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The incompleteness of data and the variability in research methodologies can lead to significant 
uncertainties in reservoir modeling predictions. Effectively reducing and assessing these uncertainties 
are central issues in reservoir modeling studies. This research takes the ultra-low permeability and 
ultra-low porosity conglomeratic sandstone oil reservoir in the Yong 935–936 block of the Dongying 
Depression as a case study to conduct a survey on uncertainty modeling and evaluating. Considering 
the presence of multiple sediment sources in the study area, a variogram model with local variable 
azimuth angles is designed to address the discontinuity of sand bodies at the partition boundaries 
during modeling. Geological insights are used to delineate the boundaries of fan bodies, and statistical 
analysis of the proportions of sandstone and mudstone under different effective reservoir property 
limits within these fan bodies provides conditional data to reduce uncertainties in the modeling 
process. A full-factor experiment is conducted to perform a sensitivity analysis on parameters 
influencing reserves calculations, clarifying the significance of various influencing factors, such as 
fan body boundaries, effective reservoir property thresholds, and variogram range. A multivariate 
regression model between reserves calculation and significant influencing factors is constructed 
through response surface experiments. Finally, combining the Monte Carlo random simulation 
method, the distribution of cumulative probability reserves is obtained, and the 3P reserves of the 
study area are predicted to test the effectiveness of the multivariate regression model.
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The reservoir is formed under the combined influence of various factors such as structure, sedimentation and 
diagenesis. The uncertainty and stochasticity of the reservoir modeling are inevitable when it is constructed 
based on the limited data such as well logging and seismic data1–3. An important step in reservoir modeling 
is to build reservoir models that conform to the current cognition, minimize the uncertainty in modeling and 
evaluate the uncertainty of the model.

The uncertainty in the model can be categorized into response uncertainty, spatial uncertainty and local 
uncertainty4. The local uncertainty can be characterized by plotting the cumulative probability curve5. The 
spatial uncertainty can be described by using Euclidean distance or by using the correct point-to-percentage 
method in the scatter plot6,7. By constructing target models with different modeling methods and comparing the 
characteristics of standard deviation of simulation results under different conditions, the response uncertainty 
can be characterized8. Additionally, response uncertainty can also be quantified by variance analysis9,10.

The application of the processed seismic data to the model construction can effectively reduce the uncertainty 
of the model11,12. The adoption of new technical means to collect data can also minimize uncertainty13. 
Additionally, using higher-order modeling methods, such as multi-point geostatistics, can also effectively reduce 
the uncertainty14,15. Furthermore, using reservoir numerical simulation to verify and adjust the model, the 
uncertainty of the model can also be effectively reduced14,16.

Modeling by well pattern sparsing is a common evaluation method for model evaluating17, and it is also a 
desirable method to verify the model by means of three-dimensional probability distribution18. The introduction 
of experimental design methods, commonly used in medical research, has significantly improved the rationality 
of model verification and uncertainty evaluation19–21. Once the uncertain sources and evaluation factors in the 
modeling process are clearly defined, the uncertainty factors affecting the modeling results can be quantitatively 
analyzed through reasonable experiment design, and a suitable reservoir model can be selected22–26.
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After identifying the main sources of uncertainty, this study quantitatively evaluates the uncertainty factors 
in the modeling process through the method of experimental design, ultimately optimizes the appropriate target 
model.

Geological setting
The study area is located in Xizhang Town, Kenli County, Dongying City, Shandong Province. It is structurally 
located in the south of Chenan fault and the north of Lijin-Binnan fault system. It is located in the first and 
second steps of the structural slope break belt, which is bordered to the west by the Binxian Uplift, to the north 
by the Chenjiazhuang Uplift, to the south by the Lijin oil-generating depression, and to the east by the Qingtuozi 
Uplift (Fig. 1).

