in (Table 3), and all values are C-qROFVs.
Step 1. Generally, all data about an attribute is divided into beneficial and non-beneficial types. However, in 

this experimental case study, all attributes are beneficial.
Step 2. We used our suggested C-qROFSWWA and C-qROFSWWG operators to aggregate the decision 

matrix. All aggregated values are shown in (Table 4).

Fig. 4.  Show the best position for flexibility and stretching routine exercises. Address: ​h​t​t​p​s​:​/​/​w​w​w​.​p​i​n​t​e​r​e​s​t​.​c​o​
m​/​p​i​n​/​4​0​8​4​2​0​2​5​9​9​4​1​2​9​8​1​7​2​/​​​​​.​​​​

 

Fig. 3.  Show the best position for balance and proprioception. Address: ​h​t​t​p​s​:​​/​/​w​w​w​.​​a​t​h​l​e​t​​e​s​c​a​r​e​​.​c​o​m​/​​c​h​i​r​o​p​​r​
a​c​t​o​r​​s​-​t​o​r​o​​n​t​o​-​b​​l​o​g​/​t​h​​e​-​b​e​n​e​​f​i​t​s​-​o​​f​-​b​a​l​a​n​c​e​-​-​p​r​o​p​r​i​o​c​e​p​t​i​o​n​~​7​.​h​t​m​l.
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Step 3. Use Eq. (1) to calculate the score value. All calculated score values are displayed in Table 5 Also, a 
graphical representation of the score value is shown in (Fig. 8).

Step 4. Ranking all the score values to select the better alternative. The ranking is shown in (Table 6).
Figure 8 shows that the highest ranking is L4 alternatives by using C-qROFSWWA and C-qROFSWWG. 

Also, in (Table 6), the highest score value is L4 alternatives. So, L4 is the best alternative of all alternatives.

EDAS method
Keshavarz Ghorabaee et al.43 presented the EDAS technique for multicriteria inventory. The following step is 
used for the EDAS technique to select the best alternative by distance averaging.

Step 1. First, some essential criteria for the selection of alternatives must be chosen.

Step 2. Construct decision matrix W = (ΦLT)x× y , take Φi =
(

.

Ai.e
2π i′Ω .

Ai ,
..

βi.e
2π iΩ ..

βi

)
 represent 

the C-qROFVs, 
.

Ai and e
2π i′Ω .

Ai  denotes the amplitude and phase term of SD of alternatives and 
..

βi and 
e

2π iΩ ..
βi  denotes the amplitude and phase term of the DSD of alternatives. Now, we have built a decision matrix 

in the arrangement:

Fig. 6.  Show the best exercise for a quadriceps strain. Address: ​h​t​t​p​s​:​​/​/​w​w​w​.​​f​a​c​e​b​o​​o​k​.​c​o​m​​/​P​h​y​s​​i​o​c​i​t​y​​1​/​p​o​s​t​​s​/​q​
u​a​d​​r​i​c​e​p​​s​-​s​t​r​a​​i​n​-​e​x​e​​r​c​i​s​e​-​​p​h​y​s​i​​o​-​p​h​y​s​​i​o​c​i​t​y​​-​p​h​y​s​i​​o​t​h​e​r​​a​p​y​-​p​h​​y​s​i​c​a​l​​t​h​e​r​a​p​​i​s​t​-​p​t​-​/​1​6​6​0​0​9​9​9​4​8​7​2​6​7​1​/.

 

Fig. 5.  Show the best exercise aerobic conditioning with low-impact activities. Address: ​h​t​t​p​s​:​​/​/​w​w​w​.​​v​h​w​e​l​l​​f​i​t​.​
c​o​​m​/​b​l​o​​g​/​6​-​l​o​​w​-​i​m​p​a​​c​t​-​w​o​r​​k​o​u​t​s​​-​t​o​-​e​a​​s​e​-​a​r​t​​h​r​i​t​i​s​​-​s​y​m​p​t​o​m​s​/.
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 be the C-qROFVs. Next, we can apply the EDAS 

method to find the best alternatives for real-life problems.
Step 3. To find the averaging solution G we can use the C-qROFSWWA operator for all criteria, as displayed 

below: γi = (γ1, γ2, . . . , γξ) be the weight vector, and the expert gives 0.31 weight to the level of muscle 
strength improvement, 0.28 to Cardiovascular Endurance, 0.22 to Recovery Time, and 0.19 to flexibility and 
range of motion improvement.

