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The growth of renewable sources and electric vehicles’ (EVs) load demand and associated uncertainties 
can stress the reliable network performance, such as uncertainty in both production and load sides, 
and power loss augmentation. These challenges can be mitigated by optimal planning considering 
variable output from wind and photovoltaic systems to meet the additional demand caused by 
EV charging. Swapping stations present an alternative solution for charging EVs that can lead to 
a different EV charging ecosystem. This study employs a stochastic clustering-based approach to 
optimally coallocate swapping stations, and wind-photovoltaic systems in networks. A K-means 
clustering method is implemented to classify price, energy demand, wind, and photovoltaic generation 
into appropriate clusters embedded into the particle swarm optimization (PSO) algorithm. The decision 
variables of PSO are the wind-photovoltaic system capacity and hybrid system placement to supply 
the EV load demand for battery swapping stations. The problem aims to maximize the net profit. The 
multi-criteria decision-making method, technique for order of preference by similarity to ideal solution, 
is applied to evaluate the results by considering all key influence criteria on the system’s performance. 
The performance of the proposed optimal co-allocation method on the IEEE 33-bus system has 
been investigated to demonstrate the effectiveness of integrating battery swapping stations into 
distribution systems.

List of symbols
i  Bus index
cm  Total member count in cluster m
CSW   Cost per unit size of the wind turbine
SW   Size of wind turbines
NW   Total number of wind turbines
PWi,m   Wind farm generation cluster
NW F   Number of wind farms
SBSwap  Battery swapping station size
CBSwap  Cost per unit size of the battery swapping station
NP V   Total number of solar panels
SP V   Size of photovoltaic panels
PP Vi,m   Photovoltaic system generation cluster
NSP P   Number of photovoltaic plants
lf1, lf2  Learning factors of PSO
Dh  Set of members in cluster h
dj   Data point j
m, h  Clusters index
ILi   The current of line i
CI   Investment cost
CI,W   The investment cost for wind farms
CI,Wmax   Maximum investment for wind farms
CI,BSwap  The investment cost for the battery swapping station
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CI,BSwapmax   Maximum investment for battery swapping station
CI ,P V   The investment cost for photovoltaic plants
CI,P Vmax   Maximum investment for photovoltaic plants
j  Data points index
M   Total count of clusters
L  The total loss over the analyzed time horizon
CL  Cost of loss
J   The total count of data points
NS   The total count of members
Pi  The active load at bus i
πm  Electricity price cluster
P F

W   The output power of wind farm
PW   The output power of wind turbine
LGridi,m    Power purchase from the main grid
ϖm  Probability of agent m
NT   Planning period
Qi  Reactive load of bus i
xw   Size of wind turbines
Ty   The cumulative duration in years
CT   Total cost
Vi  The voltage of bus i
vin  The wind turbine’s cut-in wind speed
vout  The wind turbine’s cut-out wind speed
vr   The wind turbine’s nominal wind speed
Zi  Impedance of line i
Abbeviations
PSO  Particle swarm optimization
EV  Electric vehicle

The main motivations for distributed generation (DG) planning are loss reduction, reliability improvement, 
and voltage profile enhancement1. With increasing economic feasibility of wind farms, they have become an 
appealing alternative to conventional DG2. Beyond the geographical location of wind farms, determining their 
optimal size and placement within the power system is essential for ensuring both profitability and operational 
safety3,4. Additionally, the inherent variability of wind speeds significantly impacts the output power of wind 
farms and must be accounted for in the planning process5. Future power systems must consider a new source of 
uncertainty related to the load demand from plug-in electric vehicles (PEVs)6. The arrival and departure times, 
daily mileage, and vehicle types are heavily influenced by the behavioral patterns of PEV owners7. As a result, 
these parameters exhibit inherent uncertainty and should be modeled using probability distributions based on 
historical data to assess the uncertain load demand of PEVs accurately8,9. Since no international regulations 
mandate a specific charging pattern for PEVs, most owners are likely to charge their vehicles immediately 
upon returning home. This behavior often coincides with peak residential load hours, potentially straining 
the power grid during these times10. Consequently, PEVs substantially increase power consumption during 
peak hours, which are already associated with elevated demand levels. Optimal planning for the integration of 
embedded renewable generation within the distribution network is crucial for addressing this challenge. This 
approach helps minimize energy losses, reduce voltage fluctuations, and lower investment costs11,12. Optimal 
DG planning is a nonlinear, constrained, mixed-integer, and multi-objective problem, presenting significant 
challenges in finding a near-global optimal solution13,14. Therefore, employing an effective metaheuristic 
algorithm is essential for addressing this complexity. In the context of battery swapping stations, EV drivers can 
exchange their depleted batteries for fully charged ones at strategically located facilities, enhancing convenience 
and efficiency in battery management15. Swapping stations offer an alternative approach to charging EVs, 
potentially fostering the development of a distinct EV charging ecosystem. Swapping stations may be favored 
over traditional charging stations in scenarios where concerns arise regarding the upfront cost of EVs, charging 
speed, and intermittent electricity supply. Additionally, unlike conventional chargers, swapping stations enable 
faster battery replacement, providing fully charged batteries in a fraction of the time. For instance, electric taxis 
in urban public transport systems may favor swapping overcharging due to the time-sensitive nature of their 
operations16.

