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This paper provides an accurate target cell’s RSRP (received signal received power) prediction 
technique for cellular handovers, ensuring robust connectivity for autonomous vehicles (AVs). 
We propose an extreme gradient boosting (XGBoost)-based mechanism to predict channel state 
information (CSI) in advance prior to a cell handover request due to lower RSRP. Our test results 
indicate that for speeds ranging from 0 to 120 km/h, the proposed prediction technique improves the 
handover success rate (HSR) by up to 4%. In particular, the average achieved success rate with the 
proposed algorithm is 97% compared to the conventional algorithm providing only 93% success rate. 
The proposed solution can work for any frequency pair and wireless technology.
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In AVs technology, one of the key challenges is maintaining seamless connectivity with the host as an AV is 
continuously moving through various wireless cells. Robust connectivity helps in ensuring uninterrupted control 
of signaling, data, and call flow. The handovers involved in future high-speed cellular networks pose a significant 
challenge to network engineers, since the massive involvement of sub 6 GHz and THz frequencies limits the cell 
coverage to a few hundred meters only due to involved path losses, reflection, and scattering. Consequently, a 
larger number of cells are now required to provide cellular coverage to a certain geographic area using these high 
frequencies, compared to a traditional cellular network operating in MHz band.

For each host change request, a temporary window called a measurement window (MW) is generated to 
scan target cell bearings. Yet, each MW essentially suspends all types of cellular traffic except the mentioned 
scans. This temporary suspension of traffic channel due to an MW makes the AV virtually lose contact with 
its serving station since no information can be exchanged during the measurement period. This may cause an 
AV to temporarily lose precise control signaling during this period due to no information exchange. Moreover, 
despite of suspending cellular traffic for an MW, the handover request may or may not be successful. This paper 
provides a solution to avoid frequent traffic interruptions due to an MW in AV technology, thereby ensuring 
seamless wireless connectivity.

The traditional event-driven handover technique fails to address dynamic and rapidly changing network 
environment due to its dependence on MW for each handover request. For this purpose, this research work 
proposes a robust data-driven handover technique, i.e., predicting the success of a handover request without 
an MW, and thus preempting all handover requests that are likely to fail. The proposed technique significantly 
eliminates handover request failures and improves HSR. The Fig. 1 shows an AV trying to handover from Base 
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Station-A to Base Station-B. Now according to the conventional handover mechanism an MW gets triggered to 
scan for target cell bearings while temporarily suspending all the cellular traffic flow to the AV. This temporary 
suspension of cellular traffic flow to AV is detrimental because at this particular scan window, the AV loses its 
connection with the base station, while the AV might require control or data signaling for its smooth navigation. 
While the simulation results demonstrate promising performance, this research has certain limitations. Future 
work should include field-testing under real-world conditions to more accurately assess the feasibility and 
effectiveness of the proposed model. Additionally, further investigation is required to enhance computational 
efficiency and optimize the XGBoost algorithm in order to reduce processing complexity, thereby improving its 
suitability for deployment in autonomous vehicle (AV) systems.

In this work, we have identified the following fundamental limitations in AVs communication with the base 
station while using the traditional handover mechanism:

	1.	 Event based handovers; In this case, the handover request is triggered right at the time when RSRP gets lower 
than the defined threshold. There is no mechanism where the AV can use already available data to predict the 
outcome of the upcoming handover request.

	2.	 Frequent engagement of unnecessary MWs causing cellular traffic interruption. During this measurement 
period the vehicle temporarily loses its contact with the base station. Thus, no information can be exchanged 
during an MW.

This work provides an integrated solution to the mentioned limitations in the following manner:

	1.	 Data-driven handovers to replace the event-based handovers. This proposed mechanism predicts the RSRP 
of the target cell before a handover request is even initiated by an AV.

	2.	 Once the handover mechanism is intelligent enough to predict the success of a handover request, all poten-
tially failing handover requests are preempted and correspondingly all unnecessary MWs are avoided.

Literature review
This section aims to discuss the available traditional techniques to determine the target cell’s RSRP and its 
limitations. Subsequently, it elucidates the limitations of available data-driven techniques and outlines the 
advantages of the algorithm proposed in this paper.

Traditionally, Angle of Arrival (AoA) and Angle of Departure (AoD) are preferred to predict CSI1–6. However, 
the next generation communication networks exploits frequencies ranging in sub 6 GHz and THz ranges to 
promise higher bit rates7,8. Wireless links operating at such frequencies for AVs pose unique challenges where 
shorter wavelengths and higher frequencies are involved. Among others, high scattering and reflection limit the 
use of AoAs and AoDs9,10. Therefore, obtaining precise AoA and AoD at these frequencies is challenging and 
essentially requires measuring target beam and complex calculations11,12.

