
Optimized quantum folding Barrett
reduction for quantum modular
multipliers
Jian Zhang1, Seong-Min Cho1, Changyeol Lee1 & Seung-Hyun Seo2

Due to the reversibility constraints of quantum circuits, the development of modular operations in
quantum modular multiplication has been significantly limited. In this work, we propose an optimized
modular operation scheme based on Barrett reduction and implement quantum circuits for three
versions of Barrett reduction, including our optimized approach. The proposed quantum modular
operation circuit can be integrated with quantum-quantum and quantum-classical multiplication
circuits. Additionally, we analyze the quantum resource requirements of the proposed circuit and
compare the results across the three versions. Our optimized folding Barrett reduction scheme
demonstrates superior performance. Furthermore, general quantum modular reduction relies on
recursive subtractors and controlled adders to avoid division operation, resulting in a T-depth of
approximately O(2n), where n is the bit length of the modulus. In contrast, our approach achieves a
T-depth of only O(n2) by utilizing the Barrett reduction.

Quantum computers can solve numerous problems faster, based on quantum properties such as superposition
and entanglement, than classical computers. For example, Shor’s algorithm1, proposed by Peter Shor in 1994,
solves the integer factorization problem in polynomial time. Grover’s algorithm2, proposed by Lov Grover in
1996, reduces the complexity of unstructured search problems from O(n) in classical computing to O(

√
n)

in quantum computing. The construction of quantum algorithms relies on many quantum arithmetic circuits,
which are composed of quantum gates that execute operations on qubits. In particular, quantum algorithms,
including Shor’s algorithm, are required to solve mathematical problems, requiring quantum operations over
modular arithmetic.

Currently, extensive studies are concentrated on designing quantum arithmetic circuits for addition and
multiplication. However, studies on quantum circuit designs for modular addition and multiplication have been
less advanced due to the difficulty of converting the reduction process to a value less than the modulus number
into a reversible quantum circuit. The conventional approach for modular multiplication is to first compute
the product of the input values and then derive the final result using division. However, due to the reversibility
requirement of quantum circuits, classical modular multiplication is difficult to implement in quantum circuits.
Reversibility mainly limits the conversion of division operations. In recent years, some studies have attempted
to directly convert the classical division operation into quantum circuits. Yuan et al.3 proposed a quantum
circuit based on the binary long division algorithm, which is composed of quantum comparators and quantum
subtractors. Their quantum subtractor circuit reduces qubit usage by directly performing a “reset operation” to
the auxiliary qubit to |0⟩, but does not account for the quantum gate cost associated with qubit initialization.
In practice, the two common modular multiplication methods are the Montgomery algorithm4 and Barrett
reduction5. The Montgomery algorithm utilizes a specific representation known as the “Montgomery form”.
Initially, it converts the numbers into Montgomery form, subsequently executing modular operations. The
conversion eliminates the necessity of division operations during the computation. The Barrett reduction,
conversely, precomputes parameters to convert the division operation into multiplication and bit-shifting
operations. In classical modular multiplication, Barrett reduction provides benefits over the Montgomery
algorithm as it requires only a single precomputation of parameters for multiple reductions utilizing the same
modulus.

In 1986, Barrett proposed a classical modular multiplication algorithm5 suitable for hardware implementation,
which reduces the resource usage in the modular operation by avoiding division operations. To improve the
efficiency of the Barrett reduction in practical applications, Kong6 optimized the parameters of the approximation
process, reducing the number of subtractions required for result correction to a single instance. Hasenplaugh
et al.7 proposed the folding Barrett reduction algorithm, a recursive method that enhances the efficiency by

1Department of Electrical Engineering, Graduate School of Hanyang University, Seoul 04763, South Korea. 2Division
of Electrical Engineering, Hanyang University ERICA, Ansan 15588, South Korea. email: seosh77@hanyang.ac.kr

OPEN

Scientific Reports | (2025) 15:22808 1| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-04987-1&domain=pdf&date_stamp=2025-6-6

reducing the length of integers requiring modular reduction. Wu et al.8 further improved the folding Barrett
reduction by combining Kong’s method, optimizing the correction process to require only a single subtraction,
and using the Karatsuba algorithm for integer multiplication to improve the computational efficiency.

Although any classical algorithm can be converted into a reversible circuit in principle9, careful consideration
must be given to the use of quantum resources during the circuit conversion process. Generally, classical
algorithms possess substantial size and circuit depth after conversion. Consequently, even though classical
modular multiplication can be converted into quantum circuits, substantial efficiency constraints exist. In 2018,
Rines et al.10 proposed an efficient theoretical model for a quantum modular multiplication circuit using Barrett
reduction, but they did not present specific quantum circuits. Thus, there remains a lack of practical quantum
circuit models for modular multiplication arithmetic.

In this paper, we propose an optimized variant of Barrett reduction and the corresponding quantum circuit
derived from it. Moreover, we implemented three versions of the quantum Barrett reduction circuit based on
identical concepts. In contrast to the Barrett reduction proposed by Wu et al.8, which is exclusively combinable
with Karatsuba multiplication, our approach is compatible with the Karatsuba, Toom-Cook, and Schönhage-
Strassen multiplication algorithms. Furthermore, the theoretical quantum circuit model, proposed by Rines et
al.10, focuses solely on quantum-classical modular multiplication without providing detailed design or analysis
for quantum-quantum modular multiplication. Our quantum circuit, however, applies to both quantum-classical
and quantum-quantum modular multiplication. In the NISQ (Noisy Intermediate Scale Quantum) era, the use
of quantum resources is still greatly limited. The actual consumption of quantum resources is an important
indicator of the efficiency of a quantum algorithm. Unlike the estimate of Yuan et al.3, our analysis explicitly
includes the gate overhead required to reset ancilla qubits. As an important component of Shor’s algorithm,
modular exponential operation can be decomposed into sequential modular multiplication operations with a
fixed modulus N. Our scheme precomputes the parameters once and reuses them throughout the sequence,
which gives it a decisive advantage over division-based and other simplified methods. Based on our quantum
circuit designs, we estimated the quantum resources required for each quantum circuit. Our optimized quantum
folding Barrett reduction circuit uses about half the T-depth of a general quantum Barrett reduction circuit.
Additionally, compared to the quantum resources required for general quantum modular operations, our
proposed approach shows superior performance in terms of T-depth.