In a previous study, an operational model for a swapping station designed for a fleet of electric buses in 
public transportation was proposed17. The study aimed to optimize annual profits for the swapping station 
while minimizing the grid’s charging impact by examining the battery leasing model and the characteristics of 
electric city buses. Another scenario-based optimization algorithm was developed to allocate charging stations 
for a fleet of PEVs in a commercial area18. This approach focused on increasing the penetration of photovoltaic 
panels while reducing the negative effects of vehicular loads on the grid. A probabilistic load demand model 
was created using a multivariate stochastic method based on the Copula concept. To minimize energy loss and 
voltage deviation within the distribution system, the particle swarm optimization (PSO) algorithm was applied, 
and the model was validated through simulation results. In a related study, a model was developed using a 
mixed queuing network, incorporating an open queue for EVs and a closed queue for batteries19. Queueing 
network models were proposed as a framework for the design and modeling of swapping stations equipped with 
local charging capabilities. Experiments were carried out using a single swapping station, utilizing simulation 
techniques to offer valuable insights for the infrastructure planning of practical battery swapping services. In20, 
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a real-time energy management strategy for a swapping station-based smart community microgrid (SCMG) was 
proposed. This strategy harnessed variable renewable energy sources to facilitate the charging of Electric Vehicle 
(EV) batteries while simultaneously supplying conventional residential loads. A novel Lyapunov optimization 
framework, grounded in queuing theory, was formulated to address the proposed model. This approach 
effectively streamlined complex energy scheduling by converting it into a single optimization problem, thereby 
ensuring its suitability for real-time applications. Simulation results demonstrated that using a swapping station 
for dual purposes significantly improved system economics and facilitated the integration of renewable energy, 
compared to isolated operations. In a research by Sarker et al.20 developed a mathematical model to manage 
uncertainty in swapping stations and optimize their operations. The model effectively managed fluctuating 
customer demand for fully charged batteries while optimizing the utilization of available batteries to reduce 
operational costs. This was achieved through demand-shifting strategies and energy sell-back mechanisms. 
The authors utilized mixed-integer linear programming (MILP) to address the scheduling problem for a single 
swapping station, integrating battery degradation into the model to achieve a practical and effective solution. 
Simulations demonstrated the model’s effectiveness and viability in minimizing operational costs.

While research on charging stations continues to grow, it is equally important to investigate other renewable 
energy sources, such as wind and solar photovoltaic (PV) power, to meet the energy demands of EV swapping 
stations. However, the inherent variability and intermittency of wind and solar PV energy pose significant 
challenges for power system operations, heightening the risks associated with operational decision-making.One 
key challenge is the accurate calculation of power flow. Traditional deterministic methods may no longer be 
suitable, as they cannot account for the uncertainties inherent in renewable energy sources21,22. Probabilistic 
techniques are essential for addressing load flow and optimal placement challenges under unpredictable 
conditions. A well-known method for reducing execution costs is data clustering. Previous studies have 
investigated the application of data clustering techniques to address various challenges, such as total transfer 
capability and power flow analysis. The data clustering technique efficiently manages large datasets, enabling the 
extraction of critical insights from complex information.

In this study, an effective methodology is proposed for the simultaneous co-allocation of battery swapping 
stations and green charging facilities powered by renewable energy sources, including wind turbines and 
photovoltaic systems, to meet EV load demand. Unlike previous studies focusing solely on charging stations 
or isolated renewable energy sources, this study integrates both elements using a data clustering approach to 
enhance system performance. Additionally, the paper employs the PSO algorithm to optimize the placement 
and sizing of these facilities, aiming to maximize profitability while ensuring operational efficiency. Simulation 
results validate the effectiveness of the approach in achieving these objectives. Table 1 highlights the key 
attributes of previous studies alongside those of the present study, ensuring clarity at a glance and facilitating a 
comprehensive comparison.