The structure of the study area is relatively simple. To the west, the terrain is characterized by higher elevations 
in the north and lower elevations in the south, while to the east, it is high in the northeast and low in the 
southwest. The oil reservoir presents a trend of oil-bearing linkage from west to east, and the main oil-bearing 
sand body is the conglomerate complex fan in the near-shore underwater fan, located within the steep slope 
zone of the faulted lacustrine basin in the fourth member of Shahejie Formation. The internal lithology of the 
sand-gravel rock mass is complex, reflecting multi-stage rapid accumulation or re-collapse field deposition27,28. 
The electrical properties of the reservoir are greatly affected by the tight conglomerate. Core analysis showed that 
the porosity was concentrated in the range of 5.3-13.5% with an average of 7.8% (Fig. 2), and the permeability 
was 0.72 × 10 − 3µm2 to 39.07 × 10 − 3µm2 with an average of 4.2 × 10 − 3µm2 (Fig. 3). Due to the deep burial, the 
effective and non-effective reservoir are mixed, and the heterogeneity is serious. As a result, it is classified as an 
ultra-low porosity and ultra-low permeability reservoir.

According to the previous analysis of the source of ancient gully sediments in the sedimentary period of the 
upper submember of the fourth member of Shahejie Formation, there are three primary directions of source in 
the study area, which are the northern source, the lateral source in the west and the eastern source, which are 
typical multi-source deposition29–31.

Materials and methods
Partition blocks
The seismic response characteristics across different zones of the study area are distinctly different. In the root 
area of the fan delta, the reservoir is thick with almost no shale, exhibiting broad and weak reflections, without 
distinct reflection axes or with reflection axes of large dip angles. In the middle area of the fan delta, the reservoir 
is relatively thick, with mudstone layers showing strong reflections and poor continuity. In the distal area of 
the fan delta, the reservoir is even thinner, with developed shale leading to local strong reflections and poor 
continuity(Fig. 4). In the pure shale areas, reflections are clear and continuous. Based on these observations, 
seismic facies patterns are established to provide a comprehensive basis for the subsequent boundary delineation 
of the fan body.

Fig. 1. Regional geological map of study area.
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Based on the seismic division of blocks, more detailed boundary delineation can be achieved by analyzing 
the sand body thickness. In the study area, the effective reservoir is located in the fan middle facies zone, while 
the poor reservoir is in the fan root facies zone. The reservoir quality in the fan middle facies zone is significantly 
better than that in the fan root facies zone. Therefore, the primary focus is on the stratigraphic thickness of the 
fan middle zone. Analysis reveals that there are two thickness centers in the study area. In the western Yong935 
area, influenced by a sediment source direction approximately from the north-northeast, the effective thickness 
is relatively thin in the 7th stage. The center of the fan middle zone’s stratigraphic thickness is located to the 
north of the Yong928C well, with a maximum thickness of 60 m. In the 8th stage, the center of the stratigraphic 
thickness shifts, roughly toward the northeast of the Yong928C well, with a maximum thickness of 240 m. In the 
eastern Yong936 area, influenced by a northward sediment source, the stratigraphic thickness is greater in the 
7th stage, with the thickest center located near the Yong936 well, reaching a maximum thickness of 260 m. In the 
8th stage, however, the stratigraphic thickness in the Yong936 area decreases significantly, shrinking to 140 m, 
and the center of the thickness shifts toward the northwest (Fig. 5).

Finally, integrating seismic insights and stratigraphic thickness, the boundaries of the fan bodies are 
delineated, dividing the study area into the eastern Yong 936 region, the central region, and the western Yong 
935 region. Considering that defining a single boundary involves certain subjectivity and uncertainty, which 

Fig. 3. The histogram of permeability distribution for for the reservoir in study area.

 

Fig. 2. The histogram of porosity distribution for the reservoir in study area.
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cannot objectively represent the fan body boundary characteristics, the original boundaries were appropriately 
expanded and contracted. Three different boundary levels were established: pessimistic, optimistic, and most 
likely (Fig. 6). These boundaries serve as the foundation for subsequent construction of sand-mud facies models 
and attribute models.