Preliminaries
We introduce the general modular multiplication methods using Barrett reduction and elementary quantum
gates of quantum circuits in this section.

Barrett reduction
General Barrett reduction
Barrett reduction5 is an efficient method for modular reduction, particularly suitable for computational scenarios
where division operations are costly. This is particularly advantageous when multiple modular operations must be
performed using the same modulus. The core idea of Barrett reduction is to replace division with multiplication
and bit-shifting operations. Given a modulus N and an integer t that needs to be reduced, Barrett reduction first
requires the precomputation of a parameter µ =

⌊
22n

N

⌋
, where n is the bit length of the modulus. The Barrett

reduction can be defined as R = t − q̂N , where q̂ =
⌊⌊

t
2n−1

⌋
µ

2n+1 t
⌋

. By estimating the quotient q̂, the value
of R is constrained to lie within in range 0 ≤ R < 3N − 1. Typically, at most two additional subtractions of the
modulus N are required to obtain the final result. The description of this procedure can be found in Algorithm 1.

Algorithm 1. General Barrett reduction.

Folding Barrett reduction
The folding Barrett reduction7 modifies the general Barrett reduction process to reduce the size of the integers
involved in the modular operation. Unlike the general Barrett reduction, which requires only one precomputed

Scientific Reports | (2025) 15:22808 2| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

value, the folding Barrett reduction relies on two constants related to the modulus N. These constants can
be precomputed since they only depend on the modulus N. Assuming the modulus length is n and s = n

2 ,
the constants are µ =

⌊
23s

N

⌋
 and N ′ = 23s mod N . Using the constant N ′, an integer t of length 4s can be

reduced to 3s + 1 bits, represented as t′ = t mod 23s +
⌊

t
23s

⌋
N ′. It shows that t′ = t mod N and this

gives t′ mod N as the result instead of t mod N , effectively reducing the computational effort required. The
estimated quotient is represented as q̂ =

⌊⌊
t′

22s

⌋
µ
2s

⌋
, and the final result is R = t′ − q̂N . Since R lies between 0

and 4N − 1, at most three additional subtractions are required to correct the result. The operation of the folding
Barrett Reduction is provided in Algorithm 2.

Algorithm 2. Folding Barrett reduction.

Modular multiplier with folding Barrett reduction
To minimize the number of subtractions required for result correction in folding Barrett reduction, Wu et
al.8 combined the folding Barrett reduction with a method proposed by Kong6 that reduces the number of
correction operations. They proposed a modular multiplier based on folding Barrett reduction that requires
only one additional subtraction. Additionally, they applied the Karatsuba algorithm for integer multiplication,
significantly reducing the resources needed compared to classical schoolbook multiplication methods. As in the
folding Barrett reduction, this approach assumes a modulus length of n and s = n

2 . The precomputed constants
are µ =

⌊
23s+3

N

⌋
 and N ′ = 23s mod N . Using these constants, the length of the integer t needing modular

reduction is reduced from 4s bits to 3s + 2 bits. The estimated quotient is given by q̂ =
⌊⌊

t′

22s−2

⌋
µ

2s+5

⌋
. By

adjusting the parameters during computation, the number of subtractions required for final result correction is
reduced to one, thereby enhancing the overall computational efficiency of the algorithm.

Quantum arithmetic circuits
Quantum arithmetic circuits are fundamental building blocks in quantum computing. These operations include,
but are not limited to, addition, subtraction, and multiplication. They are constructed from basic quantum gates
and play a crucial role in quantum algorithms.

(1) Quantum addition/subtraction
The quantum adder is the most fundamental module in quantum arithmetic, serving as the cornerstone for

building other quantum computing circuits. According to the way of handling the carry in bitwise addition,
quantum adders are primarily classified into a quantum ripple-carry adder, quantum carry-save adder, quantum
carry-lookahead adder, and quantum hybrid adder.

The ripple-carry structure is the simplest architecture among quantum adders. The first quantum adder
utilizing this structure was proposed by Vedral et al. in 199611. In a ripple-carry adder, the carry from each
bitwise addition is sequentially propagated to the next bit, resulting in a circuit depth that scales linearly with the
number of input qubits. In 2018, Gidney proposed a new quantum ripple-carry adder12 that reduces the number
of T gates by using logical-AND gates instead of Toffoli gates. By computing and then uncomputing the logical-
AND of two qubits, the circuit significantly halved the cost of the quantum ripple-carry adder. The primary
feature of the quantum carry-save adder is that it defers the immediate processing of carries generated from
lower bits during bitwise addition. Instead, these carries are temporarily stored for subsequent handling. This
method reduces the delay associated with addition operations and enhances computational efficiency. The carry-
lookahead structure significantly accelerates addition by handling carries in parallel. In 2008, Draper et al.13
proposed an efficient quantum carry-lookahead adder based on this architecture. The quantum hybrid adder
combines the qubit-count and Toffoli-count advantages of the quantum ripple-carry adder with the Toffoli-

Scientific Reports | (2025) 15:22808 3| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

depth benefits of the quantum carry-lookahead adder. In 2008, Takahashi et al.14 proposed the first quantum
hybrid adder by integrating the strengths of these two adder architectures.