T1 T2 T3 T4

L1

{ 0.86
.e2π i0.74,

0.71
.e2π i0.75

} { 0.81
.e2π i0.67,

0.56
.e2π i0.82

} { 0.68
.e2π i0.61,

0.57
.e2π i0.74

} { 0.69
.e2π i0.74,

0.81
.e2π i0.77

}

L2

{ 0.91
.e2π i0.69,

0.47
.e2π i0.68

} { 0.65
.e2π i0.81,

0.89
.e2π i0.63

} { 0.73
.e2π i0.76,

0.64
.e2π i0.71

} { 0.88
.e2π i0.85,

0.54
.e2π i0.46

}

L3

{ 0.71
.e2π i0.73,

0.68
.e2π i0.69

} { 0.76
.e2π i0.78,

0.62
.e2π i0.49

} { 0.98
.e2π i0.65,

0.42
.e2π i0.65

} { 0.73
.e2π i0.78,

0.41
.e2π i0.79

}

L4

{ 0.79
.e2π i0.91,

0.79
.e2π i0.61

} { 0.72
.e2π i0.64,

0.72
.e2π i0.71

} { 0.88
.e2π i0.84,

0.48
.e2π i0.64

} { 0.95
.e2π i0.87,

0.52
.e2π i0.57

}

Table 3.  Decision matrix.

 

Fig. 7.  Show the top ten exercises for the hamstring. Address: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​f​a​c​e​b​o​o​​k​.​c​​​o​m​/​I​a​m​​P​h​y​s​i​o​​t​h​e​r​a​​​p​y​/​p​
o​​​s​t​s​/​g​r​​​e​a​t​-​​p​​o​s​​t​-​b​​y​-​b​r​e​t​​c​o​n​t​r​​​e​r​a​s​1​​​-​h​e​​r​e​-​​​a​r​e​​-​​m​y​-​​t​o​​p​-​t​e​n​-​​​f​a​v​o​r​i​​t​e​-​h​​a​​m​s​t​r​i​n​g​-​​e​x​e​​r​c​i​s​e​s​-​h​o​/​2​2​2​5​8​5​8​5​9​0​8​3​7​1​2​3​/.
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Ranking
C − qROFSWWA L4 > L3 > L2 > L1

C − qROFSWWG L4 > L3 > L2 > L1

Table 6.  Show the ranking of the score value.

 

Fig. 8.  Graphically representation of score value.

 

C − qROFSWWA C − qROFSWWG

L1 0.0249 0.0098
L2 0.1503 0.1096
L3 0.1684 0.1390
L4 0.1852 0.1560

Table 5.  Score values.

 

C − qROFSWWA C − qROFSWWG

L1

{
0.7866, 0.6973
0.6626, 0.7716

} {
0.7763, 0.6935
0.6768, 0.7735

}

L2

{
0.8181, 0.7772
0.6572, 0.6374

} {
0.7960, 0.7708
0.7029, 0.6446

}

L3

{
0.8188, 0.7409
0.5702, 0.6528

} {
0.7899, 0.7371
0.5827, 0.6663

}

L4

{
0.8379, 0.8347
0.6634, 0.6389

} {
0.8224, 0.8155
0.6834, 0.6424

}

Table 4.  Aggregated value by using C-qROFSWWA and C-qROFSWWG operators.
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This proposed aggregation operator is used to find the averaging solution.
Step 4. In this step, we have computed the positive distance from averaging Jxy  and negative distance from 

averaging Pxy , based on criteria (benefit and non-benefit type), displayed in the following:
For benefit type

	
γxy = max (0, (ΦLT − GT))

G

	
Pxy = max (0, (GT − ΦLT))

GT

If the criteria are beneficial, we used the above equation to find the positive and negative distance from averaging.
For non-benefit type

	
γxy = max (0, (GT − ΦLT))

GT

	
Pxy = max (0, (ΦLT − GT))

GT

We used the above equation to find the positive and negative distance from averaging if the criteria are non-
benefit.