The overall schematic of the problem under study is presented in Fig. 1. The primary contributions and novel 
aspects of this work are subsequently summarized as follows:

• Proposing an effective approach for the simultaneous co-allocation of battery swapping stations and 
wind-photovoltaic systems within radial distribution networks

• Employing the K-means algorithm and the elbow method to cluster the price, energy demand, wind, and 
photovoltaic generation optimally

References
Optimization 
objective

Type of optimization 
model Method

Multiple 
station Combined PV-Wind-BSwap Distributed PV-Wind-BSwap

Green 
charging

Multi-
criteria 
evaluation

19 Min cost Linear programming 
(Location Allocation)

Queueing 
Model ✓ ✗ ✗ ✗ ✗

23 Max the total 
net revenue

Mixed-integer linear 
programming

Analytical 
model ✗ ✓ ✗ ✓ ✗

24

Min charging 
cost, waiting 
time, and CO₂ 
emissions

Metaheuristic
Multi-
objective 
optimization

✓ ✗ ✗ ✗ ✗

25 Min costs Mixed-integer linear 
programming

MILP-based 
algorithm ✓ ✗ ✗ ✗ ✗

26 Min operational 
costs

Mixed-integer linear 
programming

Real-time 
routing 
optimization

✓ ✗ ✗ ✗ ✓

27

Loss 
minimization 
and reliability 
enhancement

Mixed-integer nonlinear 
programming

Genetic 
algorithm ✓ ✗ ✗ ✗ ✓

28
Minimize the 
total operating 
cost

Two-stage stochastic 
programming

Stochastic 
optimization ✗ ✗ ✗ ✗ ✗

This study Max net profit Metaheuristic (optimal 
co-allocation)

Clustering-
based 
optimization

✓ ✓ ✓ ✓ ✓

Table 1. Comparison of the previous works.
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• Maximizing net profit by balancing investment costs, loss costs, and revenue from energy sales, ensuring 
economic feasibility by utilizing the Particle Swarm Optimization (PSO) method

• Implementing the TOPSIS method for multi-criteria evaluation of the results based on key criteria, including 
minimum voltage, profit, energy loss, and renewable energy contribution

The structure of this paper is organized as follows: "System model" section presents a detailed description of the 
system model. Section 3 details the formulation of the proposed methodology. "Results" section discusses the 
simulation results, and "Conclusion" section concludes the study.

System model
Figure 2 outlines the main focus of this study, which makes its comprehensiveness obvious. This work explores 
integrating swapping stations with different energy sources in distribution systems.

Wind turbine model
Vertical-axis wind turbines are gaining popularity in urban areas due to their ability to harness power from 
multi-directional winds and their superior performance in turbulent conditions compared to horizontal-axis 
turbines. This paper focuses on vertical-axis wind turbines under 10 kW, valued for their affordability, low noise 
levels, and minimal infrasound emissions29.

Figure 3 illustrates the variation of wind turbine output power with respect to wind speed. This relationship 
is mathematically expressed in Eq. (1):

Fig. 2. Highlights of the major focus of this study in the context of swapping stations integration utilization in 
distribution systems.

 

Fig. 1. The illustrative schematic of the understudied problem.
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Pw =





0 v ≤ vin or v > vout

xw
v − vin

vr − vin
vin ≤ v ≤ vr

Pr vr ≤ v ≤ vout

 (1)

The terms v, vin, vout, vr , and xw  represent the actual wind speed, cut-in wind speed, cut-out wind speed, 
nominal wind speed, and the wind turbine rated power, respectively. Furthermore, Pw  denotes the active output 
power of the wind turbine. The total output power of a wind farm, considering all wind turbines are operational, 
is the sum of the output power of each turbine. Therefore, the output power of the wind farm, P F

w , for different 
configurations of wind turbines, can be expressed as:

 P F
w = (N − Nuw) Pw  (2)

In this context, Nuw  and N  represent the number of wind turbines unavailable and the total number of wind 
turbines on the wind farm. Figure 4 illustrates the hourly load, corresponding hourly wind speed, and solar 
radiation levels. The data is compiled for an entire year, covering 8760 h.