The quantum subtractor has a similar structure to the quantum adder. By making slight modifications to the
adder, a subtraction circuit can be constructed. In both one’s-complement and two’s-complement arithmetic, we
have the identity a − b = (a′ + b)′, where the symbol denotes bitwise complementation. Hence, by adding
only two time slices, each composed exclusively of the NOT gates, a quantum circuit of the subtraction can be
realized.

(2) Quantum multiplication
The quantum general schoolbook multiplier is a method that achieves multiplication by repeatedly utilizing

quantum adders to compute the result. In general, multiplication is performed by bitwise multiplication of two
integers, followed by sequential addition of partial products.

Due to the reversibility of the quantum circuits, quantum multiplication circuits are typically divided into three
stages: partial product setting, addition, and partial product cleanup. The addition stage is implemented using quantum
adder circuits. Based on the type of inputs, quantum multiplication circuits can be categorized into quantum-quantum
multipliers and quantum-classical multipliers. In the partial product setting stage, these two types of multipliers use
different quantum gates to implement the setting operations. In quantum-quantum multipliers, the Toffoli gates
are used to set partial products between two qubits, whereas in quantum-classical multipliers, the NOT gates are
employed to set partial products between qubits. Finally, in the partial product cleanup stage, the inverse circuit of
the partial product setting can be used to eliminate the partial products. After this stage, the ancillary qubits in the
quantum circuit are reset to their initial states, making them available for subsequent operations.

Quantum Barrett reduction
In this section, we propose an efficient folding Barrett reduction and its quantum circuit implementation. We
introduce our optimized algorithm in “Optimized folding Barrett reduction” and compare the complexity of
three versions of Barrett reduction in “Comparison of reduction algorithm”. In “Quantum implementation of
optimized folding Barrett reduction”, we show the detailed design of a quantum circuit based on the optimized
folding Barrett reduction.

Optimized folding Barrett reduction
Wu et al.8 proposed a modular multiplier based on improved folding Barrett reduction6, which reduces the
number of final subtractions for correction and enhances the efficiency of the multiplier by integrating the
Karatsuba multiplication algorithm. Currently, various multiplication algorithms exist for computing integer
products. To improve the applicability of the reduction algorithm in modular multiplication, we propose an
optimized folding Barrett reduction.

First, given an n-bit modulus N, we precompute two constant values based on the modulus N : µ =
⌊

23S+3

N

⌋

and N ′ = 23s mod N . Next, following the method proposed by Hasenplaugh et al.7, a 4s-bit integer t can
be folded into a 3s + 1-bit integer t′ = t mod 23s +

⌊
t

23s

⌋
N ′, where both terms are 3s-bit long integers.

This folding operation reduces the size of the multiplications involved in the Barrett reduction process. Finally,
by utilizing the precomputed constant µ, the final result r0 =

(
t′ −

⌊⌊
t′

22s−2

⌋
µ

2s+5

⌋
N

)
mod 22s+1 can be

computed by two multiplications and one subtraction, and only one additional final subtraction is required to
correct the result. The series of operations in Fig. 1 illustrates the computing process of our algorithm.

Let µ = ⌊ 23s+3

N
⌋ < 23s+3−(2s−1) = 2s+4, then the quotient may be represented

as q = ⌊ t′

N
⌋ = ⌊ 1

2s+5 × t′

22s−2 × 23s+3

N
⌋ and the quotient estimate can be defined as

q̂ = ⌊ 1
2s+5 × ⌊ t′

22s−2 ⌋ × ⌊ 23s+3

N
⌋⌋. Since t′ is a 3s + 1-bit integer, t′ < 23s+1. Thus, the relation between q and

q̂ can be written as follows:

0 ≤ q̂ ≤ q =

⌊
1

2s+5 × t′

22s−2 × 23s+3

N

⌋

Let α and β, where 0 ≤ α, β < 1, be defined as α = t′

22s−2 −
⌊

t′

22s−2

⌋
 and β = 23s+3

N
−

⌊
23s+3

N

⌋
, the

inequality can thus be expressed as follows.

0 ≤ q̂ ≤ q =

⌊
1

2s+5 ×
(⌊

t′

22s−2

⌋
+ α

)
×

(⌊
23s+3

N

⌋
+ β

)⌋

=

⌊
1

2s+5 ×
(⌊

t′

22s−2

⌋
×

⌊
23s+3

N

⌋
+

⌊
t′

22s−2

⌋
β +

⌊
23s+3

N

⌋
α + αβ

)⌋

<

⌊
1

2s+5 ×
(⌊

t′

22s−2

⌋
×

⌊
23s+3

N

⌋
+

⌊
t′

22s−2

⌋
+

⌊
23s+3

N

⌋
+ 1

)⌋

=

⌊
q̂ + 1

2s+5 ×
(⌊

t′

22s−2

⌋
+

⌊
23s+3

N

⌋
+ 1

)⌋

Scientific Reports | (2025) 15:22808 4| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Since t′ is a 3s + 1-bit integer and µ =
⌊

23s+3

N

⌋
< 2s+4, the above inequality becomes:

0 ≤ q̂ ≤ q <

⌊
q̂ + 2s+3 + 2s+4 + 1

2s+5

⌋

 0 ≤ q̂ ≤ q < q̂ + 1

By the evaluation, the estimation of the quotient will be q − 1 < q̂ ≤ q. Meanwhile, R = t′ − qN should be
range in [0, N), thus the remainder will adhere to R = t − q̂N ∈ [0, 2N). Consequently, at most one additional
modular subtraction would need to be performed. The entire reduction procedure is described in Algorithm 3.