Step 5. In this step, we can calculate the weighted sum DL of the positive distance from averaging γxy  and 
weight sum RL of negative distance from averaging Pxy  for given alternatives and γi = (γ1, γ2, . . . , γξ) be 
the weight vector with γi ∈ [0, 1] and 

∑ ξ
i=1γi = 1, display as below:

	
DL =

∑
y
T=1γTγxy

	
RL =

∑
y
T=1γTPxy

By using the equation of step 5, we found the weighted sum. DL of the positive distance from averaging Jxy  
and weight sum RL of negative distance from averaging Pxy .

Step 6. Now, the value of Jxy  and Pxy  Normalize for given alternatives, display as below:

	
ΛL = DL

max (DL)

	
ΛNL = 1 − RL

max (RL)

By using this equation to normalize the Jxy  and Pxy .
Step 7. Find the appraisal score (APS) value for given alternatives, display as below:

	
AP SL = ΛL + ΛNL

2 : AP SL ∈ [0, 1]

Using this equation, find the appraisal score value for all alternatives. The score value is used to find the ranking 
of other options.

Step 8. Ranking all the alternatives to use values of APS. The alternative with the highest APS value is the best.
We can apply all the steps in the experimental case study to find the best alternatives.
Step 1. First, choose some essential criteria such as level of muscle strength improvement, Cardiovascular 

Endurance, Recovery Time, and Improvement in flexibility and range of motion to select alternatives.
Step 2. The decision matrix for the experimental case study is shown in (Table  3), and all values are in 

C-qROFVs.
Step 3. To find the averaging solution G we have used the C-qROFSWWA operator for all criteria, and the 

aggregated value is displayed below:

	 G1 = (0.8397, 0.7715, 0.7513, 0.7771)

	 G2 = (0.7452, 0.7381, 0.7995, 0.7956)

	 G3 = (0.8342, 0.7212, 0.6875, 0.7847)

	 G4 = (0.8270, 0.8106, 0.7407, 0.7358)

Step 4. In this step, we can compute the positive distance from averaging Jxy  and negative distance from 
averaging Pxy  Aggregated values are shown in (Tables 7 and 8).

Step 5. In the following, we can calculate the weighted sum DL of the positive distance from averaging 
Jxy  and weight sum RL negative distance from averaging Pxy  For given alternatives. All calculated data of 
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weighted sum DL of the positive distance from averaging are displayed in Table 9 and weight sum RL negative 
distance from averaging (Table 10).

Step 6. Now, the value of Jxy  and Pxy  normalize
ΛL and ΛNL for given alternatives, Shown in (Table 11):

Step 7. Find the appraisal score (APS) value for given alternatives. The aggregated values of APS are shown 
in (Table 12). The graphical representation of APS is in (Fig. 9).

Step 8. Ranking all the alternatives to use values of (Table 12). The alternative with the highest APS value is 
the best. To see in (Table 13).

Table 13 shows that L4 has the highest APS value, so, L4 is the best alternatives.
By using EDAS method, C-qROFSWWA and C-qROFSWWG AOs L4 is the best alternative.

Comparative study
To dissimilarity the suggested method and some existing methods under C-qROFS framework, a relationship 
analysis was accomplished with different techniques such as complex q-rung orthopair fuzzy Hamacher 
weighted averaging (C-qROFHWA) and as complex q-rung orthopair fuzzy Hamacher weighted geometric 
(C-qROFHWG) proposed by Mahmood and Ali44, as complex q-rung orthopair fuzzy Yager weighted averaging 
(C-qROFYWA) and as complex q-rung orthopair fuzzy Yager weighted geometric (C-qROFYWG) proposed 
by Wu et al.45 and complex q-rung orthopair fuzzy weighted averaging (C-qROFWA) and as complex q-rung 
orthopair fuzzy weighted geometric (C-qROFWG) proposed by Liu et al.16. Ali and Mahmood46 proposed 
complex q-rung orthopair fuzzy Dombi weighted averaging (C-qROFDWA) and complex q-rung orthopair 
fuzzy Dombi weighted geometric. Raja et al.47 N-soft q-rung orthopair fuzzy N-soft weighted averaging 
(q-ROFNSWA) and weighted geometric (q-ROFNSWG) cannot be applied to C-qROFS because they cannot 
handle the complex numbers, phase terms. Their more straightforward framework is unsuitable for modeling 
the multi-dimensional and directional ambiguities that C-qROFS addresses. Yang et al.48 proposed complex 
intuitionistic fuzzy frank weighted averaging (CIFFWA) and weighted geometric (CIFFWG) cannot aggregate 
the c-qROFS, and weighted geometric (CIFFWG) cannot aggregate the c-qROFS and the sum of SFD and DSFD 
increase from 1. The acquired aggregated values are displayed in (Table 14). This table shows that the values 
evaluated by the suggested approach and existing approach matched with each other have the same result. 
However, the geometrical representation of the weighted averaging outcome is displayed in (Fig. 10), and the 
weighted geometric outcome is displayed in (Fig. 11).