Correlation-based adaptive compressed sensing (CBACS) exploits poor scattering of higher frequencies to 
estimate CSI and correlates quantized sensing vectors to determine RSRP13–16. However, CBACS is inherently 
sensitive to channel angle quantization, causing resolution loss17–19. Therefore, CBACS lacks the preferred 
correlation margin for signals featuring significant variations and proves suboptimal. Moreover, CBACS 
significantly depends upon a precise model for signal correlation, therefore even a slight deviation in real 
correlation structure compared to the anticipated model results in suboptimal performance14. In scenarios 
where the correlation prototype is too complex or is tuned to mitigate noise in the data, then CBACS is expected 
to over-fit results and consequently degrade generalization due to limitations posed by only comparing the 
received powers of different beams for determining CSI14,20. The authors in17,21, demonstrates that estimating 
mm-Waves channel by exploiting a large number of antennas and hybrid pre-coding poses a challenge in its own 
due to limited access to detailed channel dimensions in digital baseband systems, the phenomenon commonly 
known as channel subspace sampling limitation.

Fig. 1.  An AV making handover request from base station-A to base station-B.
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Sparse properties of mm-Waves can be readily exploited for mm-Waves’ CSI estimation22–26, also known as 
Orthogonal Matching Pursuit (OMP). However, OMP shows performance limitations in massive multiple in 
multiple out (MIMO) applications due to low Signal-to-Noise Ratio (SNR) before beamforming17,27.

Dual connectivity is often employed to obtain target cell bearings by exploiting simultaneous connections 
with two hosts26,28–32. However, dual connectivity at first is resource intensive, may explode the numbers of 
unnecessary handover ping-pongs due to simultaneously involving multiple radio circuitries, might challenge 
the network for co-channel interference, and also unnecessarily utilize channel resources that are already 
scarce17,18,33–35. Despite limitations of dual connectivity as discussed previously, it is capable of providing 
accurate CSI as used in34,35.

An advanced technique derived from dual connectivity is multi-connectivity, a technique of choice for most 
researchers, as suggested in36, where the user is simultaneously connected to multiple hosts, and thus the AV 
can switch to target cell without an MW. The authors in37–40, suggest using long-short term memory (LSTM) 
based prediction algorithm to improve HSR. The technique stores previously marked handover points to execute 
such future decisions. However37–40, used LSTM majorly to improve handover delays and when to handover by 
previously accumulated data points stored in a database. For the proposed work, we require a technique that can 
readily be adopted for AVs to work in rapidly changing wireless environments without the requirement of past 
data points. Therefore, LSTM may underperform in newer test environments where past data is not available. 
Moreover, LSTM is a blind handover technique as it forces to handover the channel based upon past data points 
merely, without even evaluating if the wireless channel is actually deteriorated. Also, LSTM algorithm may only 
function if the wireless channel remains correlated for longer periods, which is rare at ultra-high frequencies 
such as in mm-Waves and THz.

The authors in41–43 use reinforcement learning (RL) for resource management such as energy-efficient traffic 
offloading from macro to small cells, efficient spectrum sharing in cognitive radios, and robust convergence 
for independent resource allocation slices. The authors in33,44,45 foster the use of RL for CSI determination due 
to its inherited limitations, such as hit-and-trial-based outputs that effectively increase the time required to 
converge the objective function and hence increases the model’s training period. In46, the extensive use of RL 
is also criticized because overloading the model causes inaccuracy issues. The authors in47–49 use kernel-based 
algorithms to predict positions in wireless sensor environments for sensor localization and CSI estimation.

The authors in50suggest Bayesian regression (BR) making the users to execute a handover before the cell 
boundary, thus reducing the RSRP gap between the host and target cell. However50, does not cover scenarios 
where the host RSRP may drop due to varying channel behavior while residing inside a cell’s boundary. Therefore, 
BR’s effective performance is limited to cell boundaries only.

A dynamic random suppression (RS) mechanism is proposed for improving HSR in51. The RS algorithm 
works by developing an elliptic function between vehicle speed and hysteresis, suppressing reverse handovers 
by introducing normally distributed random variate, thus maintaining high HSR and reduced handover ping-
pongs. The RS technique improves HSR by dynamically adjusting the RSRP thresholds since it mainly suppresses 
reverse handovers and increases handover probability. The authors in52,53 propose Q-learning for improving 
carrier selection by improving time-to-trigger mechanism but do not discuss CSI estimation33. Q-learning also 
requires RL schemes that are resource intensive33,44,54, hence is not recommended for the proposed algorithm.

The traditional methodologies discussed above significantly rely on MWs for physically scanning target 
cell bearings and lack predictive capabilities. In contrast, this study proposes an approach that suppresses the 
upcoming handover requests if their failure can be determined beforehand. Consequently, such an intelligent 
system may save a network from unnecessary wireless channel interruptions due to frequent MWs, specifically 
for handover requests that are already expected to fail. This work advocates for the necessity of a data-driven 
predictive handover technique in comparison to traditional event-driven handovers for AVs. If such unnecessary 
MWs are eliminated, the AVs can enjoy improved HSRs together with seamless connectivity.