Algorithm 3. Optimized folding Barrett reduction.

Fig. 1. Computing process of the optimized folding Barrett reduction.

Scientific Reports | (2025) 15:22808 5| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Comparison of reduction algorithm
The main differences between the various Barrett reduction algorithms are the choice of parameters during
the computation, the number of final subtractions required for result correction, and the size of the additions,
subtractions, and multiplications involved.

In “Optimized folding Barrett reduction”, we have already analyzed the number of subtractions required for
the final result correction in the optimized folding Barrett reduction. We applied the same analytical method to
the other two versions of the Barrett reduction for comparison.

(1) General Barrett reduction
Following the representation of the optimized folding Barrett reduction as described above, the quotient and the

estimated quotient can be defined as q =
⌊

t
N

⌋
=

⌊
1

2n+1 × t
2n−1 × 22n

N

⌋
 and q̂ =

⌊
1

2n+1 ×
⌊

t
2n−1

⌋
×

⌊
22n

N

⌋⌋
,

respectively. In this form, the precomputed constant is µ =
⌊

22n

N

⌋
. By the definition of the floor function, the

relationship between these two quotients can be derived as follows:

0 ≤ q̂ ≤ q =

⌊
1

2n+1 × t

2n−1 × 22n

N

⌋

We first define α and β, where 0 ≤ α, β < 1 such that α = t
2n−1 −

⌊
t

2n−1

⌋
 and β = 22n

N
−

⌊
22n

N

⌋
. Then the

relationship can be rewritten as below.

0 ≤ q̂ ≤ q =

⌊
1

2n+1 ×
(⌊

t

2n−1

⌋
+ α

)
×

(⌊
22n

N

⌋
+ β

)⌋

After the distribution and the bounds on the value α and β, q can be represented by the following inequality.

0 ≤ q̂ ≤ q <

⌊
1

2n+1 ×
(⌊

t

2n−1

⌋
×

⌊
22n

N

⌋
+

⌊
t

2n−1

⌋
+

⌊
22n

N

⌋
+ 1

)⌋

=

⌊
q̂ + 1

2n+1 ×
(⌊

t

2n−1

⌋
+

⌊
22n

N

⌋
+ 1

)⌋

To find the upper bound of q, we evaluate this inequality at t = 22n and µ =
⌊

22n

N

⌋
< 2n+1.

0 ≤ q̂ ≤ q <

⌊
q̂ + 2n+1 + 2n+1 + 1

2n+1

⌋

 0 ≤ q̂ ≤ q < q̂ + 2

Thus, the estimated quotient q̂ will be at most equal to q and at least equal to q − 2. Substituting this into the
estimate for the result, we get that R = t − q̂N < t − (q − 2)N = t − qN + 2N ∈ [0, 3N). Clearly, at most
two additional subtractions by the modulus need to be applied to arrive at the correct remainder.

(2) Folding Barrett reduction
Following the same derivation procedure as before, the corresponding quotient can be described as follows:

q =

⌊
t′

N

⌋
=

⌊
1
2s

× t′

22s
× 23s

N

⌋

q̂ =

⌊
1
2s

×
⌊

t′

22s

⌋
×

⌊
23s

N

⌋⌋

And the relationship can be written as 0 ≤ q̂ ≤ q =
⌊

1
2s × t′

22s × 23s

N

⌋
. Then, the value α = t′

22s −
⌊

t′

22s

⌋
 and

β = 23s

N
−

⌊
23s

N

⌋
, where 0 ≤ α, β < 1, can be used to rewrite this inequality.

0 ≤ q̂ ≤ q =

⌊
1
2s

×
(⌊

t′

22s

⌋
+ α

)
×

(⌊
23s

N

⌋
+ β

)⌋

=

⌊
1
2s

×
(⌊

t′

22s

⌋
×

⌊
23s

N

⌋
+

⌊
t′

22s

⌋
β +

⌊
23s

N

⌋
α + αβ

)⌋

<

⌊
1
2s

×
(⌊

t′

22s

⌋
×

⌊
23s

N

⌋
+

⌊
t′

22s

⌋
+

⌊
23s

N

⌋
+ 1

)⌋

Scientific Reports | (2025) 15:22808 6| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

=

⌊
q̂ + 1

2s
×

(⌊
t′

22s

⌋
+

⌊
23s

N

⌋
+ 1

)⌋

Similarly, t′ is a 3s + 1-bit integer and µ =
⌊

23s

N

⌋
< 2s+1. We evaluate this inequality as

0 ≤ q̂ ≤ q <

⌊
q̂ + 2s+1 + 2s+1 + 1

2s

⌋

 0 ≤ q̂ ≤ q < q̂ + 4

 0 ≤ q̂ ≤ q ≤ q̂ + 3

Thus, the estimated quotient q̂ will be at most equal to q and at least equal to q − 3. And the estimate of the
result will be R = t − q̂N ≤ t − (q − 3)N = t − qN + 3N ∈ [0, 4N]. Therefore, at most three additional
subtractions by the modulus need to be performed to correct the final remainder.

As shown in Table 1, by adjusting the size of the constants during the precomputation process, the number of
subtractions for result correction can be optimized.

To evaluate the size of the arithmetic operations in each algorithm, we analyzed the input size at each step of
the calculation process for each algorithm. For example, in the case of our optimized folding Barrett reduction,
we conducted a detailed analysis of the input and output sizes involved at each stage of the computation.