The C-qROFS with the Sugeno-Weber AO and the EDAS technique offer a powerful and flexible context for 
handling complex decision-making problems. C-qROFS allocates for comfortable illustrating ambiguity through 
both q-rung flexibility and complex-valued satisfactory, catching amplitude and phase material that traditional 
fuzzy framework cannot. The Sugeno-Weber operator improves the combination process by adjusting the level 
of compromise between criteria based on expert boldness. The EDAS method effectually ranks alternatives 
by assessing their distances from an average solution, since both positive and negative deviations. This hybrid 
model not only expands the accuracy and strength of the decision-making method but also proves superior 
presentation through statistical justification, with high association with expert decisions, stable sensitivity 
behavior, and reduced vagueness in final results.

Sensitivity analysis of parametric
To investigate the impact of parametric values on our suggested model by the changing of parameters Q and 
q. In the framework of personalized exercise prescription for knee injury prevention, this examination helps 
control the strength of the technique by displaying how sensitive the rankings of exercise alternatives are to slight 
variations in expert decision ambiguity. We take various parametric values Q and q to investigate the outcomes 
of finding the ranking of alternatives by using C-qROFSWWA and C-qROFSWWG operators. All outcomes 
taken by the C-qROFSWWA and C-qROFSWWG operators are displayed in (Tables 15 and 16). The ranking 
of alternatives is the same when we applied C-qROFSWWA and C-qROFSWWG. The ranking of alternatives 
L4 > L3 > L2 > L1 cannot change. alternative L4 be the best in all rankings. So, the selection of parameter 

T1 T2 T3 T4

L1

{
0.0241
, 0.0000
0.0000

, 0.0000

} {
0.0870
, 0.0000
0.0000
, 0.0307

} {
0.0000
, 0.0000
0.0000

, 0.0000

} {
0.0000
, 0.0000
0.0935

, 0.0465

}

L2

{
0.0837
, 0.0000
0.0000

, 0.0000

} {
0.0000
, 0.0975
0.1132

, 0.0000

} {
0.0000
, 0.0538
0.0000

, 0.0000

} {
0.0641
, 0.0486
0.0000

, 0.0000

}

L3

{
0.0000
, 0.0000
0.0000

, 0.0000

} {
0.0199
, 0.0568
0.0000

, 0.0000

} {
0.1748
, 0.0000
0.0000

, 0.0000

} {
0.0000
, 0.0000
0.0000

, 0.0737

}

L4

{
0.0000
, 0.1795
0.0515

, 0.0000

} {
0.0000
, 0.0000
0.0000

, 0.0000

} {
0.0550
, 0.1647
0.0000

, 0.0000

} {
0.1487
, 0.0733
0.0000

, 0.0000

}

Table 7.  Compute the positive distance from averaging Jxy .
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value depends on the expert. All the aggregated values using C-qROFSWWA and C-qROFSWWG with different 
parameters are shown in (Figs. 12 and 13).

Practical implementation
We explain how C-qROFSWWA and C-qROFSWWG operators could be implemented in each area mentioned, 
focusing on practical application.