Collect sand-mud ratio
Within the study area, the lower limit of porosity is determined to be 4.7% and the lower limit of permeability 
is 0.7 mD using the forward and inverse cumulative method. The calculated lower limit of porosity is 5.3% and 
the permeability is 0.7 mD using the resistivity lower limit inversion method. Verification through core sampling 
and oil testing result in lower limit of porosity at 5.3% and a permeability of 1.6 mD. Selecting a single set of 
physical property limits as the criterion for evaluate sand-mud facies cannot effectively assess the impact of the 
effective property limits on the construction of sand-mud facies models and reserve calculations. Therefore, the 
physical property limits derived from the three methods are set as three different levels: Physical Property Lower 
Limit One, Physical Property Lower Limit Two, and Physical Property Lower Limit Three. Under the previously 

Fig. 5. Contour map of sand body thickness.

 

Fig. 4. North-south seismic section of Y928C well.
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delineated three boundary conditions, different effective property limits are used to statistically determine the 
percentage of sand and mud within each sub-layer under different property limit conditions (Table 1). During 
the statistical process, when the percentage of mudstone facies reaches 100% under a given condition, the sand-
mud ratio for that condition is set to 1.

Constructing conditional data
Constraint surface of azimuth
Due to the presence of multiple source directions in the study area, it is necessary to impose constraints on the 
azimuth of the variogram during the modeling process. Based on the defined boundaries of the western Yong935 
area, the central area, and the eastern Yong936 area, and referencing the source analysis results, constraint 
surfaces for the source directions of the three regions were assigned. The sediment source direction in the Yong 
935 area is 20° west of north, while in the Yong 936 area, it is oriented to the northeast. Therefore, the sediment 
source direction constraint for the Yong 935 area is set to 340°, and for the Yong 936 area, it is set to 45°. For the 
central region, the constraint is set to 0° (Fig. 7). For the three different levels of fan body boundary conditions, 
the same procedure is required to ensure that the azimuth data in the azimuth constraint files used for each 
boundary condition level are consistent.

Constraint surface of lithology proportion
By processing the statistically obtained sand-mud rock percentage data under different conditions, the sand-mud 
rock percentage data for the Yong 935 area, central region, and Yong 936 area in the study area can be effectively 
utilized. Taking the 7 − 1 sub-layer as an example (Fig. 8), under the pessimistic boundary and effective property 
limit one conditions, the mudstone% in the western Yong 935 area is 76.3% and the sandstone% is 13.7%; in 
the central region, the mudstone% is 78.4% and the sandstone% is 21.6%; in the eastern Yong 936 area, the 
mudstone% is 64% and the sandstone% is 36%. Surface files are generated using the boundaries of the western 
Yong 935 area, central region, and eastern Yong 936 area, and the statistically obtained sandstone proportion 
values are assigned to the surface files of the three regions. New surface files are then created for the three 
regions, and the statistically obtained mudstone proportion values are assigned to the surface files of the three 
regions, ensuring that on the vertical direction, the sum of the sandstone constraint surface file values and the 
mudstone constraint surface file values for a given area is 1. Figures 3, 4, 5, 6 and 7 illustrates the sandstone facies 
constraint surface file for the 7 − 1 sub-layer under the pessimistic boundary and property limit one conditions. 
Since the sand-shale percentages vary under different fan boundary conditions using various effective physical 
property lower limits, it is necessary to construct sand-shale facies constraint files for each small layer under 
different constraint conditions. These surface constraint files serve as conditional data for building lithofacies 
models.

