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To address the limitations of traditional suspension bridge main cable shaping methods, which cannot 
automatically perform shape-finding during the optimization process, this paper proposes a bisection-
parabolic (BP) method. This method is integrated with traditional finite element (FE) modeling to 
increase the efficiency of FE modeling during the optimization process. A multi-objective optimization 
model for suspension bridges is presented, which uses layout and dimension parameters as design 
variables while aiming to reduce cumulative material costs and improve the safety factor, under the 
premise of meeting design requirements. The Lasso function is used for elastic net regression analysis 
to evaluate the impact of design variables on the objective functions. This study proposes a multi-
objective particle swarm optimization algorithm based on a dual-population coevolution strategy 
(DPMOPSO) to solve the optimization problem. The algorithm divides the population into two parts, 
using the non-dominated sorting genetic algorithm II (NSGA-II) and the multi-objective particle 
swarm optimization algorithm (MOPSO) for solving, with improvements to enhance the algorithm’s 
performance. The test results demonstrate that DPMOPSO is an effective algorithm for escaping local 
optima and achieving better multi-objective optimization.
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Suspension bridges are among the most advantageous bridge types for long spans exceeding a kilometer, and 
their structural performance is highly sensitive to layout and dimension parameters1. The design of most 
suspension bridges follows a traditional approach, where designers propose a few design alternatives on the 
basis of their experience for comparison during project planning2. The feasibility of these solutions is often 
influenced by subjective factors rather than the objective conditions of the project. Therefore, determining the 
optimal layout and dimension parameters of suspension bridges to enhance structural performance and reduce 
costs has always been a key focus for designers.

Traditional engineering design optimization is usually based on a series of parameter or sensitivity analyses to 
evaluate the structural response to different design variables3. However, when applied to suspension bridges, this 
approach makes it difficult to determine the global optimal solution. The development of modern optimization 
theory has addressed these challenges and has been applied in various ways to cable-stayed bridges and 
suspension bridges, including size and geometric optimization4–8, cable tension optimization9–12 and dynamic 
performance optimization under seismic conditions13–16.

Metaheuristic optimization algorithms have also achieved significant research results in the structural 
optimization of suspension bridges. Nieto et al.17 proposed a gradient-based method to optimize the bridge 
section of suspension bridges. Cao et al.4 presented an enhanced PSO and coupled modeling method to optimize 
the layout and size parameters of suspension bridges. Chen et al.18 introduced an improved PSO and applied 
it to shape-finding analysis during the installation of suspension bridges. Wei et al.19 used PSO to solve for the 
final cable configuration of the suspension bridge main cables. These studies focus primarily on single-objective 
optimization. However, as large and complex structures, suspension bridges require consideration of both cost 
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and structural performance in structural optimization, necessitating multi-objective optimization in their 
design. Furthermore, existing structural optimization research on suspension bridges has predominantly used 
steel box girder suspension bridges as case studies, with a lack of studies focusing on the structural optimization 
of steel truss suspension bridges.

The modeling of suspension bridges requires shape-finding analysis, where iterative shape-finding is used 
to determine key parameters such as the initial strain of the main cables and the positions of nodes, which are 
essential for establishing a FE model of the suspension bridge20,21. Therefore, for the optimization of suspension 
bridges, a shape-finding method with high computational efficiency and accuracy is crucial. In recent years, 
global search multi-objective optimization algorithms, such as NSGA-II22–24 and MOPSO25,26, have been widely 
applied in engineering. However, their low convergence speed and tendency to become trapped in local optima 
significantly limit their application in large-scale structures27. In order to address the shortcomings of multi-
objective optimization algorithms, many scholars have conducted extensive research. Wang et al.28 proposed an 
improved dual-archive algorithm, and experiments showed that the algorithm has good convergence, diversity, 
and complexity. Kumar et al.29 proposed a multi-objective multi-node optimization algorithm (MOMVO), which 
is based on two archive concepts that separately focus on convergence and diversity, called MOMVO2arc, and 
it demonstrates good diversity and convergence. Panagant et al.30 proposed two success history-based adaptive 
multi-objective differential evolution algorithms (SHAMODE) and success history-based whale optimization 
adaptive multi-objective differential evolution algorithms (SHAMODE-WO). Comparative results showed that 
both algorithms rank among the top in truss structure optimization design problems. Wang et al.31 proposed 
an improved MOEA/D-OMDEA algorithm, and experimental results demonstrated that this algorithm is an 
advanced multi-objective optimization algorithm. It is evident that dual-archive is an effective method for 
improving algorithm performance. Therefore, to better perform global optimization for suspension bridges, this 
paper combines NSGA-II and MOPSO to propose a new improved algorithm.

