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As the climate is becoming drier and extreme climatic patterns intensify worldwide, the present water 
scarcity worsens. Options are urgently needed for harvesting the increasingly variable rainwater 
to secure water supplies for societies and the environment. Here, new formulae are presented for 
quantifying water infiltration into soils without compromising the mathematical physics of water flow. 
These equations are derived from the rapidly developing area of random fractional partial differential 
equations and verified with data measured in the field, and these equations can be used as models for 
infiltration with random or deterministic parameters. It is shown that a generic equation of cumulative 
infiltration can be derived independently with either an initial condition of the surface moisture 
distribution or mixed boundary conditions by using the versatile homotopy perturbation method. 
One demonstration of this method is the assessment of infiltration into the same soil by altering land 
surface covers, and its implications are significant for managing land without high costs associated 
with engineering works which cause environmental concerns. These new equations of infiltration can 
be equally used for assessing infiltration rates on both rural and urban soil surfaces.

Water is essential for life and at the heart of civilisations. The Earth is drying and possibly warming forever1, 
and the world water scarcity is expected to reach the worst level ever by 2025 when 1800 million people are 
projected to live in countries and regions with “absolute water scarcity” (with < 500 m3 per year per capita), and 
two-thirds of the world population could be under “stress conditions” (with 500 to 1,000 m3 per year per capita)2. 
Facing these situations, options are urgently needed to harvest rainwater during increasingly variable rainfall 
to improve water security for human survival, for peace and the environment in general, and for farmland to 
maintain food production in particular3. Infiltration of water into soils is one of the most important processes 
on the natural and urban surfaces, which can serve the purpose of increasing water storage in the subsurface and 
improving water security.

Infiltration into soils and subsequent recharge of aquifers are essential processes to increase subsurface water 
storage. Models of infiltration are also a major component in flood forecasting and management, and irrigation 
scheduling etc. While water shortages and droughts frequently occur in many regions around the world, only 
20% of land surface runoff infiltrates the soil and recharges aquifers4 and 80% becomes runoff or floods with 
the latter damaging to the land surface, infrastructure, and human life. Under the present rainfall and surface 
conditions, groundwater recharge is decreasing in 40% of world basins5. To change this situation and sustain the 
environment, increasing infiltration into soils and subsequent recharge of aquifers on both rural natural surfaces 
and urban areas are essential6–8. While the surfaces of rural soils are more natural and their underlying aquifers 
are more variable, the urban surfaces are, in addition to parks, gardens and other areas in the general category of 
green infrastructure, can be designed to be more efficient for increased infiltration to reduce floods and improve 
infiltration for more artificial recharge of groundwater4,9.

In order to assess infiltration and subsequent recharge, a reliable and robust equation of water infiltration into 
soils is needed. A model of water infiltration into soils is an essential component in flood forecasting, assessing 
soil and land pollution potentials, scheduling irrigation, and in simulations for various water-related sectors 
etc. For its importance, major progress was made more than a century ago with the equations named after 
Green and Ampt10, Horton11 and Philip12 being dominant and treated as classic models. However, significant 
problems with these classic equations have been singled out by Knight13, which include unrealistic assumptions 
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of instantaneous ponding and sharp front etc. which compromise the physics of water flow by highly simplistic 
concepts in those models. Forty years on since Knight’s comment13, the problems with “elusive theoretical 
quantity with arbitrary physical meaning” in the classic equations remain14.

In order to improve the mathematical representation of the physics of flow into soils, Philip15,16 demonstrated 
that a variety of functions for the moisture-dependent diffusivity in the diffusion equation can be used to replace 
the constant diffusivity. But Philip’s efforts were only applied to diffusion and limited situations17 without a 
potential for widespread applications in hydrology and soil science due to the complicated mathematics involved 
in the solutions.

In the recent two decades, efforts are actively directed to the fractional partial differential equation 
(fPDE)17–21 to improve our understanding of flow dynamics during water movement in the environment in 
general and infiltration in particular. The advantage of these new equations of infiltration based on fPDEs is 
their ability to account for fluctuations in flow velocities during water movement in different pores of the soil in 
terms of temporal and spatial nonlocalities22, which is lacking in the classic models. The verification of the new 
equations based on fPDEs against the classic equations supports and encourages the application of the new type 
of models23.

Built on the recent advances in the fPDEs and the promising performance of the new models23 as well as a 
versatile numerical method named the homotopy perturbation (HPM)24, this paper presents a set of equations 
of infiltration. These new equations offer significant findings which have the advantages of (1) eliminating the 
profound unrealistic assumptions13,25, (2) incorporating random parameters to eliminate the negligence of 
natural variability of soil properties, and (3) nonlinear power function parameters to account for variabilities 
in these parameters. The nonlinear fPDE is solved with the powerful HPM and verified using field data, and 
significant conclusions have been suggested.

