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Since 3D medical imaging data is a string of sequential images, there is a strong correlation between 
consecutive images. Deep convolutional networks perform well in extracting spatial features, 
but are less capable for processing sequence data compared to recurrent convolutional networks. 
Therefore, we propose a long short-term memory and attention based generative adversarial network 
(LSTMAGAN) to realize super-resolution reconstruction of 3D medical image. Firstly, we use generative 
adversarial networks as the base model for super-resolution image reconstruction. Secondly, a 
long and short-term memory network, which specializes in dealing with long-term dependencies in 
sequential data, was used to process continuous sequential data of 3D medical images based on its 
ability to remember and forget information efficiently. Next, an attention gate is used to suppress the 
background noise information and improve the clarity of image features. Finally, the method proposed 
in this paper is applied on the Luna16 and BraTs2021 datasets. The experimental results show that the 
proposed method improves the PSNR and SSIM evaluation indexes compared with other comparative 
methods, respectively. Therefore, it can prove the advancement and effectiveness of the proposed 
method.
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Medical image data serves as an important aid for clinicians in the diagnosis of diseases and provides important 
assistance in the assessment, diagnosis and treatment of diseases. However, medical image data has problems 
such as small lesion features and fuzzy lesion boundaries, which affect the accurate judgment of clinicians. 
Super-resolution technology can be effectively utilized to address the aforementioned issues1. Super-resolution 
technology refers to the technology of obtaining high resolution by increasing the resolution of low-resolution 
digital image space, which is mainly divided into methods based on deep convolution, wavelet transform and 
generative adversarial network. Li G et al.2, Kang Let al.3 proposed feature extraction of low-resolution image by 
deep convolutional network and then mapped to super-resolution image size by up-sampling to generate super-
resolution image, but this method is prone to lead to the problem of checkerboard effect4 in 2D image. Yu Y et 
al.5, Kim H et al.6, Hsu W Y et al.7, Wang Q et al.8 proposed the method of extracting high and low frequency 
information by wavelet decomposition of low-resolution images and then generating high-resolution images 
through interpolation and reconstruction process. However, this method requires the selection of wavelet bases 
suitable for a particular application, and different wavelet bases have a significant effect on the reconstruction 
results. Guerreiro J et al.9, Güven S A et al.10, Xiao Y et al.11, Guo K et al.12, Du W et al.13 proposed a generative 
adversarial network which generates super-resolution images from low-resolution images by generator. And the 
super-resolution image is compared with the real high-resolution image in a discriminator, which determines 
the super-resolution image closer to the real one. This method generates more realistic detailed features and can 
handle discrete image data better, but the GAN often suffers from the vanishing/exploding gradient problem, 
which requires a gradient activation14,15 function, and has limited effect on the super-resolution of 3D medical 
images.

Based on the above problems, this paper proposes a generative adversarial network based on long and short-
term memory and attention to realize a super-resolution reconstruction method for 3D medical image. The 
main contributions of this paper are as follows:
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(1) We propose a new network structure for super-resolution reconstruction of 3D medical image data, 
which makes full use of global features and improves the realism of the details of the generated images.

(2) Based on the sequence characteristics of 3D medical images, we propose to introduce the long and 
short-term memory network into the discriminator structure of generative adversarial network, and replace the 
convolutional network by the long and short-term memory network to realize the accurate judgment of fake 
super-resolution images and real high-resolution images.

(3) We improve the generator network structure by incorporating an attention gate structure into the 
generator network, which is used to suppress the background noise information and improve the quality of the 
generated super-resolution images.