As shown in Algorithm 3, without considering the result correction step, after the precomputation of the two
constants, the entire algorithm consists of three multiplications, one addition, and one subtraction operation.

In step 2 we calculate the intermediate value t′ = t mod 23s +
⌊

t
23s

⌋
N ′ by one multiplication and one

addition. Since t is a 2n-bit integer, where n = 2s, the first term can be considered as the least significant 3s bits
of t. And the second term is computed by multiplication of size (s × 2s)-bit, where

⌊
t

23s

⌋
 represents a right

shift operation by 3s bits on t, and N ′ is a precomputed constant of 2s bits. Then, the result of the folding step is
computed via one (3s + 3s)-bit addition and the result of this addition is a (3s + 1)-bit integer.

In step 3 we calculate the estimated quotient q̂′ =
⌊⌊

t′

22s−2

⌋
µ

2s+5

⌋
 by performing one multiplication. First,

a right shift of 2s − 2 bits is applied to t′ to obtain
⌊

t′

22s−2

⌋
, then a (s + 3) × (s + 4)-bit size multiplication is

performed to compute
⌊

t′

22s−2

⌋
µ. Finally, the estimated quotient is obtained by applying a right shift of s + 5

bits to the above result and it will be a s + 2-bit integer.
To calculate the result of the reduction operation, step 4 needs another multiplication and one subtraction.

Since the modulus is a 2s-bit integer, the second term in this equation is computed by a multiplication of size
(s + 2) × 2s-bit. And the reduction is completed by subtracting using the least significant 2s + 1 bits of the two
terms. Therefore, the result of the reduction operation is a (2s + 1)-bit integer.

Additionally, Table 1 shows that our algorithm needs one additional subtraction to correct the final result. In
this step, a subtraction by the modulus N is first performed, followed by a check to determine whether the result
is positive or negative. If the result is positive, it is the final output. Otherwise, an additional addition with the
modulus is required to ensure that the outcome of the modular reduction is greater than zero. To determine the
sign of the result, we use the two’s complement operation for the modulus in the subtraction. Since the maximum
possible result of the reduction operation is 2s + 1 bits, the two’s complement representation of the modulus N
requires 2s + 2 bits. Additionally, the reduction result r0 needs an extra most significant bit set to zero. These
two terms in subtraction both use the most significant bit to determine the sign. Thus, in the result correction
step, we need at most one (2s + 2) − (2s + 2)-bit subtraction and one (2s + 2) − (2s + 2)-bit addition.

We applied the same analytical method to evaluate the size of arithmetic operations in Algorithm 1 and
Algorithm 2, and the results are summarized in Table 2. The general Barrett reduction uses the original 2n-
bit integer for computation, resulting in the largest multiplication size. Meanwhile, the folding operation used
in the last two reduction algorithms achieves a similar scale in terms of multiplication size. For the addition/
subtraction, a single 3s-size addition is required due to the folding operation. The optimization of precomputed
values leads to the best performance for the number of subtractions in the optimized folding Barrett reduction.

Algorithm Precomputed parameters {size} The times of final subtraction

General Barrett Reduction µ =
⌊

22n

N

⌋
{2s + 1} 2

Folding Barrett Reduction
N ′ = 23s mod N{2s}

3
µ =

⌊
23s

N

⌋
{s + 1}

Optimized Folding Barrett Reduction
N ′ = 23s mod N{2s}

1
µ =

⌊
23s+3

N

⌋
{s + 4}

Table 1. Comparison of parameters and the times of final subtraction (s = n
2).

Scientific Reports | (2025) 15:22808 7| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Therefore, considering the arithmetic operations, the folding Barrett reduction offers a slight advantage in
terms of multiplication size, while the optimized folding Barrett reduction provides a significant advantage in
subtraction.

Quantum implementation of optimized folding Barrett reduction
In Algorithm 3, we described the classical algorithm to perform the modular operation on a 2n-bit integer with a
n-bit modulus. Our optimized quantum folding Barrett reduction primarily consists of sequential multiplication
and addition/subtraction operations based on this classical algorithm.

Circuit overview
The overview of our quantum circuit is illustrated in Fig. 2. In the figure, the first three registers N, µ, and

N ′ are classical. And the precomputation of these two constants µ =
⌊

23s+3

N

⌋
 and N ′ = 23s mod N can

be implemented in the classical computer since the known modulus N. The register labeled |g⟩ is used to store
the results of each computation step, while the register labeled |a⟩ contains the ancillary qubits used during the
calculation, all initialized to the state |0⟩. The whole circuit mainly consists of three stages as follows:

(1) Folding operation stage
At this stage, we need to fold the 2n-qubit integer |t⟩ into a (3s + 1)-qubit integer |t′⟩, where n = 2s. The

intermediate value is calculated via |t′⟩ = |t⟩ mod 23s +
⌊ |t⟩

23s

⌋
N ′. The first term can be seen as the least

significant 3s qubits of |t⟩. And the second term is computed by a quantum-classical multiplication of size
s(qubit) × 2s(bit), where

⌊ |t⟩
23s

⌋
 represents a right shift operation by 3s qubits on quantum value |t⟩, and N ′ is

a precomputed classical constant of 2s bits. The result of this stage is computed via one (3s + 3s)-qubit quantum
addition, where both terms are all quantum values.