Governing equations, equations of infiltration, and their random functional parameters and 
conditions
The fundamental equation governing the water movement in soils considered here is an fPDE, and it is 
investigated subject to a special form of the gamma function as the initial condition (IC) and mixed boundary 
conditions (BCs). The fPDE for water movement in soils with uniform pores takes the form17–19,

 
τβ−1 ∂βθ

∂tβ
= ∂

∂z

(
D(θ)∂θ

∂z

)
− ∂K(θ)

∂z
 (1)

where θ is the reduced or relative water content, θ = (Θ − Θi)/(Θs − Θi) with Θ the volumetric water content, 
Θs and Θi being the values of Θ at saturation and the initial water content, respectively, D(θ) and K(θ) are the 
diffusivity and hydraulic conductivity, respectively, z is the depth of the soil, t is time, β is the order of Caputo 
fractional derivatives with 0 < β ≤ 1 for slow- or sub-diffusion type of flow in soil pores, and the term τβ−1 
functions as a dimensional correction to ensure the final result conforms to the conventional dimensions.

An extension to the fPDE in Eq. (1) is the distributed-order fPDE in which b1
∂β1 θ

∂tβ1 + b2
∂β2 θ

∂tβ2  replaces ∂βθ
∂tβ  

in Eq. (1) to account for water movement in large and small pores or in mobile and immobile zones of the soil. 
It should be noted that the time-fractional order, β, (or distributed orders) in a PDE is the parameter of waiting 
time distributions in the continuous-time random walk (CTRW) model which explains the movement of water 
parcels18. When this parameter appears in the equation of infiltration, it models the movement of water in soil 
pores in terms of the CTRW theory.

Soils to be analysed here can be non-swelling and swelling soils with Eq. (1) for uniform non-swelling soils 
where the physical coordinate in the vertical direction is denoted by z, while for swelling soils the material 
coordinate, denoted by m, is used which includes a factor (γnα − 1) in the diffusivity and hydraulic conductivity 
to account for swelling properties of the soil.

The diffusivity and hydraulic conductivity in Eq.  (1) for water flow in non-swelling soils take the forms 
of D(θ) = D0θc and K(θ) = K0θn, respectively, where D0, c, K0 and n are soil and flow parameters. For 
swelling soils, both the diffusivity and hydraulic conductivity take similar forms except for a factor (γnα − 1) 
included in the fPDE to account for swelling properties (see details in the Methods).

Solutions of the above fPDEs are derived using the versatile iterative numerical method HPM. This iterative 
numerical method can efficiently solve an fPDE with either an IC, BC, or any combinations of both an IC and 
BCs. In this article, the fPDEs for non-swelling and swelling soils in uniform pores, and the distributed-order 
fPDEs for flow in soils with large and small pores are solved for a special form of the gamma function, and mixed 
BCs.

The special gamma function as the IC takes the form of

 θ(z, t) = θ0 (1 + az) e−bz  (2)

where θ0 is the moisture ratio on the soil surface, and the two parameters, a and b, determine the shapes of the 
moisture profile. Equation (2) for a = 0 becomes the exponential function, θ(z, t) = θ0e−bz . The distributions 
of the soil moisture profiles described by the gamma function are depicted in Fig. 1, which appear under different 
situations.

The mixed BCs take the following forms

 
θ(0, t) = f1(t), ∂θ(0, t)

∂z
= f2(t) (3)
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where f1(t) and f2(t) are random variables or functions to be analysed in detail with f1(t) as the moisture 
content or ratio on the surface, and f2(t) as the gradient of the moisture across the soil profile. Both f1(t) and/
or f2(t) can be random or deterministic functions, variables or constants.

The equations of cumulative infiltration and infiltration rate
The equations of cumulative infiltration, I(t), derived using HPM subject to the IC and mixed BCs detailed in 
the Methods section all take the same form given by

 I(t) = B + At + F tβ  (4)

With different expressions for B and F  under different ICs and BCs, where A is the final infiltration rate, B is 
a measure of the initial depth of water in the surface soil and in the soil profile, and F  is an integrated transport 
parameter. The infiltration rate is given by differentiating Eq. (4) with respect to time,

 i(t) = A + βF tβ−1 (5)

The different forms of the equations of cumulative infiltration and infiltration rates are summarised in Table 1.
While the equations of infiltration derived from different ICs and BCs can be used, the equations derived 

with the gamma function IC are the most generic form. The rigorously derived Eq. (4) also supports an empirical 
model which is similar to Eq.  (4) in structure and is regarded as “A general formula exhibiting observed 
features…” of field infiltration known as the (three-term) modified Kostiakov equation (MKE)26 or Kostiakov-
Lewis equation (KLE)27 which, in fact, was analysed earlier by Mezencev28.