Related work
3D medical image data is the most important part of medical data, which involves medical data such as X-rays, 
CT scans, MRIs and other medical data used to assist clinicians in the diagnosis and treatment of diseases. 
Most of the 3D medical imaging data is stored in sequences, and clinicians use the effect of a particular frame 
to diagnose a patient’s condition. However, this method is easily to neglecting the characteristics of early fine 
lesions, resulting in cases of missed diagnosis, and there is also a human subjective influence on the selection 
of images. To address this problem, research scholars have proposed to solve the problem by deep learning 
methods, which are mainly divided into three directions: lesion feature-based target detection methods16; image 
segmentation methods17 and image super-resolution methods18. Ragab M G et al.19 and Yeerjiang A et al.20 list 
the current status of development of Yolo series of algorithms for detection of medical images, and attempts were 
made to detect lesions by Yolo series of algorithms but the accuracy of the target detection methods implemented 
by Yolo was not high. Siddique N et al.21, Weng W et al.22, Punn N S et al.23 list the applications of U-Net and 
improved algorithms in medical image segmentation, but those algorithms are supervised learning and heavily 
rely on data labeling. Umirzakova S et al.24, Ahmad W et al.25, Kang L et al.26 have used convolutional neural 
network algorithm27 and generative adversarial network algorithm28 to realize super-resolution reconstruction 
of medical images, which provides larger size and clearer medical images to assist clinicians in the diagnosis 
of diseases, but the performance of this method is poor in the extraction of global features for sequential data. 
Based on the aforementioned defects, we propose a generative adversarial network based on long and short-term 
memory and attention to realize a super-resolution reconstruction method for medical image data. The method 
suppresses the background noise information through the attention gate to improve the quality of super-
resolution images generated by the generator, and at the same time extracts global features with the help of long 
and short-term memory network to discriminate the authenticity of real images from super-resolution images.

Methodologies
In order to better adapt to 3D medical image data, in this paper, this method uses generative adversarial network 
as the basic model, suppresses the background noise information by attention gate network, strengthens the global 
feature capability by long and short-term memory network instead of deep convolutional network, prevents 
the attenuation and explosion of the feature gradient, and improves the robustness of the model. According to 
the principle of generative adversarial networks29, the generator generates false super-resolution images (Fake 
SR), which are judged by the discriminator to classify the false super-resolution images and real images. The 
generator then continues to optimize the network model based on this judgment, so the performance of the 
discriminator determines the effectiveness of generating super-resolution images.

Network structure
The network’s based on generative adversarial networks, which are mainly divided into generators and 
discriminators. Integrate an attention gate into the generator network to enhance its feature fusion capabilities 
and mitigate noise interference. Incorporate the long and short-term memory model in the discriminator to 
improve the global feature extraction ability and reduce the gradient decay and gradient explosion problem of 
the feature gradient in the propagation process. The robustness of the network can be improved by these two 
improvement methods, and its overall network structure relationship is shown in Eq. (1).

	
min

G
max

D
V(D,G)=E⊖IHR∼ptrain(IHR)[log D(IHR)] + E⊖ILR∼pG(ILR)[log(1 − D(G(ILR))].� (1)

Where D is the discriminator, G is the generator, IHR is the high-resolution image, ILR is the low-resolution image, 
Ptrain(IHR) is the probability distribution of training set IHR, PG(ILR) is the probability distribution of ILR after 
generator processing, discriminator for maximum accuracy, generator for minimum error.

Generator
The performance of the generator, as a network structure in the generative adversarial network that generates 
super-resolution images from low-resolution images, determines the quality of the super-resolution images 
generated. In the process of generating a super-resolution image from a low-resolution image, since the low-
resolution image contains a lot of background noise information that affects the quality of the super-resolution 
image generation, this paper uses the structure of an attention gate (AG30) to process the image and suppress the 
background noise of the input image. The generator structure uses the basic structure of SRResNet31, as shown 
in Fig. 1. In the basic structure, this network incorporates the attention gate into the dense connectivity module, 
as shown in Fig. 2.

In order to better accomplish the feature fusion and suppress the background noise information, this network 
adopts the method of attention dense connectivity module. The features of different network layers are fused by 

Scientific Reports |        (2025) 15:20828 2| https://doi.org/10.1038/s41598-025-05783-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


means of dense skip connections, and at the same time, in order to suppress the background noise information 
of the low-resolution image, the fused feature information and the initial feature information are inputted into 
the attention gate. The important target features are weighted according to the weight assignment, and the 
background noise information is suppressed. The attention dense connection module can effectively reduce 
noise interference and improve the quality of generated high-resolution images.