Full factor experiment
In the preparation of basic condition data, the setting of boundaries affects the extent of the fan body, which in 
turn has a certain impact on the calculation of reserves. The physical property lower limits influence the statistical 
proportion of sand-mud rock within the boundaries, which in turn affects the construction of the lithofacies 
model and subsequent reserve calculations. Different variograms models affect the spatial relationships in the 
specific modeling, thereby impacting reserve calculations. Therefore, there are three main influencing factors 
during the experimental modeling process: boundaries, physical property lower limits, and variogram range. 
Based on the above analysis, a three-factor, three-level full-factorial experimental design can be developed as 
follows(Table 2):

Fig. 6. Schematic diagram of partition boundary division.
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Results
Models with constrained data
By combining boundary conditions, physical property lower limits, and variogram range conditions, 27 distinct 
sand-mud facies models are constructed by Petrel201832. Consistent with the overall characteristics reflected 
by the sand-mud ratio statistical parameters, the sand-mud rock percentages vary under different boundary 
conditions, and the proportion of sand-mud facies in the models differs accordingly. Under the same boundary 
conditions and effective reservoir property lower limits, the characteristics of the sand-mud facies models show 
similarities. However, when any of these conditions change, the characteristics of the constructed sand-mud 
facies models will change significantly.

Using the sand-mud ratio file obtained under optimistic boundary conditions and effective property lower 
limit one as constraints, the sand-mud facies models built with different variogram range conditions are analyzed 
(Fig. 9). Under these conditions, it was observed that the sandstone facies characteristics were not prominent in 
the 7th sub-layer of the western Yong 935 area, but were distinct and continuous in the 7th sub-layer of the eastern 
Yong 936 area. The sandstone facies characteristics under the three different range conditions were similar, but 
with minor differences in local areas. A comparison using histograms shows that the percentage of sand-mud 
facies fit under the three different variogram conditions differs only slightly. Under the pessimistic variogram 
condition, the sandstone facies accounted for 15.0% of the model, under the possible variogram condition, 
the sandstone facies accounted for 15.4%, and under the optimistic variogram condition, the sandstone facies 
accounted for 15.5%. The change in the percentage of sand-mud facies may be that as the range of the variogram 

Boundary Physical property lower limit Zone

Sand-mud ratio

Y935 block Y935 block Y935 block

Pessimistic boundary

Lower limit 1
(Por > 4.7,
Perm > 0.7)

7 − 1 0.137:0.863 0.216:0.784: 0.36:0.64:

7 − 2 0.081:0.919: 0.284:0.716: 0.252:0.748

8 − 1 0.347:0.653 0.173:0.827 0.055:0.945:

8 − 2 0.139:0.861 0.06:0.94 1

Lower limit 1
(Por > 5.3,
Perm > 0.7)

7 − 1 0.209:0.791 0.472:0.528 0.452:0.548

7 − 2 0.059:0.941 0.388:0.612 0.308:0.692

8 − 1 0.055:0.945 0.229:0.771 0.112:0.888

8 − 2 1 1 1

Lower limit 1
(Por > 5.3,
Perm > 1.6)

7 − 1 0.024:0.976 0.02.2:0.97.8 0.06.3:0.93.7

7 − 2 0.015:0.985 1 0.117:0.883

8 − 1 1 1 0.045:0.955

8 − 2 1 1 1

Possible boundary

Lower limit 1
(Por > 4.7,
Perm > 0.7)

7 − 1 0.154:0.846 0.075:0.925 0.393:0.607

7 − 2 0.12:0.88 0.15:0.85 0.33:0.67

8 − 1 0.20:0.80 0.12:0.88 0.10:0.90

8 − 2 0.14:0.86 0.03:0.97 1

Lower limit 2
(Por > 5.3,
Perm > 0.7)

7 − 1 0.11:0.89 1 0.49:0.51

7 − 2 0.06:0.94 1 0.46:0.54

8 − 1 0.06:0.94 1 0.17:0.84

8 − 2 1 1 1

Lower limit 3
(Por > 5.3,
Perm > 1.6)

7 − 1 0.02:0.98 1 0.04:0.96

7 − 2 0.01:0.99 1 0.06:0.94

8 − 1 1 1 0.02:0.98

8 − 2 1 1 1

Optimistic boundary

Lower limit 1
(Por > 4.7,
Perm > 0.7)