T1 T2 T3 T4

L1

{
0.0000
, 0.0114
0.0121

, 0.0066

} {
0.0000
, 0.0258
0.0659

, 0.0000

} {
0.0573
, 0.0432
0.0376

, 0.0108

} {
0.0514
, 0.0244
0.0000

, 0.0000

}

L2

{
0.0000
, 0.0296
0.0824

, 0.0237

} {
0.0396
, 0.0000
0.0000

, 0.0395

} {
0.0573
, 0.0000
0.0152

, 0.0181

} {
0.0000
, 0.0000
0.0596

, 0.0712

}

L3

{
0.0479
, 0.0151
0.0209

, 0.0213

} {
0.0000
, 0.0000
0.0494

, 0.0730

} {
0.0000
, 0.0277
0.0856

, 0.0326

} {
0.0364
, 0.0106
0.0982

, 0.0000

}

L4

{
0.0184
, 0.0000
0.0000

, 0.0409

} {
0.0105
, 0.0372
0.0219

, 0.0730

} {
0.0000
, 0.0000
0.0664

, 0.0350

} {
0.0000
, 0.0000
0.0656

, 0.0428

}

Table 10.  Compute weight sum RL negative distance from averaging.

 

T1 T2 T3 T4

L1

{
0.0075,
0.0000
0.0000,
0.0000

} {
0.0270
, 0.0000
0.0000
, 0.0058

} {
0.0000,
0.0000
0.0000,
0.0000

} {
0.0000,
0.0000
0.0206,
0.0088

}

L2

{
0.0259
, 0.0000
0.0000
, 0.0000

} {
0.0000
, 0.0273
0.0249

, 0.0000

} {
0.0000,
0.0151
0.0000,
0.0000

} {
0.0199,
0.0136
0.0000,
0.0000

}

L3

{
0.0000,
0.0000
0.0000,
0.0000

} {
0.0062
, 0.0159
0.0000

, 0.0000

} {
0.0542,
0.0000
0.0000,
0.0000

} {
0.0000,
0.0000
0.0000,
0.0140

}

L4

{
0.0000
, 0.0503
0.0113

, 0.0000

} {
0.0000,
0.0000
0.0000,
0.0000

} {
0.0170,
0.0461
0.0000,
0.0000

} {
0.0461,
0.0205
0.0000,
0.0000

}

Table 9.  Calculate weight sum DL of the positive distance from averaging.

 

T1 T2 T3 T4

L1

{
0.0000
, 0.0408
0.0550

, 0.0349

} {
0.0000
, 0.0922
0.2995

, 0.0000

} {
0.1848
, 0.1542
0.1709

, 0.0570

} {
0.1657
, 0.0871
0.0000

, 0.0000

}

L2

{
0.0000
, 0.1056
0.3744

, 0.1249

} {
0.1277
, 0.0000
0.0000

, 0.2081

} {
0.1249
, 0.0000
0.0691

, 0.0952

} {
0.0000
, 0.0000
0.2710

, 0.3748

}

L3

{
0.1545
, 0.0538
0.0949

, 0.1121

} {
0.0000
, 0.0000
0.2245

, 0.3841

} {
0.0000
, 0.0988
0.3891

, 0.1717

} {
0.1173
, 0.0377
0.4465

, 0.0000

}

L4

{
0.0592
, 0.0000
0.0000

, 0.2150

} {
0.0338
, 0.1329
0.0994

, 0.1076

} {
0.0000
, 0.0000
0.3018

, 0.1844

} {
0.0000
, 0.0000
0.2980

, 0.2253

}

Table 8.  Compute the negative distance from averaging Pxy .
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Engineering design and evaluation
In the engineering design and evaluation framework, implementing the C-qROFSWWA and C-qROFSWWG 
operators includes aggregating various criteria, such as cost, material strength, durability, and environmental 
impact, all of which might have uncertain or fuzzy values. Engineers usually work with subjective expert 
estimations about the performance of different materials or systems. The implementation starts by allocating 
fuzzy values to various suggested criteria based on expert decisions, such as moderately robust, highly efficient, 
and suitable cost. These fuzzy values are aggregated using our proposed operators, C-qROFSWWA and 
C-qROFSWWG operators, which combine the criteria into a final ranking for each alternative design. This 
proposed aggregation operator is used to handle the non-linear trade-offs between criteria, such as balancing 
cost with performance. This allows engineers to study multiple trade-offs simultaneously, helping to choose the 
best design that fits within the fuzzy limitations and goals of the project.