In the attention dense connection module, the input low resolution image ILR is fed into the dense block, and 
the FD represents the nonlinear structure of the current layer’s dense connection, containing the Conv and ReLU 
functions. For the forward propagation network, xl−1, as the output of the current layer (l-1)th, is inputted into 
the next layer lth can be expressed as: FD(xl−1). The dense connectivity module is that the lth layer will concatenate 
the results obtained from all the previous layers, represented as shown in Eq. (2).

	 xl = FD (xl−1) + x0 + x1 + . . . + xl−1.� (2)

The output feature xl of the dense module is multiplied by the coefficient β and the initial feature as input features 
Gi and Pi. Then, based on the input features Gi and Pi, after convolution by 1 × 1 × 1, the corresponding position 
features are added. The negative features are suppressed by the rectified linear unit (ReLU) function, and the 
features are normalized by Sigmoid function. The processed results are multiplied with the initial feature Pi by 
channel to obtain the new feature Pi

l after the assigned weight. The process of operating on the input features Gi 
and Pi can be represented by Eqs. (3) and (4), respectively:

	 Ql
att = ψT (σ1(W T

p Pi + W T
g Gi + bg)) + bψ � (3)

	 Pi
l = σ2(Ql

att(Pi, Gi; Θatt)).� (4)

Where σ1 is the ReLU function and σ2 is the Sigmoid activation function, 
Parameter:Wp ∈ RFl×Fint ,Wg ∈ RFg×Fint ,ψ ∈ RFint×1,Offset:bg ∈ RFint ,bψ ∈ R.Rrepresents the real 
number, Fl and Fg represents the matrix dimension.

Discriminator
The discriminator is the quality inspector in the generative adversarial network, according to the super-resolution 
image generated by the generator and the real high-resolution image comparison, the degree of recognition 
reaches the threshold is judged to be true, otherwise it is judged to be false. If the discrimination is false then 
optimization of the generator model is carried out until the image generated by the generator model can pass the 
discrimination of the discriminator. Thus, the capability of the discriminator determines the quality of the super-
resolution image. According to the characteristics of 3D medical image data, 3D medical images are continuous 
sequential images and the correlation between images is stronger compared to other types of images. In this 
paper, long and short-term memory networks, which are more capable of processing continuous sequences, are 
used instead of deep convolutional networks to realize the discrimination of the generated images. Its network 
structure is shown in Fig.  3, in the structure, according to the input parameters of LSTM, like [batch_size, 
time_step, input_size]. We take 16 original images as a continuous sequence corresponding to batchsize = 16, 

Fig. 2.  Attention dense connectivity module (ADC), β is the scaling parameter and β = 0.2 in the paper.

 

Fig. 1.  Structure of the generator network.
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time_step = 1 and input_size = image size, and input the sequence data into the LSTM of discriminator model to 
discriminate the classification effect of the data.

According to the transmission state of the cells in LSTM, the information of the precursor node is transmitted 
to the current node to avoid the problems of feature gradient disappearance and gradient explosion during long-
term transmission. The LSTM network has four main components which are forget gate, input gate, update gate 
and output gate. According to the input sequence image features, it works by inputting the image data into the 
LSTM model according to the time sequence. The forget gate determines how much of the cell state from the 
previous moment needs to be retained until the current moment, and inputting the current training data xt and 
the output value ht−1 of the previous moment into the forget gate as shown in Eq. (5).

	 ft = σ(Wf · [ht−1, xt] + bf ).� (5)

Wf is the weight matrix of the forget gate, [ht−1, xt] means to splice two vectors into a longer vector, bf is the 
bias term of the forget gate, and σ is the Sigmoid function. Information from the previous hidden state ht−1 and 
current input xt are fed into the Sigmoid function at the same time, and the output value is between 0 and 1, with 
values closer to 0 meaning that they should be discarded, and closer to 1 meaning that they should be retained. 
The forget gate determines that the cell state ht−1 of the previous moment is partially preserved to the current 
moment, so the forget gate can partially preserve the state of the previous moment. The input gate determines 
how much of the input data at the current moment needs to be saved to the cell state, and the input gate is used 
to calculate the input state of cell based on the previous output and the current input, as shown in Eq. (6):

	 it = σ (Wi · [ht−1, xt] + bi) .� (6)