The initial condition in Eq. (2) used for deriving Eq. (4) has physical significance: (1) the case with a < 0 
corresponds to a decreasing soil moisture profile from the surface initially, and (2) the case with a > 0 in the 
initial condition means that the soil moisture is low on the surface initially and increases downwards for certain 
depths, and then decreases again as depicted in Fig. 1B.

Conditions Soil properties Applicable equation numbers

IC or BCs Swelling properties Uniform pores Dual pores with different forms of B and F

IC No-swelling soils √ Equation (4) or (30)

IC Swelling soils √ Equation (37) with F = Fs

IC No-swelling soils √ Equation (48) and (50)

IC Swelling soils √ Equation (48) and (50) with D0  and K0  multiplied by (γnα − 1)

Mixed BCs No-swelling soils √ Equation (55) with B = Bb  and F = Fb

Mixed BCs Swelling soils √ Equation (55) with D0  and K0  multiplied by (γnα − 1)

Table 1. Generic equation of cumulative infiltration I(t) = B + At + F tβ  with different forms of B and F  
derived with different ICs and mixed BCs.

 

Fig. 1. The simulated initial moisture distributions using Eq. (2). (A) θ0 = 0.40, a = 0.6 and different values 
for b; (B) θ0 = 0.40, b = 0.35 and different values for a with a = 0 representing the exponential distribution.
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The boundary conditions used here are also physically important which result in the same form of the 
equation of cumulative infiltration. As such the users can apply the general equation with different choice of 
explanations for the soil and flow conditions.

For infiltration into swelling soils, as it is summarised in Table 1 that the equation of cumulative infiltration 
is similar to Eq. (4) except that the transport parameter F  is replaced by Fs with a factor (γnα − 1) added to 
account for swelling, i.e., Fs = F (γnα − 1).

It is important to point out the differences between Eq.  (4) and other reported empirical equations of 
cumulative infiltration: firstly Eq. (4) is rigorously derived from a nonlinear random fPDE with the diffusivity 
and hydraulic conductivity being random power functions; secondly an arbitrary moisture profile is used which 
is more realistic under natural conditions without unrealistic assumptions; and thirdly the random parameters 
accommodate natural variabilities of the parameters.

Fitting the data of cumulative infiltration measured at different initial moisture contents29 to Eq. (4) yields 
the parameters that are listed in Table 2. It should be noted that surface conditions are different for the same 
soil which result in different values for the parameters in Eq. (4). Given the very small values of B in the soils 
analysed in this paper as a special case, Eq. (4) can be approximated by

 I(t) = At + F tβ  (6)

In Table 2, the difference in Eqs. (4) and (6) are compared with published data measured in the field.

Effects of initial soil moisture contents on infiltration
The same data of Talsma29 was fitted to Eq. (6) which yields the parameter values that are also listed in Table 2. 
Two more data sets30,31 without information on the initial moisture contents are also analysed, respectively, with 
Eq. (4) and Eq. (6) and the results are listed in Table 2 for comparisons. 

It can be seen in Table 2 that the larger the initial moisture content (or the background flow), the larger is the 
value of A, which supports the concept of background flow. The three curves and corresponding different levels 
of initial moisture data are shown in Fig. 2, which, together with the data in Table 2, indicate that the parameter 
B is very small for this soil and can be neglected for simplicity in this case. These equations are derived from the 
random concept and can be also used as deterministic equations as an option.

Effects of soil types on infiltration
In addition to the three-term MKE26 identical to Eq. (4), there is another empirical equation of infiltration called 
(two-term) MKE identical to Eq.  (6) in practice32,33, and there are extensive reports on the variability of the 
parameters in the two-term MKE. Here, two important issues are investigated using Eq. (6) with data originally 
reported for the two-term MKE: the effects of soil types and land surface management on infiltration.

The types of soil can have a significant impact on infiltration physics which determines the rate and quantity 
of infiltration. With the reported data on the infiltration rates measured in the field for different types of soils32, 
the parameters in the two-term MKE are derived by curve-fitting and converted to the equivalent parameters in 
Eq. (6) here which are listed in Table 3 for comparison.