Supplier or vendor selection
In the supplier or vendor selection procedure, the C-qROFSWWA and C-qROFSWWG operators can be 
implemented to combine multi-criteria assessments from numerous stakeholders or departments, such as 
procurement teams, technical experts, and even end-users. Initially, each supplier is evaluated across various fuzzy 
criteria: delivery reliability, product quality, price competitiveness, and service flexibility. These valuations are 
stated in fuzzy terms and allocated membership functions to characterize uncertainty or partial truth. Applying 
the C-qROFSWWA and C-qROFSWWG operators, these fuzzy assessments are combined as expert input and 
each criterion’s relative importance. This permits the organization to rank suppliers based on a comprehensive, 
fuzzy decision-making process that accounts for both subjective judgments and objective criteria, ultimately 

Ranking

EDAS method L4 > L2 > L1 > L3

Table 13.  Units for magnetic properties.

 

Fig. 9.  Graphically representation of APS values by using the EDAS method.

 

APS

L1 0.3480
L2 0.4282
L3 0.2359
L4 0.6538

Table 12.  Appraisal score value.

 

ΛL ΛNL

L1 0.364162 0.33174
L2 0.66195 0.19451
L3 0.471748 0
L4 1 0.307637

Table 11.  Normalize positive and negative distance averaging.

 

Scientific Reports |        (2025) 15:22499 20| https://doi.org/10.1038/s41598-025-03327-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


leading to a more informed and well-rounded selection process. This proposed technique is particularly valuable 
when dealing with suppliers from different regions with varying levels of reliability, experience, and risk.

Healthcare decision making
In healthcare decision-making, the C-qROFSWWA and C-qROFSWWG operators can be helpful in patient 
diagnosis, treatment planning, or resource allocation. For instance, when diagnosing a patient with numerous 
symptoms that may exist with multiple ambiguity levels, medical experts could evaluate the probability of certain 
diseases with fuzzy assessments. The established operators C-qROFSWWA and C-qROFSWWG aggregate these 
fuzzy valuations to find more reliable and inclusive diagnoses or treatment recommendations. In treatment 
planning, where factors such as patient age, health conditions, and preferences come into play, this proposed 
technique can help combine clinical Information with expert assessments of treatment usefulness and risks. By 
managing ambiguity and imprecision in medical data, the explained operator simplifies personalized treatment 
strategies that explain numerical Information and subjective expert ideas. Our proposed technique is beneficial 
when there are no straightforward results and decisions must be made based on numerous criteria that relate to 
each other in complex ways.

Fig. 10.  Graphically representation of weighted averaging by comparative analysis.

 

Operator Ranking

Proposed work

C-qROFSWWA L4 > L3 > L2 > L1

C-qROFSWWG L4 > L3 > L2 > L1

EDAS method L4 > L1 > L2 > L3

Mahmood and Ali45
C-qROFHWA L4 > L3 > L2 > L1

C-qROFHWG L4 > L3 > L2 > L1

Wu et al.46
C-qROFYWA L4 > L3 > L2 > L1

C-qROFYWG L4 > L3 > L2 > L1

Liu et al.42
C-qROFWA L3 > L4 > L2 > L1

C-qROFWG L4 > L3 > L2 > L1

Ali and Mahmood47
C-qROFDWA L3 > L4 > L2 > L1

C-qROFDWG L3 > L4 > L2 > L1

Yang et al.49
CIFFWA Fail

CIFFWG Fail

Raja et al.48
q-ROFNSWA Fail

q-ROFNSWG Fail

Seikh and Chatterjee50
q-ROFWA Fail

q-ROFWG Fail

Table 14.  Comparative analysis of the proposed approach with other previously developed operator.
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Environmental impact assessment
In the Environmental Impact Assessment, the C-qROFSWWA and C-qROFSWWG operators combine expert 
assessments of various ambiguous or unclear environmental criteria, such as air quality, noise pollution, 
and ecological disruption. These criteria are often evaluated using fuzzy terms like moderate or low impact. 
The proposed operator combines these fuzzy inputs while seeing the importance of each criterion, giving a 
comprehensive impact score. This helps experts assess the overall environmental effects of a project more 
accurately, especially when data is undeveloped or subjective.