Solar cell model
Photovoltaic technology enables the direct conversion of sunlight into electricity and is the most commonly used 
method for generating power from solar radiation. Since 2002, the use of this technology has grown significantly, 
with an annual increase of 48%. Considering the influence of temperature on solar cell performance, it is essential 
to incorporate temperature variations into the analysis to accurately evaluate their behavior. The Nominal 
Operating Cell Temperature (NOCT) index addresses this31. NOCT represents the temperature of a solar cell 
under specific conditions: an environmental temperature of 20 °C, solar radiation of 0.8 kW/m2, and a wind 
speed of 4 m/s. The cell temperature is calculated using the following equation:

 
TP V = Tenv + NOCT − 20

0.8 . Srad (3)

The temperature of the solar cell, denoted as TP V , is measured in degrees Celsius and can be calculated using 
the ambient temperature Tenv  and solar radiation Srad, where max Srad=1 kW/m2 under standard sunlight 
conditions. The output power of the solar cell is expressed using the following equation:

 PP V = P × [η × (TP V − 25)] (4)

Fig. 3. Wind power curve.
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The efficiency of the solar cell in converting solar energy into electricity is represented by η. Figure 4b illustrates 
the solar radiation profile used in this study.

The formulation and solution
Load flow
The net active load at the bus interfaced with the battery swapping station and wind-photovoltaic systems (PSi ) 
within a Cbus-bus distribution network is computed by incorporating the stochastic generation from the wind 
farm (P F

Wl
), photovoltaic system (P F

P V l
), the active power demand (Pdi ), and the battery swapping station 

(PBSwapl
) corresponding to that bus. The relationship is expressed as follows:

 
Psi =

{
Pdi ∀i /∈ Cbus

Pdi − NF
W P F

Wl
− NF

P V P F
P Vl

+ PBSwapl ∀i ∈ Cbus

 (5)

As shown in Eq.  (5), wind and solar energy sources are directly included in the load flow analysis of the 
distribution system. In practice, this means the energy generated by these sources is first directed to meet the 
nearby demand of the battery swapping station. Since the generation is located close to the load, this approach 
helps reduce power losses in the network. When the local demand—i.e., the energy demand of the battery 
swapping station—is fully satisfied, and surplus generation remains available, the excess power is allocated to 
other loads connected to the same distribution feeder, ensuring optimal utilization of renewable resources within 
the network. This method ensures that renewable energy is used efficiently, without unnecessary curtailment. It 
also reduces the power drawn from upstream sources and enhances the energy autonomy of the battery swapping 
station, decreasing its dependency on the grid. This energy flow exemplifies the typical operational behavior of 
distributed energy resources in practical systems, where local demands are prioritized, and surplus capacity 
is utilized to support the broader grid when available. This is a common feature in grid-connected renewable 
systems, particularly where energy policies support such integration. Rather than curtailing unused energy, 

Fig. 4. Hourly data for 1 year. (a) normalized load21, (b) solar irradiance, and (c) wind velocity30.
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which would waste potential clean generation, the model assumes that excess power is fed into the external grid. 
This provides a supplementary advantage by generating an additional revenue stream, thereby strengthening the 
economic justification for increased investments in renewable energy capacity.

The net reactive load at bus i, denoted as Qi, and the reactive power demand at bus i, denoted as Qdi . The 
equation is formulated as follows:

 Qi = Qdi i = 1, 2, ..., Ni (6)

The backward-forward sweep technique is employed in this study to carry out load flow calculations. Data 
clustering, the process of classifying data into distinct clusters based on similarities or differences, has led to the 
development of various approaches. This study uses the K-means method to cluster price, energy demand, wind, 
and photovoltaic generation.

K-means data clustering
The sequential implementation of the K-means algorithm for data clustering32 is detailed as follows:

 1. The number of clusters, k, and their respective centroids are randomly initialized based on the observations.
 2. Assign the remaining observations to the nearest cluster of centroids using the following equation:

In this equation, am and ah represent the cluster of centroids m and h, respectively. j denotes the total number 
of data points, while dj  refers to the j th data point, and Dh signifies the set of members in the h-th cluster.

 dj ∈ Dh if |dj − ah| < |dj − am| m = 1, 2, ..., M j = 1, 2, ..., J  (7)

 3. The cluster centroids are updated by recalculating them based on the number of members (NS) in the m-th 
cluster, as specified by the following formula:

 
am =

∑
j∈Dh

dj

NS
m = 1, 2, ..., M  (8)

This formula allows for updating cluster centroids by averaging the data points assigned to each cluster, ensuring 
that the centroids accurately represent the members within the cluster.

 4. Steps 2 and 3 should be repeated until the centroid change is less than a predefined threshold for the cluster 
agents. This iterative process ensures the clustering stabilizes and converges to an optimal solution.