θi B (mm) A (mm/h) F (mm/hβ) β Sources

Equation (4)

0.30 0.0002 0.25 127.60 0.296

Talsma29

0.35 0.0007 2.12 66.74 0.159

0.40 0.0032 2.29 28.23 0.076

Mean 0.0014 1.55 74.19 0.177

SD 0.0016 1.14 50.10 0.111

Range 0.003 2.04 99.37 0.220

0.51 0.43 8.27 0.431 Valiantzas30

0.0004 12.80 53.00 0.539 Sharma et al.31

θi A (mm/h) F (mm/hβ) β Sources

Equation (6)

0.30 0.25 127.84 0.297

Talsma29

0.35 2.11 66.72 0.160

0.40 2.30 27.60 0.079

Mean 1.55 74.05 0.179

SD 1.13 74.05 0.110

Range 2.05 100.24 0.218

0.43 8.63 0.412 Valiantzas30

12.87 53.32 0.550 Sharma et al.31

Table 2. Comparisons of parameters in Eqs. (4) and (6). Data fitting was completed with a TableCurve2DTM 
code. SD standard deviation.
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Effects of land surface management on infiltration
Land surface management can also have a significant impact on infiltration physics. Tillage and land surface 
covers are two important forms of land management practice, which are examined here using the data and 
parameters derived for the two-term MKE33 and are translated into the parameters in Eq. (6) for re-interpretation 
and comparison in Table 4. The data listed in Table 4 indicate that surface covers and tillage have different 
consequences for infiltration which result in different levels of rainfall recharge in the subsurface.

The results in Table 4 indicate that the land management practice with tillage and mulching is the most 
effective practice for a higher infiltration rate followed by the mulched no-tillage land surface. These findings are 
very important for land management guidelines in a drying and warming climate to promote rainfall infiltration 
into soils for better water security, and particularly important for the farming sector around the world for food 
security. An optimal land surface management is also significant for its low-cost operation for the agricultural 
sector, for water conservation and climate adaptation without causing too much disturbance on the land and the 
environment.

Effects of irrigation water quality and management practice on infiltration
In irrigated agriculture in different regions of the world, many factors affect infiltration into soils, which 
include irrigation water quality that is characterised by variable chemical concentrations27, and different land 
management options that alter the surface conditions which include tillage, mulching, burning and residue 
management etc.27,34–36. The highly variable values of the three parameters in Eq. (6) are visible in terms of the 
KLE27.

Conclusion
A very general equation of cumulative infiltration has been presented for assessing water infiltration into soils to 
recharge the subsurface water storage. This equation of cumulative infiltration in Eq. (4) is shown to generalise 
a set of equations of cumulative infiltration derived using different initial conditions (ICs) and mixed boundary 
conditions (BCs). This generalisation implies that the same physical process of infiltration into soils can be 
represented by one equation and interpreted with different mathematical terminologies whether they are ICs 
or BCs. These equations have been derived from the very active theory of random fractional partial differential 
equations without unrealistic assumptions which compromise the physics of flow into soils. The procedures 

Types of land surface treatments A(cm/h) F (cm/hβ) β

Tilled-mulched (TM) 120.2 69.4 0.579

Untilled-mulched (UM) 90.4 8.0 0.220

Tilled-unmulched (TU) 36.0 4.9 0.193

Untilled-unmulched (UU) 30.2 6.4 0.476

Continuous pasture (CP) 10.2 4.7 0.029

Table 4. Response of infiltration physics to land surface treatments measured by the parameters in the 
equation of cumulative infiltration.

 

Soil type Clay Clay loam Loam Sandy clay loam Sandy loam

A, cm/h 1.13 1.41 1.72 1.78 2.09

F, cm/hβ 0.71 0.32 0.62 0.36 0.64

β 0.42 0.40 0.32 0.34 0.27

Table 3. Variability in parameters of Eq. (6) for infiltration into different types of soils with data converted 
from a published report33.

 

Fig. 2. The effect of the initial moisture content on infiltration. The data from Talsma29 were fitted to Eq. (6).
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presented here demonstrate that the governing equation with the general nonlinear diffusivity and hydraulic 
conductivity can be solved with the aid of the homotopy perturbation method with either an initial condition or 
mixed boundary conditions without compromising the physics and mathematics which describe the movement 
of water in soils. A summary of this set of equations is given so that readers will have a choice for what is 
suitable for their situations. An important demonstration of this finding is the evaluation of the effects of land 
surface covers and tillage to improve infiltration into the subsurface33, which is a very important practice in 
water management. When the practices of tillage, no tillage and occasional tillage37 are optimised, the reductions 
in surface runoff and soil erosion on land will accompany the increase in water infiltration and improvement 
in other environmental benefits. The quantity of water infiltrated into the same soil can be increased by altering 
land management practices, and the implications are particularly important for managing large areas of 
farmland in the drying climate without high costs associated with major engineering works which cause major 
environmental concerns.