Wi is the weight matrix of the input gate, [ht−1, xt] denotes the joining of the two vectors into a longer vector, bi is 
the bias term of the input gate, and σ is the Sigmoid function. The update gate determines the update state of the 
cell at the current moment, and the cell state Ct at the current moment is calculated as shown in Eqs. (7) and (8):

	 C̃t = tanh (WC · [ht−1, xt] + bC) .� (7)

	 Ct = ft × Ct−1 + it × C̃t� (8)

C̃ t is the candidate memory cell state, WC is the weight matrix of the update gate, and bC is the bias term of 
the update gate. The cell state Ct at the current moment is the cumulative sum of the previous cell state Ct − 1 
multiplied element-wise by the forgetting gate ft, plus the current candidate memory cell state C̃ t multiplied 
element-wise by the input gate it. The candidate memory cell state C̃ t and the previous cell state Ct−1 to be 
combined to form a new unitary state Ct. It preserves global feature information due to the control of the forget 
gate, and it prevents currently irrelevant content from entering memory due to the control of the input gate. And 
the output gate controls the output of the current state Ct to the output state ht of the LSTM. The formulas are 
shown in (9) and (10):

	 ot = σ (Wo · [ht−1, xt] + bo)� (9)

	 ht = ot ∗ tanh (Ct) .� (10)

Wo is the weight matrix of the update gate and bo is the bias term of the update gate. Finally, the output state ht 
is classified by the results obtained after going through the fully connected layer and the Sigmoid function to 
determine the model performance of the discriminator.

Fig. 3.  Structure of the discriminator network, real images are used as training set and super-resolution images 
are used as test set, and the performance of the discriminator is judged by the final accuracy. LSTM is the long 
and short-term memory model, FC is the fully connected layer, and Sigmoid is the activation function.
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Experiments
Configurations
This experimental environment uses Ubuntu 20.04 Linux operating system, the development language is Python 
3.10, the development environment is Stable Diffusion v1-5, the development environment configuration is 
CUDA 11.7, cuDNN 8, the development framework is Pytorch 2, and the development tool is JupyterLab. 
Computing power is NVIDIA Tesla T4 GPU − 16GB+ | 8 + TFlops SP CPU − 8 cores| Memory − 32GB.

Loss function
Loss function contains content loss function, perceptual loss function and adversarial loss function.

The content loss function is shown in Eq. (11)

	
LMSE(Ihr, Isr) = 1

H × W

H∑
i=1

W∑
j=1

[Ihr(i, j) − Isr(i, j)]2.� (11)

MSE is the mean square error, which is calculated by the squared value of the pixel difference at the corresponding 
position of the image, where Ihr is the real high resolution image and Isr is the generated high resolution image, 
with an image size of H×W.

Visual geometry group (VGG) based perceptual loss function is shown in Eq. (12)

	
Lprec(Ihr, Isr) = 1

Wx,y × Hx,y

Wx,y∑
i=1

Hx,y∑
j=1

(Vx,y(Ihr(i, j)) − Vx,y(Isr(i, j)))2.� (12)

The Vx, y is indicated the feature map obtained by the yth convolution (after activation) before the xth max-
pooling layer within the VGG19 network. And Wx, y and Hx, y are described the dimensions of the respective 
feature maps within the VGG network.

Adversarial loss function
To better prevent the gradient loss that occurs in the GAN, according to the principle of Wasserstein GAN32 loss 
function, an important trick of Wasserstein GAN (WGAN) is to shear the discriminator’s ownership weights to 
a constant range [-c, c] in order to satisfy the conditions under which the Wasserstein distance can be deduced. 
However, with the clipping strategy, the weights of the discriminator tend to be either a minimum or a maximum, 
which causes the discriminator to behave like a binary network, weakening the nonlinear simulation ability of 
the GAN. Therefore, a gradient penalty33 has been proposed to replace the shear operation. The new technique 
restricts the gradient of the discriminator from changing rapidly by adding a new term to the adversarial loss, 
so in this paper, the loss function of WGAN with gradient penalty (WGANGP) is used as the adversarial loss 
function. WGAN loss is shown in Eq. (13) and WGANGP loss is shown in Eq. (14).