 5. Once convergence is achieved, the probability of an agent m (ωm) can be calculated using the following 
formula:

 
ϖm = cm

J
 (9)

 where cm denotes the total number of data points within the m-th cluster. The primary goal of the K-means algo-
rithm is to minimize the aggregate of squared distances between the cluster centroids and the corresponding 
observations, which is mathematically represented as follows:

 
min

k∑
m=1

cm∑
j=1

(|xj − am|)
2

 (10)

 where k denotes the number of cluster centroids. The objective function computes the Euclidean distance be-
tween each data point xj  and its corresponding centroid am. This metric plays a pivotal role in determining 
the quality of clustering by assessing the grouping of data points within each cluster, thereby guiding the opti-
mization procedure of the K-means algorithm. In this study, the K-means clustering algorithm is employed to 
classify price, energy demand, wind, and photovoltaic generation data, effectively reducing the computational 
complexity of the analysis. This methodology has been extensively applied in numerous studies within the 
literature, particularly in the domain of distributed energy systems30.

To implement the K-means algorithm, the optimal number of clusters must be determined. This study adopts 
the elbow method for this purpose, as described in33. The elbow method involves plotting inertia against the 
number of clusters, where inertia, a critical metric for evaluating clustering quality, is defined as the sum of the 
squared distances between data points and their respective cluster centers. The elbow point signifies a significant 
reduction in inertia, indicating diminishing returns in clustering performance as the number of clusters 
increases. Beyond this point, additional clusters yield minimal improvement.

Figure 5 depicts the relationship between inertia and the number of clusters in this analysis. Notably, between 
clusters 6 and 14, inertia demonstrates negligible variation. Consequently, point 5 is identified as the optimal 
choice, indicating that the K-means algorithm has classified the data into five clusters.

Scientific Reports |        (2025) 15:22486 7| https://doi.org/10.1038/s41598-025-05440-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Given the significant temporal variability in the output power values of wind-photovoltaic systems, electricity 
prices, and load demand, the data are initially normalized to a range of (0, 1) using a single ratio derived from 
the maximum output values. Subsequently, the K-means algorithm is applied to classify the normalized data. 
The resulting cluster centroids are then scaled back to actual values by multiplying them by the maximum 
output vector, representing the peak values of wind and photovoltaic generation, followed by denormalization. 
Furthermore, the cluster centroids are weighted by their corresponding probabilities and the mean power output 
within each category, enabling the use of aggregated values as substitutes for individual data points.

Optimization problem
The objective of the co-allocation problem involving swapping stations and wind-photovoltaic plants in radial 
distribution systems is to maximize profit (net profit). The investment costs associated with wind-photovoltaic 
plants and swapping stations depend on their per-unit size. Considering that the locations and capacities 
of swapping stations, wind farms, and photovoltaic systems are treated as discrete variables, the problem is 
structured as an integer optimization model. The mathematical formulation of the objective function is expressed 
as follows:

 max profit = revenue − cost (11)

The revenue is expressed as:

 

revenue = NT .Ny ×
M∑

m=1

(
Ni∑
i=1

ϖm πmLGridi,m +
NW F∑

i=1

πm .NW .SW .PWi,m
+

NSP P∑
i=1

πm .NP V .SP V .PP Vi,m
+ πm .SBSwap

)

LGridm = Pdm − (PWm + PP Vm − SBSwap)

 (12)

The size of the battery swapping station is defined as follows:

 SBSwap = NEV × SEV  (13)

The total cost is outlined as:

 CT = CL + CI  (14)

The energy loss cost is formulated as follows:

 
CL =

M∑
m=1

ϖm πm. ELoss (15)

Fig. 5. Determination of the optimal number of clusters using the elbow method in the K-means clustering 
algorithm.
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where πm represents the electricity price cluster, and ELoss denotes the total energy loss over the study period. 
The variable ELoss is calculated as follows:

 
ELoss = NT .Ny ×

M∑
m=1

ϖm

(∑
i=1

Zi+1
∣∣ILi+1

∣∣2

)
 (16)

Equation  (17) represents the total investment cost, incorporating the expenditures associated with battery 
swapping stations and wind-photovoltaic systems.

 CI = CI,W + CI,P V + CI,BSwap (17)

The investment cost for the wind farms is defined as:

 CI,W = NW SW CSW  (18)

The investment cost for the swapping stations is expressed as:

 CI,BSwap = NBSwap SBSwap CBSwap (19)

The investment cost for the photovoltaic plants is expressed as:

 CI,P V = NP V SP V CP V  (20)

The limitations on swapping stations and wind-photovoltaic plants investment costs are outlined as follows:

 CI,W ≤ CI,Wmax  (21)

 CI,BSwap ≤ CI,BSwapmax  (22)

 CI,P V ≤ CI,P Vmax  (23)

The PSO algorithm is employed to solve the proposed optimization problem, with additional details provided 
in the Reference34. In the PSO methodology, the capacity of the wind-photovoltaic system and the placement 
of the hybrid system are defined as decision variables, with the objective function specified in Eq.  (11). At 
each iteration, the optimization process identifies the most effective solution and selects the optimal bus for 
connecting swapping stations and wind-photovoltaic plants.