The proposed work addresses the research limitations of the studies available so far in literature. In particular, 
we propose a predictive approach to obtain the target cell’s CSI in advance, in contrast to scanning target cell’s 
radio bearings while remaining in its serving band. All the classical techniques such as AoA/AoD, CBACS, OMP, 
dual connectivity and multi-connectivity require live monitoring of target cell’s bearings, which is to be avoided 
according to the proposed approach. Moreover, this work strongly opposes the use of multi-connectivity for the 
proposed model because, with the increased number of vehicles, the number of simultaneous connections will 
overload the system due to a higher number of unnecessary handovers and their consequent control signaling. 
Furthermore, the kernel based algorithm is a popular technique amongst researchers, however, in47 the authors 
restrict the user to traveling in a straight line only in certain scenarios, causing channel modeling limitations, 
as modern AVs are not restricted to traveling in a straight line. The proposed work assumes that all AVs could 
freely move within the coverage of cells. The authors in50, discuss a boundary limited handover technique (BR) 
that executes a forceful handover just before a cellular boundary is reached even if the RSRP does not go below 
threshold. In contrast, the proposed algorithm is not boundary dependent but remains active for all cases where 
RSRP gets lowered than the set thresholds, predicting real-time RSRP that is not limited to cellular boundaries, 
and thus can preempt any handover request that is likely to fail.

The technical contributions of this work can be summarized as follows:

	1.	 Development of a path loss model for CSI calculation: this helps the proposed model to calculate RSRP 
where previous data is unable and provides a solution for predicting mm-Waves CSI while remaining in sub 
6 GHz band.

	2.	 Development of an ML model: this provides a statistical solution that identifies the proposed model with 
training data and then can be used to make predictive decisions regarding success or failure upcoming hand-
over request.
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	3.	 Generalizing objective function: this helps the proposed model to avoid overfitting because the path loss 
model can virtually generate RSRP estimates at all the co-ordinates with in the coverage area of target base 
station.

	4.	 Validate prediction estimates: Since the proposed model uses ML and predictive estimates, thus this work 
exploits receiver operating characteristics area under the curve (ROC-AUC) to validate model’s efficiency in 
predicting true estimates.

	5.	 Dynamic model training period: the proposed model uses two unique training periods depending upon 
the channel coherence time. This helps the proposed model to collect training samples while the channel is 
highly correlated.

	6.	 Simulation results: the proposed model operation is shown together with tabulated and graphical results. 
Furthermore, the improvement in comparison to the baseline algorithm are also discussed.

This work progresses in the following order: Sect. “Path loss model” discusses path loss models that helps in 
calculating RSRP at a targeted user co-ordinate. Section “Model design” highlights the proposed ML scheme 
(XGBoost) where the gathered data is used to generate a predictive model. This section also encompasses the 
algorithm for generating ROC-AUC curves while considering the estimates true if ROC-AUC ≥ 0.7. Sect. 
“Sample collection” underscores the importance of sample collection within channel coherence time to precisely 
model the channel for CSI estimation. Section “Operating principles of the proposed model”discusses the 
operating model of the proposed design. Section “Simulation results” describes the simulation results whereas 
Sect. “Conclusion” concludes the work.

Path loss model
In order to materialize the proposed work, the first step is to calculate the path loss model which is detailed in 
this section. The proposed approach uses the path loss model to calculate expected RSRP for given frequency at a 
particular co-ordinate within the coverage area. The same path loss models are also used to obtain RSRP training 
data sets of the proposed model. This work uses two arbitrarily chosen frequency pairs, i.e., 35 GHz (mm-Waves) 
and 2500 MHz (Sub 6 GHz). It uses Alpha Beta Gamma (ABG) model and Cost-231 model for mm-Waves and 
sub 6 GHz, respectively, as given by (1) and (2) below. In principle, any other frequency compatible models can 
also be used by future research27. The path low according to the ABG model is

	
P LABG = α + 10βlog10(d) + 10ξlog10

fc

1GHz
+ φABG

δ � (1)

where α and ξ are path loss dependence co-efficient, β is optimized offset parameter, d is the distance between 
transmitter and receiver, fc represents carrier frequency and φABG

δ  is a Gaussian random variable showing large 
scale fluctuations of the signal. The Cost 231 model is expressed as

	 P LCost231 = (46.3 + 33.9 × log10 (fc) + 13.82 × log10hte − α (hre) + (44.9 − 6.55 × log10 (hte)) × log10 (d) + C) ,� (2)

where fc is the carrier frequency, hte represents antenna height, α(hre) is the frequency correction factor, d 
denotes the separation distance, and C = 3 dB.

The correction factor α(hre), is given as

	 α (hre) = 3.2 × log10(11.75 × hre)2 − 4.97� (3)

where hre is the receiver height.

Model design
Having the path loss model, the next step is to formulate the model design. The proposed model is based upon 
a binary prediction classifier to determine whether the estimations are valid or not. Moreover, this work uses 
supervised learning (SL) and iterative ensemble boosting to convert weak learners into stronger models (both 
discussed later in this section). The Fig. 2 shows how the proposed model progresses stepwise.