L1 L2 L3 L4 Ranking

Q = 2,
q = 3 0.0098 0.1096 0.1390 0.1560 L4 > L3 > L2 > L1

Q = q = 2 0.0114 0.1191 0.1448 0.1583 L4 > L3 > L2 > L1

Q = q = 3 0.0083 0.1059 0.1370 0.1536 L4 > L3 > L2 > L1

Q = q = 4 0.0060 0.0960 0.1310 0.1503 L4 > L3 > L2 > L1

Q = q = 5 0.0042 0.0883 0.1259 0.1478 L4 > L3 > L2 > L1

Q = q = 6 0.0027 0.0824 0.1219 0.1461 L4 > L3 > L2 > L1

Q = q = 7 0.0016 0.0778 0.1186 0.1448 L4 > L3 > L2 > L1

Q = q = 8 0.0008 0.0744 0.1161 0.1441 L4 > L3 > L2 > L1

Q = q = 9 0.0002 0.0719 0.1143 0.1437 L4 > L3 > L2 > L1

Q = q = 10 −0.0001 0.0702 0.1131 0.1436 L4 > L3 > L2 > L1

Table 16.  Sensitivity analysis of parametric by using C-qROFSWWG.

 

L1 L2 L3 L4 Ranking

Q = 2,
q = 3 0.0249 0.1503 0.1684 0.1852 L4 > L3 > L2 > L1

Q = q = 2 0.0253 0.1568 0.1720 0.1857 L4 > L3 > L2 > L1

Q = q = 3 0.0266 0.1555 0.1736 0.1892 L4 > L3 > L2 > L1

Q = q = 4 0.0268 0.1517 0.1733 0.1901 L4 > L3 > L2 > L1

Q = q = 5 0.0262 0.1463 0.1719 0.1895 L4 > L3 > L2 > L1

Q = q = 6 0.0252 0.1403 0.1700 0.1880 L4 > L3 > L2 > L1

Q = q = 7 0.0237 0.1341 0.1679 0.1861 L4 > L3 > L2 > L1

Q = q = 8 0.0221 0.1282 0.1660 0.1841 L4 > L3 > L2 > L1

Q = q = 9 0.0204 0.1228 0.1643 0.1822 L4 > L3 > L2 > L1

Q = q = 10 0.0187 0.1178 0.1628 0.1806 L4 > L3 > L2 > L1

Table 15.  Sensitivity analysis of parametric by using C-qROFSWWA.

 

Fig. 11.  Graphically representation of weighted geometric by comparative analysis.
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Artificial intelligence & decision support systems
In Artificial Intelligence and Decision-Support Systems, the C-qROFSWWA and C-qROFSWWG operators 
combine ambiguous and fuzzy data from sources like sensors, user preferences, or contextual inputs. It helps 
Artificial Intelligence systems make smarter, human-like decisions, such as adjusting smart home settings and 
choosing safe routes for autonomous vehicles, by effectively managing unclear or vague data and corresponding 
multiple criteria.

Conclusion
MCDM is an excellent approach for the assessment of uncertain and fuzzy data. Investigating complicated 
data based on decision-making problems is challenging in the age of advancement. For example, personalized 
exercise prescription plays an essential role in preventing knee injuries by addressing individual variations 
in biomechanical and physiological features. In decision-making sciences, the theory of C-qROFS data is 
extremely valuable and dominant because it is the extended form of fuzzy sets. It covers the satisfactory and 
dissatisfactory degrees, and the sum of both degrees lies in unit intervals. Also, geometric averaging, Sugeno-
weber, and EDAS aggregation operators are constructive and helpful for showing doubtful and ambiguous data 
in real-life problems. In this article, we have introduced the Sugeno Weber operational laws based on C-qROFS. 
We have developed the C-qROFSWWA and C-qROFSWWG operators and proposed their properties. Then, 
we illustrated the decision-making procedure based on the C-qROFS and discussed an algorithm to solve the 
MCDM problem. Also, we have provided a numerical example to explain the decision-making process based on 
the proposed C-qROFSWWA and C-qROFSWWG operators. Then, we conduct a deep comparative study with 
the existing aggregation operator to check the suggested technique’s superiority and validity.