(2) Reduction stage
The folding operation efficiently reduces the size of multiplications in the Barrett reduction step. The remainder

can be calculated by |R⟩ = (|t′⟩ − ⌊⌊ |t′⟩
22s−2 ⌋ µ

2s+5 ⌋N). First, a right shift of 2s − 2 qubits is performed to |t′⟩
to obtain ⌊ |t′⟩

22s−2 ⌋, then a (s + 3)(qubit) × (s + 4)(bit) size quantum-classical multiplication is performed to

obtain ⌊ |t′⟩
22s−2 ⌋µ. This result is then right-shifted by s + 5 qubits and subsequently multiplied by the modulus

N, yielding the second term using a (s + 2)(qubit) × 2s(bit) size quantum-classical multiplication. Finally, the
reduction is completed by subtracting using the least significant 2s + 1 qubits of the two terms to obtain the
result. In this stage, the division operation is implemented using two multiplications and one subtraction.

(3) Result correction stage
As described in “Optimized folding Barrett reduction”, the final result requires at most one subtraction to

correct the output of the reduction operation. In this stage, a subtraction by the modulus is first performed,
followed by a check to determine the sign of the result. To determine the sign of the result, we use the two’s
complement arithmetic on the modulus N. Since the possible result of the reduction is 2s + 1 qubits, the two’s
complement representation of the modulus N requires 2s + 2 bits. The reduction result |R⟩, however, needs an
additional qubit set to |0⟩ as the most significant qubit, which serves as its sign bit. As the modulus N is a classical
value, the two’s complement operation can be performed on a classical computer. Then, a quantum-classical
adder of size (2s + 2)(qubit) + (2s + 2)(bit) is used to add the reduction result to the two’s complement of the
modulus, with the final result determined by measuring the most significant qubit to check whether the outcome
is less than zero. If the most significant qubit of the result is |1⟩, an inverse circuit of this quantum-classical adder
of the same size is required to correct the final result.

Assuming the input of the circuit is an 8-qubit number |t⟩, then n = 8
2 = 4 and s = n

2 = 2. According
to the stage (1), after a 2(qubit) × 4(bit) quantum-classical multiplication and a (6 + 6)-qubit quantum
addition, the result of the folding operation is a 7-qubit number |t′⟩. Then, the reduction is performed through a

Algorithm Multiplication {times[bits]} Addition/Subtraction {times[bits]}

General Barrett Reduction

1[(2s + 1) × (2s + 1)] 1[(2s + 1) − (2s + 1)]

1[(2s + 1) × 2s] 1[(2s + 2) − (2s + 2)]

1[(2s + 2) + (2s + 2)]

Folding Barrett Reduction

1[s × 2s] 1[3s + 3s]

1[(s + 1) × (s + 1)] 1[(2s + 1) − (2s + 1)]

1[(s + 2) × 2s] 3[(2s + 2) − (2s + 2)]

1[(2s + 2) + (2s + 2)]

Optimized Folding Barrett Reduction

1[s × 2s] 1[3s + 3s]

1[(s + 3) × (s + 4)] 1[(2s + 1) − (2s + 1)]

1[(s + 2) × 2s] 3[(2s + 2) − (2s + 2)]

1[(2s + 2) + (2s + 2)]

Table 2. Comparison of computational complexity (s = n
2).

Scientific Reports | (2025) 15:22808 8| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

5(qubit) × 6(bit) multiplication, a 4(qubit) × 4(bit) multiplication, and a (5 + 5)-qubit addition, as detailed
in stage (2). Following that, as described in stage (3), one more 6(qubit) + 6(bit) quantum-classical addition
and 6(qubit) − 6(bit) subtraction are needed to complete the final result correction.

Quantum circuit module
(1) Quantum-quantum adder

For the adder that takes quantum values as input, we use an adder based on Gidney’s design, which effectively
reduces quantum resources on T-count and T-depth by using the logical-AND gate12. The construction of this
gate is shown in Figure 3.

By applying pairs of computation and uncomputation logical-AND gates, the AND operation of two qubits
can be performed and stored on an ancilla qubit using four T gates. Subsequently, the result on the ancilla qubit
can be cleared using zero additional T gate. The paired use of the logical-AND gates reduces the T-depth to just
one.

Gidney’s adder did not account for the carry on the most significant bit. We modified this circuit to handle
the carry for the most significant bit. Figure 4 shows a 5 bits modified adder.

The first four pairs of logical-AND gates perform the carry generation and clearance during the addition
of the first four bits. To optimize quantum resource, we utilize the quantum AND gate15 to compute the carry
for the most significant bit instead of the Toffoli gate. In Fig. 5, the quantum AND gate has four T gates with a
T-depth of one but requires one ancilla qubit, which can be used in future additions in the multiplier circuit.

(2) Quantum-quantum subtractor
It is convenient to directly use our modified adder to compute a − b. According to the definition of two’s

complement arithmetic, the bitwise complement of a is equal to −a − 1. Thus, by performing a bitwise
complement operation on both input a and the output of the adder, subtraction can be effectively implemented
using this adder. The computation process is as follows:

 (a′ + b)′ = (−a − 1 + b)′ = a − b

In a quantum circuit, the two’s complement operation can be implemented by applying NOT gates to both the
input and output. Since the complement operation can be performed independently on each bit, the NOT gates

Fig. 2. Quantum optimized folding Barrett reduction (n = 4).

Scientific Reports | (2025) 15:22808 9| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

can be executed in parallel, ensuring that the subtractor increases the circuit depth by two additional layers of
NOT gates.

(3) Quantum-classical adder/subtractor
Currently, widely used quantum addition circuits, such as the quantum ripple-carry adder proposed

by Cuccaro and the carry-lookahead adder proposed by Draper et al.13, are designed for quantum-quantum
addition. When one of the inputs is classical value, appropriate modifications to these existing adder circuits
are required. However, in these circuits, the carry can affect the values of the input bits during the computation,
making it challenging to modify them when one input is classical.