	 LW GAN (Ilr, Ihr) = EIlr [D(G(Ilr))] − EIhr [D(Ihr)]� (13)

	 LW GANGP (Ilr, Ihr) = LW GAN (Ilr, Ihr) + EI [∥∇ID(I)∥p − 1]2.� (14)

Therefore, in this paper, a hybrid loss function is adopted, as shown in Eq. (15).

	 LSR(Ilr, Ihr, Isr) = LMSE(Ihr, Isr) + 6 × 10−3 × Lprec(Ihr, Isr) + 1 × 10−3 × LW GANGP (Ilr, Ihr).� (15)

Experimental data
The dataset chosen for this experiment is 3D medical image data, but when the model is computed, the data is 
processed sequential 2D slice data.

Dataset 134 is the Luna16 dataset, which is a subset of the largest publicly available lung nodule dataset, 
LIDC-IDRI. This dataset is deployed by the National Cancer Institute and is widely used to detect and classify 
early lung cancer. It contains 1186 medical imaging data from low-dose lung CT images of 888 patients in mhd 
format. The data were processed to obtain 1186 images in png format. Among all image sizes, the smallest value 
is [300,300], the middle value is [360,360], and the largest value is [400,400], and randomly divide the LUNA16 
dataset into training, testing and validation sets according to the ratio of 70%, 20% and 10%. The URL: ​h​t​t​p​s​:​/​/​l​
u​n​a​1​6​.​g​r​a​n​d​-​c​h​a​l​l​e​n​g​e​.​o​r​g​/​D​o​w​n​l​o​a​d​/​​​​​.​​

Dataset 235 is the BraTs2021 dataset, which is a large-scale brain multimodal MR glioma segmentation dataset 
consisting of 8,160 MRI scans from 2,040 patients. Each patient contained MR images of the four modalities T1, 
T1Gd, T2 and T2-FLAIR. Since this paper only accomplishes the super-resolution reconstruction of 3D medical 
images, the T2-FLAIR modal data is selected, and the initial data type of this dataset is nii.gz. We convert nii.gz 
format to png format, a sample of nii.gz data can be divided into 155 png format images of 240 × 240 pixel. After 
data processing and cleaning, we keep 54,528 images and divide them into training set, testing set and validation 
set in the ratio of 70%, 20% and 10%. The URL: https://www.synapse.org/#!Synapse:syn51514105.
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Evaluation indicators
There are two commonly used evaluation indicators for super resolution, the Peak Signal-to-Noise Ratio 
(PSNR) and the Structural Similarity Index Measure (SSIM36). The two evaluation indexes are the most basic 
ones used to measure the quality of compressed reconstructed images in super-resolution. Peak Signal-to-Noise 
Ratio(PSNR(db)) is defined as formula (16):

	
P SNR = 10 × log10

(MAXI)2

MSE
= 20 × log10

MAXI√
MSE

.� (16)

MSE is the mean square error value. MAXI is the maximum pixel value in image I. In this paper, the image is 
converted to YCbCr format, and then the PSNR of the Y component is calculated, and a larger value of PSNR 
indicates a better result.

Structural Similarity Index Measure (SSIM) assumes that the human visual system is highly adapted to 
extract image structures, and measures the structural similarity between images based on the comparisons of 
luminance, contrast, and structures. As shown in formula (17):

	
SSIM(x, y) = (2 × µx × µy + c1) × (2 × σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) .� (17)

where x, y denote two images,µandσ2are the mean and variance,σxyis the covariance between x and y, and c1 
and c2 are constant relaxation terms. c1=(k1×L)2, k1 is a constant and default value is 0.01. c2 =(k2×L)2, k2 is a 
constant and default value is 0.03. L is the range of pixel values and value is 2B − 1.

Ablation studies
To further demonstrate the effectiveness of the proposed method, we use ablation studies to fuse different 
improved methods to further verify the effectiveness of the improved part. Model 1 is a GAN-based super-
resolution method, Model 2 is a super-resolution method that fuses LSTM and GAN, Model 3 is a super-
resolution method that fuses attention gate and GAN, and Model 4 is a super-resolution method that fuses 
LSTM, attention gate and GAN.