Methods
This section is the summary of Methods for the solutions of two flow equations using the HPM. Two governing 
equations are used here: one fPDE is for uniform pores in soils, and the second fPDE for flow in soils with large 
and small pores or mobile-immobile zones.

The equation of flow in soils with uniform pores
One of the fPDEs presented by the author17–19 for water movement in rigid soils analysed in this paper is of the 
form,

 
τβ−1 ∂βθ

∂tβ
= ∂

∂z

(
D(θ)∂θ

∂z

)
− ∂K(θ)

∂z
 (7)

where D(θ) is the diffusivity, K(θ) is the hydraulic conductivity, and both of which are related by the 
relationship37

 
D(θ) = K(θ)dψ

dθ
 (8)

with ψ being the water potential. For water movement in swelling soils, Eq. (7) is modified as19,20

 
τβ−1 ∂βθ

∂tβ
= ∂

∂m

[
Dm(θ) ∂θ

∂m

]
− (γnα − 1) dKm(θ)

dθ

∂θ

∂m
 (9)

where m is the material coordinate, γn is the particle specific gravity, α is the gradient (or slope) of the shrinkage 
curve, which is a ratio on the graph of the specific volume, v, versus water content or moisture ratio, θ, and 
Dm (θ) is the material diffusivity given by Smiles and Raats38

 
Dm(θ) = Km(θ)

1 + θ

dΦ
dθ

 (10)

with Φ being the unloaded matrix potential, and Km (θ) being the material-based unsaturated material 
hydraulic conductivity. With the saturated material hydraulic conductivity given as km = K (θ) θs, where 
θs is the fraction of solids and K (θ) the conventional unsaturated hydraulic conductivity, the material-based 
hydraulic conductivity takes the form of

 Km(θ) = K(θ)(γnα − 1) (11)

The equation of flow in soils with large and small pores
When the pores in soils are not uniform, but can be grouped into large and small pores, a distributed-order 
fPDE18,39 can be used,

 
τβ−1

(
b1

∂β1 θ

∂tβ1
+ b2

∂β2 θ

∂tβ2

)
= ∂

∂z

(
D(θ)∂θ

∂z

)
− dK(θ)

dz

∂θ

∂z
 (12)

for non-swelling soils with 0 < β1 < β2 ≤ 1.0. In this paper, both fPDEs for uniform and non-uniform 
pores are analysed. For swelling soils, Eq. (11) shows that the difference between the material-based hydraulic 
conductivity, Km (θ), and its conventional counterpart, K(θ) is only a factor (γnα − 1).

Essentials for the homotopy perturbation method for solutions of the governing equations
The HPM is an iterative numerical method developed by He24 which has extensive applications in applied 
mathematics and numerical analysis for different types of ordinary differential equations (ODEs), partial 
differential equations (PDEs) and their fractional counterparts such as the fPDEs. In water-related fields, a 
compendium of HPM applications has been published40, and the essentials of this method are outlined here 
only for the convenience of readers.
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Homotopy is a concept in topology which is central to the HPM and related methods. Topology is a field in 
mathematics which deals with geometric properties of a mathematical object which remains unaffected under 
continuous deformation40.

Homotopy defines a connection between two mathematical objects by specifying that the two objects are 
homotopic if one can be continuously deformed into the other. This concept is the key to the approximate 
solution of a differential equation when the original problem is expanded in a mathematical expression known 
as the homotopy.

Take two functions, f(t) and g(t), of a dimension t( either for time or space) for example, a homotopy is 
defined as

 H(t; q) = (1 − q)f(t) + qg(t), (13)

which is defined in the range of zero and one, namely, q ∈ [0, 1][0, 1], where q is the perturbation parameter. The 
homotopy H(t; q) between f(t) and g(t) is itself a continuous function, and Eq. (13) shows that H(t; q) = f(t) 
for q = 0 and H(t; q) = g(t) for q = 1.