7 − 1 0.154:0.846 0.075:0.925 0.393:0.607

7 − 2 0.118:0.882 0.147:0.853 0.329:0.671

8 − 1 0.294:0.706 0.12:0.88 0.095:0.905

8 − 2 0.138:0.862 0.03:0.97 1

Lower limit 2
(Por > 5.3,
Perm > 0.7)

7 − 1 0.209:0.791 1 0.487:0.513

7 − 2 0.059:0.941 1 0.464:0.53.6:

8 − 1 0.055:0.945 1 0.164:0.836

8 − 2 1 1 1

Lower limit 2
(Por > 5.3,
Perm > 1.6)

7 − 1 0.024:0.976 1 0.044:0.956

7 − 2 0.015:0.985: 1 0.057:0.943

8 − 1 1 1 0.025:0.975

8 − 2 1 1 1

Table 1. Statistics of sand-silt ratio under different conditions.
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increases, the variogram’s representation of the spatial structural characteristics of the sand-mud facies changes, 
leading to subtle differences in the final model.

Models without constrained data
In contrast, when local variably constrained variograms are not applied, the characteristics of the sand-mud 
facies model in the study area change (Fig.  10). Spatially, the Yong 935 block in the west and the Yong 936 
block in the east remain the primary distribution areas for sandstone facies, but the distribution of sandstone 
facies becomes more discrete. Cross-sectional observations reveal a significant abrupt change in the thickness 

Factor Level 1 Level 2 Level 3

boundary Pessimistic Possible Optimistic

Physical property lower limit Lower limit 1 Lower limit 2 Lower limit 3

Variogram range 800-600-5 1200-900-5 1600-1200-5

Table 2. Header of full factor experiment.

 

Fig. 8. Constrained surface of lithology ratio (pessimistic boundary and materiality limit).

 

Fig. 7. Schematic diagram of constrained surface of azimuth.
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of sandstone facies at the boundaries of the zones. Comparisons indicate that the lithofacies models constructed 
under the constraints of variograms with local variations are more consistent with geological understanding.

Property model
After completing the data variation and variogram analysis for the physical property data, a facise-controlled 
modeling approach was adopted, using the facies model as the control constraint. The sequential Gaussian 
simulation method was used to construct the porosity model under different constraint conditions (Fig. 11a), 
while the permeability models(Fig.  11b) and water saturation(Fig.  11c) models were constructed under the 
constraint of the porosity model. All kinds of property models are constructed using Petrel201832.

Since the study area has two source directions, the direction was constrained by generating constraint 
surfaces. The preparation of the relevant constraint files has been discussed in the section on condition data 
processing. To enhance the reliability of subsequent reserve calculations, five corresponding physical property 
models were generated under the same facies model constraint.

The NTG model (Fig. 12) is obtained by calculating using the lower limit of Physical property lower limit. 
The calculation formula under the condition of lower limit 1 is formula1, under the condition of lower limit 2 is 
formula 2, under the condition of lower limit 3 is formula 3:

 NT G1 = IF (POR >= 4.7 AND PERM >= 0.7,1, 0)) (1)

 NT G2 = IF (POR ≥ 5.3 AND PERM ≥ 0.7,1, 0)) (2)

 NT G3 = IF (POR >= 5.3 AND PERM >= 1.6,1, 0)) (3)

Reserve calculation
The fundamental idea of applying a reservoir model to calculate reserves is to use the three-dimensional grid, 
defined during the modeling process, as the basic unit. Reserves are then calculated using Eq. 4, based on specific 
information within each grid, such as porosity, permeability, and water saturation.

 ST OIIP = Σ [V bulk ∗ NT G ∗ P OR∗( 1 − SW )/Bo]  (4)

Vbulk: Bulk Volume; NTG: Net to Gross Ratio; POR: Porosity;
SW: Water Saturation; Bo: Oil Formation Volume Factor。.