The proposed methodology for the optimal co-allocation of swapping stations and wind-photovoltaic plants 
consists of two main stages:

 1. Data clustering: The first stage uses the K-means method to cluster the relevant data.
 2. Optimization: In the final stage, the PSO algorithm is applied to optimize the formulated problem, thereby 

determining the optimal co-allocation of swapping stations and wind-photovoltaic plants in radial distribu-
tion systems.

A framework, outlined in Fig. 6, presents the proposed methodology for addressing the co-allocation problem. 
The flowchart illustrates the input parameters of the optimization process, which include clustered data on 
energy demand, wind speed, and solar irradiance in the distribution system, along with the initial configurations 
of the PSO algorithm. The optimization process concludes once all PSO iterations are completed.

Results
Case studies
The proposed approach is evaluated by analyzing simulation results obtained from three distinct scenarios. 
Table 2 summarizes the scenarios examined in this study. The base-case scenario is employed to examine 
the distribution system’s behavior in the absence of swapping stations and wind-photovoltaic systems. In the 
first scenario, battery swapping stations are integrated into the network to assess their impact on operational 
parameters. The second scenario involves the optimal co-allocation of swapping stations and wind-photovoltaic 
systems within the radial distribution network. The presumptions and information needed to solve the 
optimization problem are described in this section. The outcomes are then reported.

 1. The objective of the optimization problem is to identify the optimal placement of hybrid wind–photovolta-
ic–swapping station systems and to determine the optimal sizing of wind–photovoltaic systems.

 2. Size of each battery swapping station was assumed to be 584 kW, enough to power 280 EVs (each with 25 kW 
power of the charger) over a 12-h day.

 3. The IEEE 33-bus network is employed to assess the performance of the proposed methodology for the opti-
mal co-allocation of wind-photovoltaic systems and battery swapping stations.

Figure 7 depicts the single-line representation of the IEEE 33-bus radial distribution system. Table 3 outlines 
the cost factors associated with battery swapping stations and wind-photovoltaic systems required for optimal 
investment. The simulation studies were performed using MATLAB, executed on a system equipped with an 
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Fig. 7. Single-line representation of the IEEE 33-bus radial distribution network.

 

Scenario Explanation of the system under study

Base case The IEEE 33-bus radial distribution network is configured without the integration of swapping stations and wind-photovoltaic systems

First scenario The system with swapping stations

Second scenario The system with optimal co-allocation of swapping stations and wind-photovoltaic plants

Table 2. State of the system in different scenarios.

 

Fig. 6. A framework for optimal co-allocation of swapping stations and wind-photovoltaic plants.
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Intel Core i7 processor operating at 2.60  GHz with 16  GB of RAM. The parameters pertaining to the wind 
turbine are detailed in Table 4.

The comparison focuses on three key aspects: increased profit, improvement in voltage profiles, and the overall 
computational burden. It should be noted that the outputs of the proposed technique are specifically designed 
for planning applications. A clustering-based framework is employed in conjunction with the PSO algorithm to 
determine the optimal co-allocation of swapping stations and wind-photovoltaic plants. The decision variables 
for the PSO algorithm encompass both the capacity of the wind-photovoltaic system and the placement of the 
integrated hybrid system. The objective function is formulated to maximize the network profit, with the method’s 
adjustable parameters set as follows: number of generations = 100 and number of particles = 1000.

The IEEE 33-bus radial distribution system is employed to further validate the effectiveness of the proposed 
methodology. For the IEEE 33-bus distribution system, as illustrated in Table 5, buses 2, 33, and 16 are identified 
as the optimal nodes for connecting the swapping stations and wind-photovoltaic plants. The optimal size of 
wind farms is 600, 1200, and 1100  kW. The optimal size of photovoltaic systems is 600, 900, and 1200  kW. 
Renewable energy sources are integrated into the grid, fulfilling a dual role: meeting the energy demands of 
battery swapping stations and partially supplying the distribution system. This reduces energy loss and reliance 
on the upstream grid. Table 5 additionally provides an estimation of the computational time associated with 
solving the proposed co-allocation problem. In summary, the data clustering methodology proves to be effective 
for the co-allocation of swapping stations and wind-photovoltaic plants, even when applied to large-scale test 
systems. Figure 8 depicts the voltage profile of the second scenario in the optimal state, facilitating a comparison 
with other scenarios. The baseline curve shown in this figure corresponds to the condition in which the swapping 
stations and wind-photovoltaic plants are not integrated into the network. As shown, the voltage profile improves 
across all buses in the network after installing the wind-photovoltaic plants compared to the first scenario.