For simulation purposes, this study distributes vehicles in a cell of radius r, with an intensity to show expected 
vehicles in a given area. Let the total number of vehicles in an area be denoted by N  and the coverage area be 
denoted by A. The vehicles are plotted in r such that P (f) is a stochastic function with a process rate λ and a 

probability of M  in time f . Let Ђ define the output of an arbitrary function such that . Then, 

for the proposed algorithm, the vehicles are plotted as per algorithm given by Eqs. (4a-4o)55, justifying that the 
number of occurrences in given time is Poisson-distributed with mean λf , for all j, t ≥ 0. We have

	 m0 = (f + j) = M [P (f + g) = 0]� (4a)

Where,

	 M [P (f) − P (0) = 0, P (f + k) − P (f) = 0]� (4b)

The independent increments are given as,

	 [IndependentIncrements] = M [P (f) − P (0) = 0] .Q [P (f + j) − M (f) = 0]� (4c)

Scientific Reports |        (2025) 15:20870 4| https://doi.org/10.1038/s41598-025-04183-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


And for stationary mobile users,

	 [F orStationary] = M [P (f) = 0] .Q [P (g) = 0] = m0(f)(1 − λg + c (i))� (4d)

therefore

	
m0 (f + g) − m0(v)

g
= −m0 (f) λ + c (g)

g
� (4e)

And For 

	
g → 0+ d(m0 (f))

d(m) = −m0(f)λ� (4f)

then,

	

d(f0(f))
d(f0) = −λdf � (4g)

when,

	 P > 0,� (4h)

then,

	 mn (f + g) = M [P (f + g) = o]� (4i)

	 M [P (f) = t, P (f + g) − P (f) = 0] + M [P (f) = P − 1, P (f + g) − P (f) = 1] + M [P (f + g) = P, P (f + g) − P (f) ≥ 2]� (4j)

	 = M [P (f) = t] .MP (g) = 0 + MP (f) = P − 1.MS (g) = 1 + c(g)� (4k)

By simplifying (4 k),

	 = (1 − λg) ms (v) + λgmq−1 (v) + c(g)� (4l)

Since

Fig. 2.  Proposed model: stepwise details.
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mp (f + g) − mp(f)

g
= −λmp (f) + λfp−1 (f) + c(g)

g
� (4m)

For

	 g → 0+� (4n)

	
dmp(f)

d(f) = −λmp (f) + λmp−1(f)� (4o)

The Fig.  3 provides the flowchart for distributing AVs (resampling from Poisson Point Process) across the 
coverage area of cell.

The proposed algorithm uses Eqs. (5a–5s) for ensembles’ boosting in this work,Input: Training Data 
{(wi, xi)}N

i=1,

	 Loss function = K (x, F (w)) number of weak learners = L, Learning rate = α� (5a)

initializing models,

	
ḟ(0) (w) = argθmin

N∑
i=1

K(xi, θ)� (5b)

For

	 l = 1 to L,� (5c)

computing gradients,

Fig. 3.  Flowchart for distributing AVs across the cellular coverage.
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ĝl (wi) =

[
∂K (xi, f (wi))

∂f (wi)

]

f(w)=ḟ(l−1)(w)
� (5d)

computing hessians,

	
ĥl (wi) =

[
∂K (xi, f (wi))

∂f(wi)2

]

f(w)=ḟ(l−1)(w)
� (5e)

using the training set,

	

=




ĝl (wi) =
[

∂K(xi,f(wi))
∂f(wi)

]
f(w)=ḟ(l−1)(w)

ĥl (wi) =
[

∂K(xi,f(wi))
∂f(wi)2

]
f(w)=ḟ(l−1)(w)




N

i=1

� (5f)

to fit base learners.
by reducing optimization problem,

	

∅́m = arg∅min

N∑
i=1

0.5ĥl (wi)


∅ (wi) −

[
∂K(xi,f(wi))

∂f(wi)

]
f(w)=ḟ(l−1)(w)[

∂K(xi,f(wi))
∂f(wi)2

]
f(w)=ḟ(l−1)(w)




2

� (5g)

	 ḟ(l) (w) = α∅l (w)� (5h)

by updating the model,

	 ḟ(0) (w) = ḟl−1 (w) + ḟl(w)� (5i)

simplifying the Eq. (5i),

	
ḟ (w) = ḟL (w) =

L∑
l=0

ḟl(w)� (5j)

for simulation purpose, let the gathered parameters as given in Tables: 1 and 2 (explained later) be denoted by 
V (o) and individual parameters be given by (On) . Then,

	 V (o) =
{

V (o)1, V (o)2, . . . . . . .V (o)n

}
� (5k)

for the output W , let Eo be the initial predictive model, then for  number of predictive models,

	 wl =El⇐, wl → f (El)� (5l)

En → (x − Eo) , associates with residuals.
A new model g1 generates to fitting the previous step. Therefore, g1 together with Eo generates E1 as an 

improved model. Thus,

	 E1 = E0 + g1� (5m)

	 E2 = E0 + g2� (5n)

	 En = E0 + gn� (5o)

The additive learners technically do not interfere preceding function, however new information improves the 
previous error. In terms of error, the newer model’s error should always be less than the previous model.