To address the limitations of traditional shape-finding methods, which cannot automatically perform shape-
finding during the optimization process as the design variables change, this study combines the parabolic method 
with FE-based methods to propose a BP shape-finding method. Additionally, this BP method is coupled with 
traditional FE modeling to improve the efficiency of FE model establishment. To increase the effectiveness of the 
optimization results, a crowding-based dynamic crossover and mutation probability is introduced for NSGA-
II, and a linear learning factor is proposed for MOPSO. On the basis, NSGA-II and MOPSO are combined to 
propose a dual-population multi-objective particle swarm optimization (DPMOPSO) algorithm. Furthermore, 
to address the tendency of both algorithms to get trapped in local optima, a generation distance (GD)-based 
adaptive mutation strategy is introduced.

Coupled modeling method for suspension bridges based on the BP method
Main cable shape-finding analysis
The parabolic method assumes that the self-weight of the main cable is small compared with that of other 
permanent loads, such as the stiffening girder, allowing all permanent loads to be simplified as uniformly 
distributed along the span. Under this assumption, the geometric shape of the main cable in each span forms a 
parabola32. The analytical method is based on the elastic catenary equation, where the main cable is divided into 
segments at concentrated loads, and the static equilibrium of the loading points and cable segments is solved 
through iterative calculations33,34. The FE method uses an assumed FE model to update the node positions and 
internal tension of cable elements through nonlinear structural analysis11.

The traditional shape-finding methods mentioned above cannot achieve automatic shape-finding of the 
main cable during the optimization process. Therefore, this paper proposes the BP method. In this approach, 
a parabola is used to fit the initial shape of the main cable, followed by establishing a finite element model. The 
bisection method is then applied to update the node positions and internal tension of the cable elements through 
nonlinear structural analysis.

BP method
As shown in Fig. 1, xi and xj represent the coordinates of the pylon anchorage points, and xc represents the 
coordinates of the midpoint of the main cable. Thus, the parabolic equation fitting the main cable is given by:

 
y = 4f

l2 x2 + C − 4f

l
x + yi (1)

 

where l denotes the span of the suspension bridge, f represents the sag of the main cable at the midspan, C is the 
vertical distance between the tops of the two pylons, and yi is the vertical coordinate of the left pylon anchorage 
point.

As shown in Fig. 2, the proposed shape-finding method divides the suspension bridge into a pylon-girder 
system (as shown in Fig. 2b) and a cable system (as shown in Fig. 2c), which are connected through the hanger 
tension and the forces acting at the top of the pylon. The BP shape-finding method involves three steps: 1) 
calculating the support reactions in the pylon-girder system; 2) fitting the initial shape of the main cable via a 
parabola; and 3) analyzing the cable system.

As shown in Fig. 2b, Ri is the reaction force of the ith vertical support. Therefore, the force Ni acting on the 
lower anchorage point of the ith hanger is equal to Ri. The concentrated force acting on the ith node of the main 
cable is equal to the sum of Ni and the self-weight of the ith hanger.