Fig. 9. Lithofacies model under conditions of optimistic boundary and lower limit32.
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Under each facies model constraint, five corresponding physical property models were implemented, 
resulting in 135 reserve calculation values(Table 3). The final evaluation metric is the average reserve value for 
each facies model condition.

Uncertainty analysis
Full-factor experiment analysis
In the main effect diagram of the full-factor experiment (Fig. 13), under the pessimistic boundary conditions, the 
reserve value is the largest; under the possible boundary conditions, the reserve value is the smallest; and under 
the optimistic boundary conditions, the reserve value is in the middle. The reserves under the three boundary 
conditions do not exhibit a monotonically increasing or decreasing trend with the expansion of the boundaries, 
but rather show a pattern of decreasing first and then increasing as the boundaries expand. The reason for this 
characteristic is that as the boundaries increase, the area of the fan body also increases, and the corresponding 
statistical values of sand-mud percentages change accordingly. Under the possible boundary conditions, the 
percentage of sandstone reaches its minimum, leading to the smallest proportion of sandstone facies in the 
model, and the characteristics of the analysis results are consistent with the results of the lithofacies modeling.

Similarly, under the conditions of effective reservoir properties, the reserves are the smallest under 
pessimistic physical property lower limits and the largest under optimistic physical property lower limits. As 
the effective reservoir physical property lower limits change from optimistic to pessimistic, the reserve values 
also change from the largest to the smallest, showing a positive correlation between the trend of reserve values 
and the trend of effective reservoir physical property lower limits. The reason for this characteristic is that as 
the effective reservoir properties shift from an optimistic level to a pessimistic level, the lower limit values of 
effective reservoir properties increase, leading to a decrease in the percentage of sandstone, ultimately reducing 
the proportion of sandstone facies in the model, and thus decreasing the reserve calculation values.

In the range of variogram, when the range is at its minimum, the reserve value is also at its minimum, and 
when the range is at its maximum, the reserve value is at its maximum. The trend of reserve values shows a 
positive correlation with the increase in range. In the specific process of lithofacies modeling, as the range of 
the variogram increases, the spatial distribution range and connectivity of sandstone show a certain trend of 

Fig. 10. Lithofacies model without constraints of local variogram32.
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improvement, which also well explains the characteristic in the analysis results that reserves increase with the 
increase in range.

The R-Sq statistics for the model based on analysis of variance, the predicted model, and the adjusted model 
are 98.82%, 86.61%, and 96.18% (Table 4). Respectively, the significance analysis of the factor analysis, shown in 
Fig. 14, indicates that boundary conditions and lower limit conditions are significant influencing factors. This is 
consistent with the information presented in the factor main effect plots and interaction plots above.

Response surface analysis
The full-factor experiment clarified that the boundary range and property lower limits have a significant impact 
on the mean value of reserve calculations. Therefore, in the response surface analysis, boundary range and 
property lower limits are selected as experimental factors. The appropriate variogram range is then adjusted to 

Fig. 12. NTG model under conditions of optimistic boundary and lower limit32.

 

Fig. 11. Propety model under conditions of optimistic boundary and lower limit32:(a) porosity model and (b) 
permeability model and (c) water saturation model.
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minimize its impact on reserve calculations, ensuring the stability of the calculation process. By modifying the 
boundary conditions and property lower limits, the optimal parameter combination is ultimately determined.

The experiment follows the principles of Central Composite Design (CCD), with the possible boundary 
and physical property lower limit two (POR > 5.3, PERM > 0.7) serving as the center points for response surface 

Fig. 13. Main effect plot of full factor experiment.