Therefore,

	 L1 < L0� (5p)

	 L2 < L1� (5q)

	 L3 < L2� (5r)

	 Ln < Ln−1� (5s)

The proposed algorithm optimizes feature selection by least absolute shrinkage and selector operator (L). The 
Ł supports learning model to restrain feature quantity while providing sparse solutions, and helps in optimizing 
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computational loads by avoiding coefficients with zero features. Moreover, (L) provides solutions for essential 
time-based regression challenges by adapting variety of variables. The compressional readiness of (L) helps in 
achieving quick sparse features and provides robust predictions by reducing data points towards their expected 
mean. The Lagrangian form of (L) is given by Eq. (6), where xi is the response for ith , (L)0 denotes intercept, 
gij  is the regressor coefficient and λ defines the scaling factor:

	
(L) = arg(L)min

[
0.5

N∑
i=1

(
xi − (L)0 −

p∑
j=1

gij(L)j

)2

+ λ

p∑
j=1

∥(L)j∥

]
� (6)

The mean square error (MSE) of the estimator is calculated by squared normalized bias sum and is given by Eq. 
(7) insert reference,

	
MSE

(
(̃L)λ

...G
)

= E
[

∥̃(L)λ − (̃L)∥
2...G

]
� (7)

Equation (8) is the expanded version of Eq. (7),

	
MSE

(
(̃L)λ

...G
)

= trace
(

V ar

(
(̃L)λ

...G
))

+ bias∥
(

(̃L)λ

...G
)

∥
2

� (8)

Assuming that ordinary least squares (OLS) estimator is initialized to zero, then the MSE is given by Eq. (9),

	
MSE

(
(̃L)λ

...G
)

= trace
(

V ar

(
(̃L)λ

...G
))

� (9)

The difference between two MSEs is given by Eq. (9a),

	
∆MSE = MSE

(
(̃L)

...G
)

− MSE((̃L)λ

...G)� (9a)

Similarly, the expanded form of Eq. (9a) is given by Eq. (9b),

	

� (9b)

The hyper parameters for the proposed model are given ins Table 1
Since this work uses predictive estimates, therefore model’s performance evaluation is mandatory to 

determine the validity of the said estimates. For this purpose, this work uses ROC-AUC as a performance metric 
to validate the predictive estimates. The ROC-AUC is a fundamental metric to evaluate the performance of 
a binary classifier56, this technique helps in issuing an assessment of proposed models ability to discriminate 
between true versus false positive rate.

The ROC-AUC is plotted as suggested in56–58. Let W  and Z  denote two random variables respectively, with 
the distribution functions given by E and H , let e and h be density functions, assuming E∗ = 1 − E and 
H∗ = 1 − H  denotes survival functions respectively,

The proposed work adopts W < Z  stochastically, as per condition given by Eq. (10),

	 E∗(w) ≤ H∗ (w) for all values ofw ∈ (−∞, +∞)� (10)

Similarly,

Feature Value Feature Value

Depthmax 6, 8 Complexity control 0, 0.002

Child weights 0, 10 Samples weight 0.5, 0.7

Samples weight 0.5, 0.7 Lambdas 0, 1, 2

Cross validation 5 Estimator number 500

Table 1.  Hyper parameters.
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Let λE(w) = e(w)/E∗(w) and λG(w) = h(w)/H∗(w) represents decay rate of W  and Z  respectively. 
Then W < Z , if λE (w) ≥ λH (w) forw ≥ 0.

Now considering,
φE (w) = e(w)/E(w) and φH (w) = h(w)/H(w), the reversed decay rate functions of W  and Z  

respectively are expected to be W ≤ Z. Therefore e(w)/E(w) ≤ h(w)/H(w) as given by Eq. (11),

	 φE (w) ≤ φH (w) forw ≥ 0� (11)

Or equivalently,
Wt and Zt denotes random variables at time t, then the reversed decay function at t is given by Eqs. (12 and 

13),

	 Wt = W − t
...W > t

� (12)

And

	 Z (t) = Z − t
...Z > t� (13)

Stochastically, it is expected that likelihood of W < Z .
The Fig. 4 provides the flowchart for implementing the ML scheme (XGBoost) for the proposed model as 

discussed in Sect. “Model design”

Sample collection
The proposed model uses ML to predict RSRP of the target cell. Therefore, to train the proposed model, the ML 
scheme requires training data. In particular, the training data is used to model the channel of the target cell. The 
training samples collected within the channel coherence time (TC) naturally enhance the true depiction of the 
target channel.