Through Fig. 4, we can analyze that Model 1 as the base model has higher variability between the images 
during the comparison of pixel differences between the generated super-resolution images and the real 
high-resolution images, and also the metrics of PSNR and SSIM are the lowest. Model 2 incorporates LSTM 
in generative adversarial networks for super-resolution of 3D medical images. Since LSTM has the ability of 
global feature extraction, it can better distinguish the real image features from the fake image features in the 
discriminator, so the model is more robust and more accurate in discriminating the real image from the fake 
image, so the image effect is better than model 1. Model 3 incorporating attention gate in generative adversarial 
networks, attention gate can better focus the feature information and suppress the background noise, so that 
better quality images can be generated in the generator. Model 4 is the method proposed in this paper, which 
incorporates attention gate in the generator and LSTM in the discriminator to fully utilize the advantages of 
attention gate and LSTM to enhance the super-resolution reconstruction of 3D medical images, and it is also the 
most effective method.

Comparison experiment
In order to further verify the performance of the proposed algorithm, we compare the proposed method with 
other super-resolution methods SRGAN29, MedGAN12, ESRGAN37, TGAN13, DISGAN8 methods on dataset 1 
and dataset 2, and the experimental results are shown in Figs. 5 and 6.

Through Figs.  5 and 6, we can see that the proposed method has better super-resolution reconstruction 
effect on Luna16 and BraTs2021 datasets. By image visualization, the proposed method generates clearer quality 
images with less background noise. Due to the fact that the proposed method uses the attention gate for the 
allocation of feature weights, suppresses the background noise information and highlights the high-frequency 
features, so that the generated image effect is of better quality. By comparing different methods on the dataset, 
we find that the proposed method obtains high evaluation indexes on both PNSR and SSIM.

For 3D medical image data, as it is stored in a continuous sequence, this paper uses LSTM method to replace 
convolutional neural network in feature extraction in the discriminator. To further validate the classification 
effectiveness of the discriminators, this paper applies different comparison methods on the Luna16 and 
BraTs2021 datasets. We measure the classification effect of the discriminator in terms of classification accuracy. 
Through Fig.  7, we can see that the classification accuracy of the discriminator in the proposed method is 
gradually improved in the iterative training process, and the highest accuracy value is achieved after 100 rounds 
of training. Compared to other comparative methods, our proposed LSTM-based discriminator is superior in 
classification accuracy.

Conclusion
In this paper, we propose a generative adversarial network based on long and short-term memory and attention 
(LSTMAGAN) for super-resolution of 3D medical images. The method is based on generative adversarial 
network to generate more realistic super-resolution images, and attention gate is added to the generator network 
to enhance the feature information and suppress the role of background noise. The LSTM is used as the backbone 
network in the discriminator network, which utilizes the sequential of 3D medical image data to extract global 
features and determine the image category. Although the proposed method achieves better experimental results 
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on the Luna16 and BraTs2021 datasets, there are still some limitations, such as in the validation data to satisfy 
the homomorphic distribution with the training data, the inconsistency of probability resolution will lead to 
poorer quality of the generated images. Therefore, the multimodal super-resolution method will be our next 
research direction.

Fig. 4.  Ablation studies effect diagram, where 1st indicates the real high-resolution image, and 2nd ~ 5th 
indicates the pixel difference between the super-resolution image and the real high-resolution image, with red 
color indicating the positive difference and blue color indicating the negative difference. The more pixel points 
in the 2nd ~ 5th diagrams, the greater the variability between the generated super-resolution image and the real 
image, and the poorer the quality of the generated super-resolution image.
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Fig. 5.  Super-resolution reconstruction of different methods on Luna16 dataset.
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Fig. 6.  Super-resolution of different methods on BraTs2021 dataset, we selected the FLAIR modal dataset as 
the data for this experiment.
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Data availability
Data Availability Statement ，as follows: The dataset1 download URL: ​h​t​t​p​s​:​/​/​l​u​n​a​1​6​.​g​r​a​n​d​-​c​h​a​l​l​e​n​g​e​.​o​r​g​/​D​o​w​
n​l​o​a​d​/​​​​​. The dataset2 download URL: https://www.synapse.org/#!Synapse:syn51514105.
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