Sensitivity analysis
A sensitivity analysis is conducted to assess the impact of the number of EVs on the optimization outcomes of 
the proposed co-allocation strategy for swapping stations and wind-photovoltaic plants. Figure 9a shows the 
effects of the number of EVs on the share of the wind-photovoltaic plants to supply the total energy demand, 

Scenario Base case First scenario Second scenario

Energy loss (GWh) 8.4814 23.2333 7.4979

Loss cost (k$) 508.8827 1393.9995 449.8743

Investment (k$) – 876 5354.995

Total cost (k$) 508.8827 2268.9945 5804.8693

Revenue (k$) 3748.9997 9635.686 15051.4684

Profit (k$) 3240.117 7366.6916 9246.5992

Total payback period (years) – 0.91 3.56

Time burden (min) – – 24

Renewable share – – 22%

Optimal buses for wind-photovoltaic plants – – 2, 33, and 16

Optimal size of wind farms (kW) – – 600,1200, and 1100

Optimal size of photovoltaic plants (kW) – – 600,900, and 1200

Buses for swapping stations – 2, 33, and 16 2, 33, and 16

Capacity of swapping stations (kWh) – 584, 584, 584 584, 584, 584

Table 5. The optimal results for a 33-bus system over a ten-year period.

 

Active output power Pr = 10 kW

Cut-in wind speed vin = 4 m/s

Cut-out wind speed vout = 22 m/s

Nominal wind speed vr = 10 m/s

Table 4. Specifications of wind turbines.

 

Cost factors of:

Wind turbine CSW : 800 $/kW

Photovoltaic panel CP V : 800 $/kW

Battery swapping station CSS : 5 00 $/kW

Table 3. The cost factors for swapping station and wind-photovoltaic plant.
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which changes between 30.78% and 13.67%. The size of the battery swapping station can significantly impact the 
system’s economic performance. Figure 9b illustrates the relationship between profit, total cost, investment, and 
loss cost across different numbers of EVs. The profit increases from 7973.07 to 10,889.79 k$ as the capacity of each 
battery swapping station grows from 417 kWh (sufficient for 200 EVs) to 834 kWh (sufficient for 400 EVs) with 
limited investment cost. This growth is achieved with a limited investment cost of 5400 k$. Figure 10 illustrates 
the impact of varying the number of electric vehicles (EVs) on the voltage profile within the framework of the 
proposed co-allocation strategy for swapping stations and wind-photovoltaic plants. The results demonstrate 
that an increase in the number of EVs leads to a corresponding decline in the voltage profile.

TOPSIS ranking
The previous section discussed the impact of the number of EVs on the optimization results for the proposed co-
allocation of swapping stations and wind-photovoltaic plants. The results indicate that increasing the number of 
EVs improves profitability while concurrently lowering the minimum voltage and diminishing the contribution 
of wind-photovoltaic plants in meeting the overall energy demand. A quantitative comparison of the various 

Fig. 9. Effects of the number of EVs on the: (a) renewable share, and (b) profit, total cost, investment, and loss 
cost.

 

Fig. 8. Voltage profile of the case studies.
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test cases is essential for evaluating the results while accounting for all critical parameters that influence system 
performance. These criteria include minimum voltage (Vmin), profit, loss, and energy contribution from 
wind-photovoltaic plants. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), a 
multi-criteria decision-making methodology, is utilized to assess and analyze the results based on the specified 
criteria35. The decision matrix R = {rij |i = 1,2, . . . , m; j = 1,2, . . . , n}, comprising m = 6 criteria and 
n = 5 alternatives, is displayed in Table 6.

Following the construction of the weighted normalized decision matrix as defined by Eq. (24), the maximum 
(b+) and minimum (b−) values for each criterion are identified.