Generally, in ML schemes, 70% of total data is used for training, and the remaining 30% is used for testing 
data59–62. If TC  is involved then 70–30% data split generates inaccuracies since samples breaching TC  limits are 
involved in training the model18. Therefore, the proposed work suggests that for accurate channel modeling 
and preserving channel dynamics, samples collected within TC  limits should train the model (modeling highly 
correlated channel)33. Since TC  statistically measures the duration over which channel impulse response is 
invariant, it is proposed that 70% of total samples for model training must only be used if those samples lie 
within TC  limits.

TC  over which the channel remains coherent is given by63

	
TC = 3 × 108

fCvUESin∅
� (14)

where fC  refers to the carrier frequency, vUE  is the vehicle’s speed and ∅ is the angle between direction of BS 
and the vehicle. However, this work does not use (14) to estimate TC , since the mm-Waves’ antennas are high 
beam forming and compensate for isotropic path loss. Therefore, the beam forming increases TC  in directional 
arrays while focusing the signal power on beamwidth-defined angular space toward a user33. (14) also demands 
∅ but due to high scattering and reflection involved at higher frequencies (such as in mm-Waves and beyond), 
calculating a single source ∅ for non-line-of-sight (NLoS) applications becomes complicated, and requires 
complex radio circuitry. Thus, (14) restricts the model to Line of Sight (LoS) applications only, whereas this 
research intends to propose a model whose performance is not limited to LoS applications.

TC  can also be calculated as63,64

	
TC = Dϑ

0.5vUESin∅
� (15)

where D refers to Euclidean distance between the source and the receiver and ϑ refers to the beamwidth. Again, 
calculating TC  using (15) requires complex radio circuitry to lock on accurate timing advance for estimating 
the vehicle’s position. Moreover, (15) also demands ∅ for TC  calculation, whose limitations have already been 
discussed above. This work assumes vehicles to be stochastically distributed over randomly varying TC . Therefore, 
calculating an accurate frame length for cell concentric TC  becomes mathematically complex. This conservative 
notion is also supported by the fact that the serving station may not be aware of vehicles’ parameters such as 
distance and serving beam angle. Thus, to add generality, the proposed work another equation to estimate TC
65–67

	
TC = 1

fm
, fm (maximumdopplershift) = VUE

λ
� (16)

However, with the advancements in the radio circuitry, researchers can use even more accurate TC  models in 
the future. For scenarios where 70% of training samples lie within the TC  limits, the training period (Tp) for 
proposed model is given as
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Fig. 4.  Flow chart for implementing ML scheme (XGBoost).
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	 Tp = 0.7 × Ts, for cases where (0.7 × Ts) ≤ TC;Ts = simulationtime� (17)

Overall, Tp for proposed model is obtained using the following formulas

	
Tp = TC = VUE

λ
, for cases where (0.7 × Tsim) > TC � (18)

	 Tp = TC = (0.7 × Tsim) , for cases where (0.7 × Tsim) ≤ TC � (19)

By using (18) and (19), the proposed model training time never breaches TC  limits and guarantees model 
learning with samples collected from a highly coherent channel only. Further details regarding performance 
degradation caused by breaching TC  limits are given in68.

As the complete design of the proposed model is discussed above, Table 2 provides details regarding the 
radio parameters such as path loss model arguments, base station parameters, AV density and speed ranges, and 
simulation timings for the home and target cell for simulation purposes.

Operating principles of the proposed model
The Fig.  5 shows operating principles of the traditional and proposed model. In the following details, the 
traditional algorithm will be referred to as a baseline algorithm. In the baseline algorithm, the steps such as 
initiation of MW, scanning of target cell bearings, and preparation of measurement reports are all event-driven. 
The baseline model lacks any predictive capabilities that could help in estimating the outcome of the handover 
request. This event-based technique does not guarantee successful execution of handover requests, and keeps 
on interrupting cellular traffic for unnecessary MWs without any prior knowledge of its outcome, thus seriously 
interfering with network smooth traffic flow.

On the other hand, in the proposed algorithm, the steps leading to link interruption are now data-driven 
and use a predictive technique, avoid unnecessary MWs, guarantee handover success for the requests whose 
estimations are correctly predicted by the proposed model, and ensure robust connection with the host.

Simulation results
This section details the simulation results (HSR improvements) in comparison to the baseline algorithm after 
incorporating the proposed technique. The Fig. 6 demonstrates working mechanism of the proposed model by 
showing an arbitrarily chosen AV#177 moving at an average speed of 83 km/hr. The grey area in Fig. 6 shows the 
learning period where the proposed model follows the baseline algorithm to collect training samples within TC . 
Beyond this point, the proposed mechanism allows for the prediction of the success or failure of the upcoming 
handover request. Therefore, as indicated in Fig. 6, at TS= 78 ms and 88 ms, the proposed mechanism preempts 
handover requests that are likely to fail, and hence avoids unnecessary MWs. On the other hand, the baseline 
algorithm, unaware of failing upcoming handovers, opens the MWs for scanning target cell bearings, hence 
unnecessarily interrupting the communication channel two times and also causing two handover failures. The 
Table 3 shows that for AV#177 when the learning period is over, there are seven handover requests in total 
out of which the baseline algorithm executes five handover requests successfully, for remaining two handover 
requests the MWs are engaged at the cost of interrupting data traffic but are unsuccessful. On the other hand, the 
proposed algorithm is already aware of these two inbound handover failures in advance. Thus it readily preempts 
these handover requests and avoids unnecessary MWs to guarantee smooth traffic flow.