For ODEs, PDEs, fractional ODEs (fODEs) and fPDEs, the HPM has been extensively applied to develop 
solutions in a series form24. For an analytical function, f(r), with a general differential operator, D, define

 D(u) = f(r) (14)

and the operator D can be split into two parts, a nonlinear component denoted by N , and a linear component 
by L. Then a nonlinear differential equation can be written as

 N(u) + L(u) − f(r) = 0 (15)

A homotopic of the general differential equation in Eq. (14) is written as24,41,

 H(v, p) = (1 − p) [L(v) − L(u0)] + p [D(v) − f(r)] = 0, p ∈ [0, 1] (16)

where u0 is the initial approximation of Eq. (14). Note that a series decomposition solution is defined in term of 
v as approximation to u. Equation (16) defines

 H(v, 0) = L(v) − L(u0) = 0 (17)

and

 H(v, 1) = D(v) − f(r) = 0 (18)

with p being the perturbation parameter, the solution of Eq. (16) is assumed to be a series solution of the form,

 

ν (x, p) = ν0 (x) + ν1 (x) p + ν2 (x) p2 + . . . +

=
∞∑

k=0

νk (x) pk  (19)

which, for p = 1, gives the desired solution of Eq. (16) as

 
v(x, p) = v0(x) + v1(x) + v2(x) + ...+ =

∞∑
k=0

vk(x) (20)

As an alternative to traditional methods43, HPM has been applied to solve various types of nonlinear problems 
with satisfactory accuracy in nonlinear and complex fluid flow problems compared with the traditional 
approximation methods and classic numerical methods44.

Equations for infiltration derived using the homotopy perturbation method
Non-swelling soils with uniform pores
Based on the earlier development18,44, we further investigate the random boundary conditions and parameters 
in fPDEs for water flow in soils. The following nonlinear diffusivity, D(θ), and the hydraulic conductivity, K(θ), 
are used,

 D(θ) = D0θc, K(θ) = K0θn (21)

The special form of the gamma function as the initial condition is given here as

 θ(z, t) = θ0 (1 + az) e−bz at t = 0 and z > 0 (22)

where θ0 is the water content or water ratio on the surface at t = 0, a and b are constants which determine 
the shape of the initial moisture distribution across the soil profile. In particular, the values of a ranges from 
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negative to positive values, and a positive a implies the increase in the moisture from the surface of the soil while 
a negative a means the decrease of the soil moisture from the surface.

Simulations indicate that the shape parameter a is in the range of −2 < a < 2 which is suitable for many 
natural shapes of the initial moisture profile. In the special case of a = 0, Eq.  (22) becomes the exponential 
function, θ(z, t) = θ0e−bz   at t = 0 and z > 0. Both forms of the initial conditions indicate that the initial 
moisture content at the surface is θ(0, 0) = θ0 at z = 0 and t = 0.

The solutions of Eq. (7) with the two coefficients as functions in Eq. (21) subject to the condition in Eq. (22) 
are, respectively, given as an infinite series of the approximate solution, u,

 
θ(z, t) =

∞∑
i=0

ui (23)

The procedures for the solution with the initial condition Eq. (22) derived using the HPM can be found in the 
literature41,45–51. The general form of the HPM procedure for solutions of Eq. (7) subject to Eq. (22) with the 
diffusivity and hydraulic conductivity in Eq. (21) is written as

 





τβ−1 ∂βθ

∂tβ
− p

[
∂

∂z

(
D0θc ∂2θ

∂z2

)
− nK0θn−1 ∂θ

∂z

]
= 0

θ(z, t) = θ0 (1 + az) e−bz, t = 0
 (24)

where the perturbation parameter varies as 0 ≤ p ≤ 1. For p = 0, Eq. (24) becomes41,45,46

 




p0 : τβ−1 ∂βu0

∂tβ
= 0

u0 = θ0 (1 + az) e−bz, t = 0
 (25)

which yields the first component of the solution

 u0 = θ0 (1 + az) e−bz  (26)

For p = 1, Eq. (24) with a homogeneous condition is written as

 




p1 : τβ−1 ∂βu1

∂tβ
−

[
∂

∂z

(
D0uc

0
∂u0

∂z

)
− nK0un−1

0
∂u0

∂z

]
= 0

u1 = 0, t = 0
 (27)

where u0 is given by Eq. (26). Equation (27) is a nonlinear fPDE, and its solution is given as follows by fractional 
integration52

 

u1 =




D0 [θ0 (a − b − abz)]2+c e−(2+c)bz

+cD0 [θ0 (a − b − abz)]1+c e−(1+c)bz

−nK0 [θ0 (a − b − abz)]n e−nbz




τ1−β

Γ(1 + β) tβ  (28)

and the two-order approximate solution is the sum of the order zero u0 in Eq.  (26), and u1 in (28), i.e., 
θ = θ0 (1 + az) e−bz + u1, which is used in the following integral37

 

I(t) = At +
∞∫

0

θdz (29)

to derive the equation of cumulative infiltration. Equation (29) can be completed to yield a very complicated 
form, and to simplify the presentation, it is reasoned that the term abz can be neglected as the values of a and 
b are very small (see Fig. 1), particular for small depths associated with infiltration, then, the integration in 
Eq. (29) yields