Therefore, we chose the quantum ripple-carry adder proposed by Vedral et al.11, as this adder does not allow
the carry to affect the input bits during the computation. It also can be easily adapted for addition with a classical
input by replacing certain Toffoli and CNOT gates with CNOT and NOT gates, as shown in Fig. 6.

In our modular reduction circuit, the quantum-classical adder/subtractor is used during the final result
correction stage. By applying the two’s complement operation to the classical value, subtraction can be directly
implemented using the adder circuit. We employ a garbage qubit to measure the most significant bit of the result.
If the measurement yields |1⟩, the result is negative, indicating that the reduction result is less than the modulus.
In this case, the inverse of the addition circuit is applied to recompute the correct result. If the measurement
yields |0⟩, the result is positive, and the output of the adder represents the final result of the reduction.

(4) Quantum-classical multiplier
The optimized quantum folding Barrett reduction requires a total of three multiplications of different sizes

throughout the computation, each a quantum-classical multiplication. We use CNOT gates to set the partial
products, with the number of CNOT gates determined by the number of ones in the binary expansion of the
classical value.

For the partial product addition stage, we use the addition circuit described in Fig. 4. While reducing the
number of T-gates used, we also minimize the number of quantum bits required by reusing the ancilla qubits
within the adder circuit. As shown in Fig. 7, in addition to the partial product setting and addition stages, we

Fig. 5. Quantum AND gate.

Fig. 4. In-place modified adder for 5 bits.

Fig. 3. Computation and uncomputation of the logical-AND gate.

Scientific Reports | (2025) 15:22808 10| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

also use the inverse partial product setting operation. Reinitializing the state of the ancilla qubits allows the
continuation of the next partial product setting and addition operations.

Complexity analysis
In this section, we analyze the cost of our quantum reduction circuit. As described in “Quantum Barrett
reduction”, our quantum circuit mainly consists of quantum–quantum adders, quantum-classical adders, and
quantum-classical multipliers. Using the same circuit design principles, we have converted the General Barrett
Reduction, the Folding Barrett Reduction, and our Optimized Folding Barrett Reduction into quantum circuits
and estimated their quantum resource requirements. Since the implementation of the T gate is more costly than
other Clifford gates, our analysis focuses primarily on the number of T gates and the T-depth.

We estimated quantum resources for different types of adders and subtractors, with the results summarized
in Table 3.

The quantum resources required by the multiplier are determined by the size of the multiplication, specifically,
the number of times the adder is used. A a(qubit) × b(bit) quantum-classical multiplier, can be considered as
requiring a − 1 adder operations to perform the multiplication. The size of an addition circuit is equal to the
bit length of the classical value. Therefore, in the partial products addition stage, the quantum resources of the
multiplier are determined by the product of the number of adders and the quantum resources of the adder. In
the partial product setting stage, since one of the inputs is classical value, the setting operation is implemented
utilizing CNOT gates, which do not affect the usage of T gates. Overall, the number of qubits required for the
multiplier of the above size is 2a + 3b − 1, the number of T gate is (a − 1) × 4b and the T-depth is (a − 1) × b.

Based on the analysis above, we compared the quantum resources of the three Barrett reductions. The costs
for each algorithm are listed in Table 4, and the comparison of T-count and T-depth is shown in Fig. 8. As shown
below, our optimized folding Barrett reduction achieves the best performance in both T-count and T-depth.

To validate the performance of our algorithm in practical modular multiplication, we combined it with
Karatsuba, Toom-Cook, and Schönhage-Strassen multiplication algorithms and compared it with the general
quantum modular operation. In general quantum modular operation, to avoid the use of division operation, one

Fig. 7. Quantum-classical multiplier (n = 4).

Fig. 6. Quantum-classical adder.

Scientific Reports | (2025) 15:22808 11| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

can recursively use subtraction and controlled addition to perform modular reduction. However, this approach
suffers from a significant disadvantage in terms of circuit depth, the complexity of T-depth is approximately
O(2n). Figure 9 illustrates the comparisons of T-depth between our algorithm and the general modular
operation. In Fig. 9, “SS_Mod”, “KS_Mod”, and “TC_Mod” denote modular multiplications that pair the
general quantum modular operation with the Schönhage-Strassen, Karatsuba, and Toom–Cook multiplication
algorithms, respectively. Conversely, “SS_Bar”, “KS_Bar”, and “TC_Bar” refer to modular multiplications that
combine our optimized Barrett reduction scheme with the same three multiplication algorithms. The complexity
of modular multiplication is primarily determined by the chosen modular reduction algorithm. Our algorithm
shows a substantial advantage in T-depth over the general modular operation since the T-depth of our scheme
is O(n2).

Conclusion
In this paper, we proposed an optimized folding Barrett reduction algorithm that ensures the feasibility of
integration with existing multiplication algorithms while requiring only one additional subtraction for result
correction. Furthermore, we converted three versions of Barrett reduction into quantum circuits and conducted
a quantum resource analysis. By comparing the T-count and T-depth, our optimized folding Barrett reduction
demonstrates the best performance. In addition, we compared our design with the general quantum modular
reduction, and our approach shows a significant advantage in terms of T-depth. Tomčala16 demonstrated that
modular exponentiation ax mod N can be calculated as a serial sequence of modular multiplications. When
the circuit is constructed to the specific values of a and N rather than built as a universal design, the quantum
resource cost of Shor’s algorithm drops significantly. Because the same modulus N is reused throughout the
sequence, our Barrett reduction scheme offers a clear advantage for large integer factorization.