 

Standard serial number Running serial number

Factor Average reserve
(104t)Boundary Lower limit Variogram range

23 1 Optimistic Lower limit 2 1200 989

1 2 Pessimistic Lower limit 1 800 1146

25 3 Optimistic Lower limit 3 800 910

3 4 Pessimistic Lower limit 1 1600 1161

24 5 Optimistic Lower limit 2 1600 957

4 6 Pessimistic Lower limit 2 800 1013

14 7 Possible Lower limit 2 1200 957

8 8 Pessimistic Lower limit 3 1200 913

2 9 Pessimistic Lower limit 1 1200 1182

19 10 Optimistic Lower limit 1 800 1141

20 11 Optimistic Lower limit 1 1200 1131

12 12 Possible Lower limit 1 1600 1115

17 13 Possible Lower limit 3 1200 899

5 14 Pessimistic Lower limit 2 1200 1015

13 15 Possible Lower limit 2 800 961

11 16 Possible Lower limit 1 1200 1114

7 17 Pessimistic Lower limit 3 800 893

9 18 Pessimistic Lower limit 3 1600 932

16 19 Possible Lower limit 3 800 830

26 20 Optimistic Lower limit 3 1200 932

10 21 Possible Lower limit 1 800 1114

15 22 Possible Lower limit 2 1600 976

27 23 Optimistic Lower limit 3 1600 927

18 24 Possible Lower limit 3 1600 918

6 25 Pessimistic Lower limit 2 1600 1020

22 26 Optimistic Lower limit 2 800 966

21 27 Optimistic Lower limit 1 1600 1178

Table 3. Processing table of experimental result.
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analysis. The levels of the two significant influencing factors are shown in Table 5. According to the principles 
of Central Composite Design, the experiment consists of 13 runs, with each run involving the construction of 
a facies model and three equiprobable physical property models, followed by the calculation of three reserve 
results. The final evaluation is based on the average value, and the experimental results are provided in Table 6.

Probabilistic reservoir simulation
The Monte Carlo simulation method was used for 1,000 reserve calculations, replacing the actual modeling and 
reserve calculation operations. By probability distribution graph (Fig. 15), the pessimistic reserve P10 is found to 
be 954.5 × 104 tons, the probable reserve P50 is 1059.7 × 10^4 tons, and the optimistic reserve P90 is 1164.9 × 104 
tons.

Among the 1000 Monte Carlo simulation calculations, the reserve values close to the P10, P50, and P90 
probability reserves are identified, and their corresponding variable values are converted to actual values. It is 
found that the influencing factor values for the P10 probability reserve are similar to those under the possible 

Factors

Level

-1 0 1

Boundary Pessimistic boundary Possible boundary Optimistic boundary

Lower limit Lower limit 1 Lower limit 1 Lower limit 1

Table 5. Level and code of experiment variables.

 

Fig. 14. Pareto chart of full factor experiment.

 

Source Freedom Adj SS Adj MS F P

Model 18 95965.3 5331.4 37.37 0

Lineation 6 94391.3 15731.9 110.27 0

Boundary 2 3005.6 1502.8 10.53 0.006

Lower limit 2 90444.2 45222.1 316.98 0

Variogram range 2 941.6 470.8 3.3 0.09

The interaction of 2 factors 12 1574 131.2 0.92 0.568

Boundary *Lower limit 4 868.9 217.2 1.52 0.284

Boundary * Variogram range 4 120.2 30.1 0.21 0.925

Lower limit * Variogram range 4 584.9 146.2 1.02 0.45

Error 8 1141.3 142.7

Total 26 97106.7

Table 4. Variance analysis of reserve factor.
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boundary and effective reservoir property limit three conditions. The influencing factor values for the P50 
probability reserve are similar to those under the optimistic boundary and effective reservoir property limit two 
conditions. The influencing factor values for the P90 probability reserve are similar to those under the optimistic 
boundary and effective reservoir property limit one conditions. Models are constructed under these three sets 
of conditions using Petrel software, and reserves are calculated. Comparing the actual reserve calculation values 
with the Monte Carlo reserve prediction values, the errors are all less than 2%.