 I(t) = B + At + F tβ  (30)

with

 
B = 1

b

(
θ0 + a

b

)
 (31)

and
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F =





D0 [θ0 (a − b)]2+c

(2 + c) + cD0

(1 + c) [θ0 (a − b)]1+c

−K0 [θ0 (a − b)]n





τ1−β

bΓ(1 + β)  (32)

where A is the final infiltration rate, B accounts for the initial quantity of the moisture contents and is a constant 
for a saturated soil, and F  is an integrated parameter. As θ0 is continuous and random by definition, B is also 
continuous and random, and its derivative with respect to time is dB(θ0)/dt = 0. The infiltration rate is given 
by differentiating Eq. (30) with respect to time,

 i(t) = A + βF tβ−1 (33)

When the exponential function as the initial condition is used, the solution of Eq. (24) is slightly different, and 
the equation of cumulative infiltration is identical in form to Eq. (30) except for the following parameters,

 
B = θ0

b
 (34)

and

 
F =

[
bD0θc+1

0

(
θ0

2 + c
+ c

1 + c

)
+ K0θn

0

]
τ1−β

Γ(β + 1)
 (35)

which is not fully identical to Eq. (32) for a = 0 because of the approximation in Eq. (35) by neglecting the term 
abz. The infiltration rate in this case is similar to Eq. (33) but with B in Eq. (34) and F  in Eq. (35) instead.

Swelling soils with uniform pores
For swelling soils, Eq. (9) is the governing equation for water movement. Comparing the formulation for non-
swelling soils and its solutions as well as the equations of infiltration, the solution of Eq. (9) derived using the 
HPM for swelling soils is given as

 θ = θ0 (1 + am) e−bm + u1 (36)

The equation of cumulative infiltration based on Eqs. (29) and (36) is

 I(t) = B + At + Fstβ  (37)

with

 
B = 1

b

(
θ0 + a

b

)
 (38)

and

 

Fs =




D0 [θ0 (a − b)]2+c

(2 + c) + cD0

(1 + c) [θ0 (a − b)]1+c

−K0 [θ0 (a − b)]n




τ1−β(γnα − 1)
bΓ(1 + β)  (39)

The rate of infiltration into swelling soils is given by i(t) = A + βF tβ−1 with F  given by Eq. (39).

Non-swelling soils with large and small pores
In this case, Eq. (12) is used, and the homotopy above is extended to this case,

 




p1 : τβ−1
(

b1
∂β1 u1

∂tβ1
+ b2

∂β2 u1

∂tβ2

)
−

[
∂

∂z

(
D0uc

0
∂u0

∂z

)
− nK0un−1

0
∂u0

∂z

]
= 0

u1 = 0, u0 = θ0 (1 + az) e−bz, t = 0
 (40)

with u0 = θ0 (1 + az) e−bz  as the first component of the solution. The second term on the right-hand-side of 
Eq. (40) is the water supply rate on the surface, and can be written as

 
q = − ∂

∂z

[
D0uc

0
∂u0

∂z
− K0un

0

]
 (41)

which, in the content of infiltration, is equivalent to the infiltration rate, i.e., q = i(t). By applying Laplace 
transform to Eq. (40), rearranging the term 

(
b1sβ1 + b2sβ2

)
, and then applying the inverse Laplace transform 

gives

 u1 = τ1−βeα,β (t; λ) i(t) (42)
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where λ = b2
b1

, and eα,β (t; λ) is the generalised Prabhakar function (GPF)53,54 given by

 eα,β (t; λ) = tβ2−1Eβ2−β1,β2 (−λtα) (43)

with Eβ2−β1,β2 (−λtα) being the Mittag–Leffler function53, α = β2 − β1 and β = β2. The two-term 
approximation of the solution for the water content or water ratio in the soil is then given by

 θ(z, t) = u = θ0 (1 + az) e−bz + τ1−βeα,β (t; λ) i(t) (44)

which, for infiltration that applies to the surface at z = 0, is rearranged to give

 
i(t) = τβ−1 [θ(0, t) − θ0]

eα,β (t; λ)
 (45)

where θ(0, t) is the water content or water ratio on the surface as a function of time compared to the initial water 
content on the surface, θ0. Equation (45) relates the infiltration rate to the gradient of the moisture content or 
ratio on the surface. The GPF in Eq. (43) and Eq. (44) has asymptotic solutions under different conditions as time 
approaches large or t → +∞. For 0 < β1 < β2 ≤ 1.054, the asymptotic result is

 
eα,β

(
t; b2

b1

)
∼ 1

Γ(β1)

(
b2

b1
t
)β1−1

0 < β1 ≤ 1.0 (46)

which shows that as the time approaches very large, Eq. (45) can be written as

 
i(t) ∼ τβ−1 [θ(0, t) − θ0] Γ(β1)

(
b2

b1
t
)1−β1

 (47)

which means that as time becomes very large, infiltration into the soil is determined by the ratio of porosities, λ, 
and small pores represented by the order of fractional derivatives for small pores, β1. Here the symbol ∼ means 
“approaches” as time becomes very large or asymptotically, and for the purpose of approximate expressions, it 
can be replaced by the approximately equal sign ≈ in practice provided that the large time condition is stated.