Fig. 8. Comparison of T-count and T-depth of quantum Barrett reduction.

Algorithm #Qubit #NOT #CNOT T-count T-depth

General Barrett
 Reduction 6n + 6 12n + 15 − 9y(N) (2n + 1)w(µ) + (2n + 1)w(N)

+12n2 + 9n + 8 − 6y(N) 8n2 + 32n 2n2 + 8n

Folding Barrett
 Reduction 6n + 9 15n + 19 − 12y(N) (n − 1)w(N ′) + (n + 1)w(µ)

+(n + 3)w(N) + 15
2 n2 + 21n + 6 − 8y(N) 5n2 + 44n 5

4 n2 + 11n

Optimized Folding Barrett
 Reduction 6n + 12 9n + 11 − 6y(N) (n − 1)w(N ′) + (n + 5)w(µ)

+(n + 3)w(N) + 15
2 n2 + 30n + 34 − 4y(N) 5n2 + 38n + 32 5

4 n2 + 19
2 n + 8

Table 4. Comparison of quantum resources. Let w(n) denote the numbers of ones in the binary expansion of n
and y(n) denote the numbers of zeros in the binary expansion of n

Arithmetic operation #Qubit T-count T-depth

Quantum-quantum adder 3n + 1 4n n

Quantum-quantum subtractor 3n − 1 4n − 4 n − 1
Quantum-classical adder/subtractor 2n + 1 8n − 16 2n − 4

Table 3. Quantum resources of arithmetic circuit.

Scientific Reports | (2025) 15:22808 12| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Data availability
All data generated or analyzed during this study are included in this published article.

Received: 2 December 2024; Accepted: 30 May 2025

References
 1. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on

Foundations of Computer Science. 124–134 (IEEE, 1994).
 2. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing. 212–219 (1996).
 3. Yuan, S. et al. A novel fault-tolerant quantum divider and its simulation. Quantum Inf. Process. 21, 182 (2022).
 4. Montgomery, P. L. Modular multiplication without trial division. Math. Comput. 44, 519–521 (1985).
 5. Barrett, P. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor.

In Conference on the Theory and Application of Cryptographic Techniques. 311–323 (Springer, 1986).
 6. Kong, Y. Optimizing the improved Barrett modular multipliers for public-key cryptography. In 2010 International Conference on

Computational Intelligence and Software Engineering. 1–4 (IEEE, 2010).
 7. Hasenplaugh, W., Gaubatz, G. & Gopal, V. Fast modular reduction. In 18th IEEE Symposium on Computer Arithmetic (ARITH’07).

225–229 (IEEE, 2007).
 8. Wu, T., Li, S.-G. & Liu, L.-T. Modular multiplier by folding Barrett modular reduction. In 2012 IEEE 11th International Conference

on Solid-State and Integrated Circuit Technology. 1–3 (IEEE, 2012).
 9. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2010).
 10. Rines, R. & Chuang, I. High performance quantum modular multipliers. arXiv preprint arXiv:1801.01081 (2018).
 11. Vedral, V., Barenco, A. & Ekert, A. Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996).
 12. Gidney, C. Halving the cost of quantum addition. Quantum 2, 74 (2018).
 13. Draper, T. G., Kutin, S. A., Rains, E. M. & Svore, K. M. A logarithmic-depth quantum carry-lookahead adder. arXiv preprint quant-

ph/0406142 (2004).
 14. Takahashi, Y. & Kunihiro, N. A fast quantum circuit for addition with few qubits. Quantum Inf. Comput. 8, 636–649 (2008).
 15. Jaques, S., Naehrig, M., Roetteler, M. & Virdia, F. Implementing Grover oracles for quantum key search on AES and LOWMC. In

Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II 30. 280–310 (Springer, 2020).

 16. Tomčala, J. On the various ways of quantum implementation of the modular exponentiation function for Shor’s factorization. Int.
J. Theor. Phys. 63, 14 (2024).

Acknowledgements
This work was supported by Institute for Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (Ministry of Science and ICT(MSIT)) (⟨Q Crypton⟩, No.2019-0-
00033, Study on Quantum Security Evaluation of Cryptography based on Computational Quantum Complexi-
ty), by the Creation of the Quantum Information Science R&D Ecosystem (Grant No. 2022M3H3A106307411)
through the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of
Science and ICT), and by Quantum Computing based on Quantum Advantage challenge research through the
National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (RS-2023-00256221).

Author contributions
J.Z. developed the optimized folding Barrett reduction and wrote the preliminary version of the manuscript,
C.Y.L provided advice on quantum circuit conversion, while S.M.C and S.H.S. edited it. All authors participated
in analyzing the quantum resources of the circuits and reviewed the manuscript.

Fig. 9. Comparison of T-depth for various of modular multiplication.

Scientific Reports | (2025) 15:22808 13| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://arxiv.org/abs/1801.01081
http://www.nature.com/scientificreports

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.-H.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit h t t p : / / c r e a t i v e c o m m o
n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 / .

© The Author(s) 2025

Scientific Reports | (2025) 15:22808 14| https://doi.org/10.1038/s41598-025-04987-1

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	Optimized quantum folding Barrett reduction for quantum modular multipliers
	Preliminaries
	Barrett reduction
	General Barrett reduction
	Folding Barrett reduction

	Modular multiplier with folding Barrett reduction
	Quantum arithmetic circuits
	Quantum Barrett reduction
	Optimized folding Barrett reduction
	Comparison of reduction algorithm
	Quantum implementation of optimized folding Barrett reduction
	Circuit overview
	Quantum circuit module

	Complexity analysis
	Conclusion
	References