By performing a cross-analysis of the 13 calculated reserves with the 3P reserves (Fig.  16), a regression 
equation is obtained: Y = 1.042X − 42.71 (X is the model reserve and Y is the reserve calculated by the Monte 
Carlo or regression formula), with an R2 value of 0.986. This indicates that the multiple regression equation 
derived from the response surface experiment analysis has a certain degree of predictive ability. Additionally, 
combined with the Monte Carlo simulation method, it is possible to predict reserves under any conditions 
within the response surface.

Conclusions
This study takes the Yong 935–936 block of the Yanjia Oilfield in the Dongying Depression as an example. 
Aiming at the significant uncertainties present in the construction of a single geological reservoir model, three 
influencing factors affecting reservoir modeling and reserve calculation uncertainty were selected: fan body 
boundaries, effective reservoir property thresholds, and variogram range. A full-factor experimental design 
method was used to design 27 different modeling schemes, ultimately achieving multiple equally probable 
sand-mud facies geological models. With the static reserve as the goal, the study qualitatively and quantitatively 
evaluates the significant level of influence of each influencing factor. Through response surface experimental 

Fig. 15. Cumulative probability distribution curves of reserves.

 

Standard serial number Running serial number Boundary Lower limit reserve 1 reserve 2 reserve 3 Ultimate reserves

1 1 -1 -1 1129 1140 1133 1134

7 2 0 -1 982 991 988 1105

13 3 0 0 1023 1018 1025 1017

12 4 0 0 1102 1099 1114 1017

11 5 0 0 965 966 976 1017

8 6 0 1 1020 1012 1019 969

4 7 1 1 1020 1012 1019 993

9 8 0 0 1020 1012 1019 1017

6 9 1 0 1020 1012 1019 1021

5 10 -1 0 1020 1012 1019 1048

2 11 1 -1 1127 1120 1133 1126

10 12 0 0 994 997 988 1017

3 13 -1 1 1018 1015 1030 987

Table 6. Design scheme of response surface.
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analysis, parameters are optimized, and the best choices for each influencing factor are determined, ultimately 
constructing the target model for the study area. The main insights gained from this study are as follows:

 (1)  In response to the reservoir characteristics of the study area with multiple sediment sources, a locally var-
ying variogram was used for unified simulation of the study area, effectively solving the problem of abrupt 
changes in sand body thickness at partition boundaries. Seismic attributes and sand body thickness maps 
were comprehensively utilized to delineate pessimistic, possible, and optimistic boundary levels. Under 
different boundary conditions, the percentages of sand-mud under different effective reservoir property 
thresholds were statistically analyzed, and the obtained data were applied as conditional constraints in the 
reservoir modeling process, effectively reducing the uncertainties in reservoir modeling.

 (2)  Combining the characteristics of the study area and the selection of variograms during the modeling pro-
cess, the fan body boundary, effective property threshold, and variogram range were analyzed as the main 
influencing factors in reservoir modeling and reserve calculation. For different influencing factors, op-
timistic, possible, and pessimistic levels were set, and a full-factor experimental analysis was conducted. 
The significance and causes of different factors were analyzed, and it was determined that the significant 
influencing factors for reserve calculation were the effective property threshold and fan body boundary, 
with the effect of the effective property threshold being more pronounced. The non-significant influencing 
factor was the variogram range. In response to the actual situation of modeling and the level setting of sig-
nificant influencing factors, a response surface analysis method was used to analyze the significant influenc-
ing factors and reserve results, obtaining a multivariate regression model between reserves and significant 
influencing factors. A Monte Carlo random simulation method was employed to obtain the cumulative 
probability reserve distribution, predicting the 3P reserves of the study area.

 (3)  All kinds of assumptions used in this modeling process, such as boundary conditions and physical property 
limits, are dependent on the special geological and geophysical data of Yong935-936 block. Therefore, when 
applying this modeling method to other types of reservoirs, specific analysis and judgment of the corre-
sponding reservoirs are required. Otherwise, it will lead to unnecessary bias, which will affect the result of 
the final reservoir modeling.

Data availability
Correspondence and requests for materials should be addressed to Pingshan Ma.
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