 
B = (bij)m×n = rij .wfj√∑n

i=1 r2
ij

 (24)

The weighted normalized decision matrix is shown in Table 7, along with the weight values assigned to the 
selected criteria. Since each criterion reflects a distinct aspect of the oscillators’ performance, assigning equal 
weights to all criteria would not accurately represent their importance. Table 7 presents the weight factors, 
highlighting the greater significance of profit and minimum voltage (Vmin) in this study, as recommended by 
previous research36. The weights assigned to profit and minimum voltage are set at 0.4, reflecting their greater 
importance compared to loss and renewable share, which are both weighted at 0.1. Figure  11 illustrates the 
scores of oscillators for each criterion, as detailed in Table 7.

oscillators listed in Table 7, the Euclidean distances between each matrix element and the optimal and 
suboptimal solutions are calculated in compliance with Eqs. (25) and (26).

 
h+

i =

[
m∑

j=1

(
bij − b+

j

)2

]0.5

 (25)

 
h−

i =

[
m∑

j=1

(
bij − b−

j

)2

]0.5

 (26)

Number of EVs Vmin P.U Criteria Profit k$ Loss kW Renewable share %

NEV = 200 ∗ 3 0.955294 7973.0715 5.4146 30.786

NEV = 240 ∗ 3 0.950753 8642.9659 6.1833 26.1575

NEV = 280 ∗ 3 0.945129 9246.5992 7.4979 21.728

NEV = 320 ∗ 3 0.93366 9816.142 9.3807 18.3842

NEV = 360 ∗ 3 0.926327 10,356.7799 11.7467 15.7703

NEV = 400 ∗ 3 0.919273 10,889.7876 14.2384 13.6712

Table 6. TOPSIS decision matrix.

 

Fig. 10. Voltage profile of the buses in various numbers of EVs with swapping stations and wind-photovoltaic 
plants.
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The oscillators are prioritized according to their proximity to the worst solution, as defined by Eq. (27). Table 7 
demonstrates that higher values correspond to oscillators achieving conditions closer to the optimal state.

 
Si = h−

i

h+
i + h−

i

 (27)

The Euclidean distances of each alternative to the optimal solution (h+
i ) and the least favorable solution (h−

i ) 
are calculated to assess their proximity to the ideal solution (Si). The analysis enables the ranking of various test 
items based on their proximity to the optimal solution. The values presented in Table 8 offer critical insights into 
the comparative performance of multiple oscillators. Figure 12 illustrates the proximity of numerous oscillators 
to the optimal condition. As shown, the oscillator corresponding to 280 EVs achieves the highest rank.

Number of EVs h
+
i

h
−
i Si Rank

NEV = 200 ∗ 3 0.049931 0.049494 0.5 6

NEV = 240 ∗ 3 0.039574 0.043176 0.52 3

NEV = 280 ∗ 3 0.034056 0.039103 0.55 1

NEV = 320 ∗ 3 0.034135 0.038775 0.53 2

NEV = 360 ∗ 3 0.040083 0.04236 0.51 4

NEV = 400 ∗ 3 0.049485 0.049943 0.5 5

Table 8. The Euclidean distances of each alternative to the optimal and least favorable solutions, as well as 
their proximity to the ideal solution, are employed to establish the rankings of various test items.

 

Fig. 11. The score of oscillators on each criterion.

 

Criteria Vmin P.U Profit k$ Loss kW Renewable share %

Number of EVs

Weight

0.4 0.4 0.1 0.1

NEV = 200 ∗ 3 0.166282 0.136491 0.023032 0.057389

NEV = 240 ∗ 3 0.165491 0.147959 0.026302 0.048761

NEV = 280 ∗ 3 0.164164 0.158279 0.031948 0.040504

NEV = 320 ∗ 3 0.162516 0.168042 0.039903 0.034271

NEV = 360 ∗ 3 0.161239 0.177298 0.049967 0.029398

NEV = 400 ∗ 3 0.160012 0.186422 0.060566 0.025485

Table 7. The weighted normalized decision matrix.
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Conclusion
This study presents a data clustering-based methodology aimed at achieving the optimal co-allocation of battery 
swapping stations and wind-photovoltaic systems within radial distribution networks. The K-means method 
clusters price, energy demand, wind, and photovoltaic generation. Implementing the K-means algorithm requires 
determining the optimal number of clusters. This study uses the elbow method for this purpose. The proposed 
methodology employs data clustering techniques to enhance execution efficiency and minimize computational 
expenses. The main objective is to maximize net profit through the optimization process facilitated by the PSO 
algorithm. The effectiveness of the proposed approach is evaluated on the standard IEEE 33-bus test system, 
considering the base case and two distinct operational conditions. A quantitative comparison of various test 
cases is required to evaluate the results by considering all key influence criteria on the system’s performance. This 
study employs the TOPSIS method to assess the results based on key criteria, including minimum voltage, profit, 
energy loss, and renewable energy contribution.

Data availability
All data generated or analyzed during this study are included in this published article.
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