Fig. 13.  Graphically representation of weighted geometric by sensitivity analysis.

 

Fig. 12.  Graphically representation of weighted averaging by sensitivity analysis.
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Limitations
Our theory of C-qROFS is extended into numerous structures. The C-qROFS is more advanced than FS, IFS 
and PyFS, but in several challenges, the C-qROFS framework is unsuccessful in controlling big data. Some 
restrictions and limitations exist in our work. The C-qROFS cannot operate on picture, spherical, and t-spherical 
fuzzy sets because abstinence degree cannot be involved in C-qROFS. If the expert gives data in the form of 
satisfactory, dissatisfactory, and abstinence degrees, then our proposed operator cannot aggregate the data. If the 
abstinence degree is zero, then the proposed operators are applied.

Future work
In the future, we shall change the C-qROFSs into rough sets, soft sets, complex hesitant q-ROFSs, Complex 
picture FS, complex spherical FS, and Complex t-spherical FS. We shall cover the idea of the Muirhead mean 
proposed by Liu et al.50. Dhumras et al.51 established an Application in the Field of Pattern Recognition based 
on similarity measures of complex picture fuzzy information. The above notion of C-qROFSs can be offered 
in numerous mathematics fields and can be changed into different mathematical frameworks to explain 
uncertainty and ambiguity. Some more extensions are presented as we have extended the C-qROF structure 
into the guideline of exercise for health Almarcha et al.52, health promotion system by Sun et al.53. Sharma 
et al.54 established an application for the banking site selection problem. Riaz and Farid55 established Linear 
Diophantine Fuzzy Soft-Max AOs for improving Green Supply Chain Efficiency, Dhumras et al.56 proposed 
electronic marketing strategic plans based on federated learning-oriented q-rung picture fuzzy TOPSIS/VIKOR 
decision-making method, Hadzikadunic et al.57 proposed the logistics performance index of European Union 
Countries using the Bonferroni operator.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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Theorem 1  Proof: We can prove this theorem by applying the induction technique for ξ = 2; we can get
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Consider the equation is valid for ξ =
...

k , we can write
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∏
k
i=1γiΦi

	

C − qROFSWWA (Φ1, Φ2, . . . , Φk) =




q

√
1+Q
Q

(
1 −

∏ ...
k
i=1

(
1 −

.

A
q

i

( Q
1+Q

))γi
)

.e
2π i q

√
1+Q
Q

(
1−

∏ ···
k

i=1

(
1−′Ωq

.
Ai

( Q
1+Q

))γi
)

,

q

√
1
Q

(
(1 + Q)

∏ ...
k
i=1

(
Q

..
β

q

i +1
1+Q

)γi

− 1
)

.e

2π i q

√√√√ 1
Q

(
(1+Q)

∏ ···
k

i=1

(QΩq
..
βi

+1

1+Q

)γi

−1

)




Consider the equation is valid for ξ =
...

k +1, we can write

	
C − qROFSWWA (Φ1, Φ2, . . . , Φξ) =

k∏
i=1

γiΦi
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So, this theorem proves that the aggregated value of C-qROFSWWA is also a C-qROFVs.

Theorem 2  Proof: consider all take all identical C-PyFVs, 
Φi =

(
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)
, Φi = Φ, So, 

we can get
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So, this theorem is proved.

Theorem 3  Proof: Suppose any set of C-qROFVs, Φi =
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So, by using defining 5, we can get

	
C − qROFSWWA (Φ1, Φ2, . . . , Φξ) ≥ C − qROFSWWA

(︷︸︸︷
Φ i1,

︷︸︸︷
Φ i2, . . . ,

︷︸︸︷
Φ iξ

)

Theorem 4  Proof: Suppose the set of C-qROFVs, Φi =
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Similarly, using the above step, we got:
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So,

	 Φ− ≤ C − qROF SW W A (Φ1, Φ2, . . . , Φξ) ≤ Φ+
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