If analysis and applications are desired to relate infiltration to more soil parameters, two options can be taken 
based on the infiltration integral55 with Eq. (45) incorporated: one is the Parlange-Smith equation (PSE)55,56, and 
the second is the Green and Ampt equation (GAE)10.

With the PSE, cumulative infiltration, I(t), is given by combining Eq. (45) with the PSE55 to yield,

 
I(t) = At + (θs − θ0) G ln

(
i(t) − Ki

i(t) − Ks

)
 (48)

where i(t) is given by Eq. (45), and

 
G =

D0
(
θc+1

s − θc+1
0

)
(c + 1) (Ks − Ki)

 (49)

with θs and Ks being the saturated water content (or water ratio) and saturated hydraulic conductivity of the 
soil, respectively. At ponding time when the surface water supply rate such as the rainfall intensity equals the 
infiltration rate, i.e., i(t) = ip, the cumulative infiltration in Eq. (48) is expressed as Ip(t).

With the GAE, the equation of cumulative infiltration55 is combined with Eq. (45) and with A = Ks to yield

 
I(t) = At + S

i(t) − A
 (50)

with

 
S =

D0 (θs − θ0)
(
θc+1

s − θc+1
0

)
(c + 1)

 (51)

The assignment of A = Ks make the discussion in Smith55 more general because A covers more cases including 
Ks, which has been discussed by Youngs57 and Philip58. Equation (50) can be rearranged to give the infiltration 
rate, i(t) = A + S

I(t)−At , which means that the infiltration rate i(t) approaches the final infiltration rate, A, 
as time becomes very large, i.e., i(t) → A as t → ∞. Note that i(t) in Eqs. (48) and (50) can be replaced by 
Eq. (45).

Solutions of the fPDE and equation of cumulative infiltration subject to mixed 
boundary conditions
The solutions of Eq. (7) can be derived subject to the following mixed boundary conditions49,59,
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θ(0, t) = f1(t), ∂θ(0, t)

∂z
= f2(t) (52)

with both f1(t) and f2(t) as random variables and/or deterministic functions or constants.
In the case of constant f1(t) = θ0 and f2(t) = q0 in Eq. (52), the first component of the governing equation 

using the HPM is given as

 u0 = θ0 + zq0 (53)

and the next order component of the solution is given by solving the fractional differential equation

 
u1 =

[
cq0D0 (θ0 + zq0)c−1 − nK0 (θ0 + zq0)n−1] q0τ1−βtβ

Γ(β + 1)
 (54)

The equation of cumulative infiltration can be shown to be

 I(t) = Bb + At + Fbtβ  (55)

where

 
Bc = θ2

0

q0
 (56)

is the initial depth of water content in the soil, and

 
Fb = τ1−β

Γ(β + 1) (K0θn
0 − D0q0θc

0) (57)

Swelling soils with large and small pores
As with the uniform soils, the key difference is the factor (γnα − 1) associated with the hydraulic conductivity 
and conductivity for swelling soils. As discussed in the main text, the distributed-order fPDE b1

∂β1 θ

∂tβ1 + b2
∂β2 θ

∂tβ2  

replaces ∂βθ
∂tβ  in Eq. (9) to account for water movement in large and small pores or in mobile and immobile 

zones of the soil. Then the formulation above from Eq. (52) to Eq. (57) for non-swelling soils can be extended 
to swelling soils by including (γnα − 1) to where D0 and K0 appear so that Fm = (γnα − 1) Fb for swelling 
soils.

The procedures with the homotopy perturbation method leading to the above solutions are based on the 
mean square approach to random variables which are similar to the mean square Laplace transform60 in that 
the random variables A, B and F  discussed here are, in fact, synonyms of the expressions A = E[An] for 
simplicity, where E symbolises expectation (or mean), and each random variable is an expectation of many 
observations, i.e., E[An] →n→∞ E[A] → A, E[Fn] →n→∞ E[F ] → F , and E[Bn] →n→∞ E[B] → B. In 
hydrological practice such as during parameter estimation etc., the parameters A, B and F  can also be treated 
as deterministic quantities so that no sophistication in the concept is needed.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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