According to the simulation results shown in Fig. 6 and Table 3, the HSR for AV#177 is 71.42% using the 
baseline and 100% for the proposed algorithm respectively. The Fig. 7 shows the changing RSRP levels for both 
sub 6 GHz frequency and mm-Wave frequency for AV#177 over the simulation period of 100 ms. The Fig. 8 
shows the operating characteristics of the receiver with the area under the curve (ROC-AUC) validating the 
predicted estimates and showing prediction accuracy. The ROC in Fig. 8, shows the performance of proposed 
binary classifier which in our case is the ML algorithm’s performance across the recommended threshold. The 
AUC under the ROC curve in Fig: 8, demonstrates the prediction efficiency of the proposed ML model. For 
the simulation purposes the predicted estimates are valid if ROC-AUC ≥ 0.7. For the AV#177 the ROC-AUC 
is equal to 0.996. The Fig. 9 shows AVs’ distribution around the base station (BS), in this simulation there are 

Parameter Value Parameter Value

Cell radius 350 m Antenna Height 36 m

f1 = 38 GHz
(mm-Waves) ABG Model Antenna Gain f1 = 24 dBi and f2 = 17 dBi

f2= 2500 MHz
(Sub 6 GHz) Cost 231 Model Poisson Point Parameter 2 × 103

Base Station Power 46 dBm Vehicle speed 
...
u 120 km/hr

f1  bandwidth 100 MHz Floating intercept values (α,β, φ) 116.77, 0.41, 5.96

f2  bandwidth 20 MHz TSim
100, 200,.…0.1000 ms
(100 ms offset)

Table 2.  Radio parameters.
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774 AVs with in the coverage of base station amongst which the AV#177 is arbitrarily chosen for explaining the 
concept of proposed mechanism.

The AV#177 is assigned an arbitrary bandwidth of 10Mbits/s. From the Fig. 10 at TS= 78 ms and 88 ms for the 
proposed algorithm, it can be inferred that the data rate does not drop to 0 Mbits/sec as in the case for baseline 
algorithm due to active MWs (assuming channel is not degraded by any other external sources). Therefore, the 
proposed algorithm succeeds in avoiding unnecessary transmission interruptions and guarantees smooth traffic 
flow. The Fig. 11 shows the instantaneous speed of vehicle AV#177 for the complete simulation run.

The Table 4 shows the results obtained at the network level with an average number of 774 vehicles, with 
their speed ranging from 0 km/hr to 120 km/hr (refer to17, for varying densities). The Table 4 indicates that 
for 100ms ≤ TS ≤ 1000ms the average HSRs for the baseline and the proposed algorithms are 93.52% and 
97.50%, respectively, i.e., the proposed algorithm improves the average HSR by 3.87%. Since the proposed 

Fig. 5.  Baseline vs. proposed model.
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algorithm is already aware of the target cell’s radio bearings, it only allows handover requests that are likely to 
succeed and is pre-empting handover requests that are expected to fail.

The Fig. 12 shows the HSR of the baseline and the proposed algorithm as given in Table 4 with respective 
simulation times. From Fig. 12 it is clear that the proposed algorithm significantly improves HSR, since for the 
baseline algorithm the HSR remains within the range of 93.03% ≤ HSRtraditional ≤ 94.35%, whereas for the 
proposed algorithm HSR remains within the range of 97.40% ≤ HSRproposed ≤ 97.67%.

The Fig. 13 and 14 (original image split into two for clarity) show the number of bits transferred per each Ts 
with the baseline and the proposed algorithm, respectively. As it can be observed, due to no advance information 
regarding upcoming handover request failures, the baseline algorithm unnecessarily opens MWs for scanning 
target cell bearings at the expense of data transmission interruption, thus degrading data transmission rates 
at their respective periods. Therefore, the number of bits transferred by the baseline algorithm for each Ts is 
significantly lower compared to the proposed algorithm. In contrast, with the proposed algorithm, the bits 
transfer rate remains consistent due to circumventing frequent data traffic interruptions by avoiding unnecessary 
MWs. Therefore, Figs. 13 and 14 show higher number of bits transferred at each Ts for the proposed algorithm 

Fig. 7.  AV#177 RSRP for sub 6 GHz and mm-Wave band.

 

Simulation Time
(T S)

Baseline Algorithm Proposed Algorithm

Total Handover 
Attempts (Baseline 
Algorithm)

Handover Failures
(Baseline Algorithm)

Baseline Algorithm
HSR
(%)

Training Period
(TC)

Total Handover 
Attempts (Baseline 
Algorithm)

Handover Failures
(Baseline Algorithm)

Baseline 
Algorithm
HSR
(%)

100 7 2 71.42 70 5 0 100

Table 3.  Baseline vs. proposed algorithm HSR comparison for vehicle#177.

 

Fig. 6.  AV#177 baseline vs. proposed algorithm comparison.
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respectively. The Fig. 15 shows a difference between the proposed and baseline algorithm total bits transfer per 
simulation period for each Ts.

The Fig.  16 shows the error bar charts for the baseline and the proposed algorithm, where the mean 
HSRbaseline= 93.75% with standard deviation (δ) = 0.43 and HSRproposed = 97.49% with δ = 0.07, 
respectively. The standard deviation is lower for the proposed algorithm since the data driven model determines 
the outcome of the upcoming handover request in advance, thus preempts the handover requests that are likely 
to fail, making the HSR smoother and improved for each simulation run.

This work also conducts TTest to ensure the significance of results. For simulation results (HSR), the 
significance value (p) is 3.024E − 10 which determines that our results are significant and the proposed 
algorithm is an effective tool for improving HSR. The Table 5 summarizes the complete obtained simulation 
results as discussed throughout the Sect. “Simulation results”.

Although the simulation results are impressive still the proposed work lacks real world testing. However, 
other authors investigating similar domain also used simulation based results to justify their proposed schemes 

Fig. 9.  AVs position relative to base station (Total AVs = 774).

 

Fig. 8.  ROC Curve (AUC > 0.7).
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Fig. 11.  Vehicle#177 speed curve.

 

Fig. 10.  AV#177 proposed algorithm avoids data rate interruption.
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Fig. 13.  Bits transfer per simulation time up to 400 ms.

 

Fig. 12.  Baseline vs. proposed HSR.

 

Simulation Time
(T S)
ms

Training Period
(T P )
ms

Handover
Attempts

Baseline
Algorithm
Successful
Attempts

Proposed
Algorithm
Successful
Attempts

Baseline
Algorithm
Failure

Proposed
Algorithm
Failure

Baseline
HSR
(%)

Proposed HSR
(%)

Δ HSR
(%)

1000 295 223,229 9482 9789 568 261 94.35 97.40 3.05

900 328 181,234 18,241 19,026 1287 502 93.40 97.43 4.03

800 328 181,234 26,949 28,291 2016 674 93.04 97.67 4.63

700 421 88,715 36,247 37,600 2303 950 94.03 97.54 3.51

600 420 57,422 44,989 46,674 2900 1215 93.94 97.46 3.52

500 350 47,889 54,179 55,982 3243 1440 94.35 97.49 3.14

400 280 38,550 83,161 86,474 5554 2241 93.74 97.47 3.73

300 210 28,965 168,948 176,696 12,286 4538 93.22 97.50 4.28

200 140 19,528 169,948 176,696 11,286 4538 93.77 97.50 3.72

100 70 10,050 209,229 217,704 14,000 5525 93.73 97.52 3.80

Table 4.  Network level results for baseline vs. proposed algorithm.
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Parameter Value

Average HSRbaseline 93.75%

Average HSRproposed 97.49%

Std. Dev HSRbaseline 0.43

Std. Dev HSRproposed 0.07

TTest (p) 3.024E-10

Table 5.  Results summary.

 

Fig. 16.  Error bar chart.

 

Fig. 15.  Difference between transmitted bits for baseline vs. proposed algorithm.

 

Fig. 14.  Bits transfer per simulation time for 500 ms and higher.
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such as in69–71 because simulator based results in its self are quite a challenge to perform and are always used 
before real world testing.

Conclusion
To provide an integrated solution to the challenge of seamless mobility, this paper has demonstrated and 
compared the effectiveness of data-driven enhanced extreme gradient boosting technique in predicting target 
cell’s RSRP compared to the traditional event-driven approach. From the test results, it is clear that by using 
ML, advance information regarding the success or failure of an upcoming handover can be readily estimated, 
and hence a network can effectively avoid unnecessary MWs. This methodology has effectively eliminated the 
conventional real-time target cell’s bearer measurements where an AV sacrifices the communication channel 
and suspends data traffic to trigger an MW. The proposed technique has improved the HSR by keeping sessions 
in the most optimum band and has avoided unnecessary handover requests. The simulation results suggest 
that for the proposed algorithm the achieved HSR was 97% compared to baseline algorithm which was 93%. 
This tremendous enhancement in results shows the effectiveness of the proposed algorithm for the mobility 
management of autonomous vehicles from sub 6 GHz to mm-Waves networks.

In future, ML will be considered for improving the signal quality and hybrid beam forming together with 
RSRP prediction. Field-testing for confirming the feasibility of the proposed solution in actual AV deployments 
will authenticate the simulated results.

Data availability
"The datasets used and/or analysed during the current study available from the corresponding author on rea-
sonable request."
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