Structural analysis requires predefined geometric parameters for the bridge layout. As shown in Fig. 2a, Lm 
represents the length of the main span. Ll

a and Lr
a denote the distances from the bridge ends to the anchorages 

on the left and right sides, respectively. f represents the sag of the main cable at the mid-span. di
x is the horizontal 

Scientific Reports |        (2025) 15:22950 2| https://doi.org/10.1038/s41598-025-06392-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


distance between two adjacent hangers. C is the vertical distance between the tops of the two bridge towers. 
The initial main cable shape is fitted via Eq. (1) for shape-finding analysis, and the shape of the girder can be 
expressed via the following equation:

 yB = h0 + x ∗ gl (2)

where h0 is the height of the stiffening girder and gl is the longitudinal slope of the girder.
Figure 3 shows a schematic diagram of the main cable and girder of the suspension bridge.
As shown in Fig. 3, the length of the ith hanger under load can be expressed by the following equation:

 hi = yi − Bi (3)

The unstressed length of the ith hanger, hi
0, can be derived from the following equation:

Fig. 2. Pylon-girder system and cable system of suspension bridge.

 

Fig. 1. The parabola of fitting the main cable.

 

Scientific Reports |        (2025) 15:22950 3| https://doi.org/10.1038/s41598-025-06392-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 hi
0 = hi − Ni ∗ hi/2EhA2 (4)

The self-weight of the ith hanger, Gi
h, is given by:

 Gi
h = whhi

0 (5)

The concentrated force Fi acting on the ith node of the main cable is given by:

 Fi = Ni + Gi
h (6)

where Eh and A2 represent the elastic modulus and cross-sectional area of the hanger, respectively; wh denotes 
the weight of the hanger per unit length.

After Fi is calculated, the main cable is fitted in ANSYS35 according to Eq.  (1), and Fi is applied to the 
corresponding nodes of the main cable. The bisection method is then used to perform iterative shape-finding for 
the main cable. In the suspension bridge case presented in this paper, after 20 iterations, the displacement of the 
midpoint of the main cable is only 0.009 mm, meeting the accuracy requirements.

After the shape-finding is completed, the strain εi of each segment of the main cable is extracted, and then 
the unstressed length of the ith segment of the main cable, li

0, is calculated via the following equation:

 li
0 = [(xi+1 − xi)2 + (yi+1 − yi)2]1/2 ∗ (1 − εi) (7)

Thus, the unstressed length of the main cable in the mid-span, L, is given by:

 
L =

2n∑
i=1

li
0 (8)

After completing the shape-finding for the main cable in the mid-span, the unstressed length of the side-span 
main cable is calculated on the basis of the equality of horizontal forces in the side and mid-span cables, thus 
obtaining the unstressed length of the entire main cable.

Coupling of the BP method with traditional FE Modeling
To perform shape-finding via the BP Method, a FE model of the pylon-girder system of the suspension bridge, as 
shown in Fig. 2b, should first be established in ANSYS. Then, a static analysis is conducted to extract the vertical 
support reactions. The initial shape of the main cable is fitted via Eq. (1), and the shape-finding of the suspension 
bridge’s main cable is carried out according to the method described in Section 2.2.2. After the shape-finding 
is completed, the nodal coordinates of the main cable and the initial strain of each cable segment are extracted, 
and a FE model of the suspension bridge is established. FE analysis is then conducted in ANSYS to provide the 
necessary inputs required during the optimization process.

Multi-objective optimization model for suspension bridges
Design variables
Figure 2a shows the layout and geometric parameters of a single-span steel truss suspension bridge with pylons 
of unequal heights. In addition to the five geometric parameters described in Section 2.2.2 (Lm, Ll

a, Lr
a, f, C), 

Hs and Hb represent the length of the shortest hanger at mid-span and the height of the pylon below the bridge 

Fig. 3. Diagram of main cable and main girder of suspension bridge.
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deck, respectively, whereas B denotes the width of the bridge. The side view of the pylons is shown in Fig. 4a, and 
the simplified cross-sections of the pylons and transverse beams are presented in Fig. 4b,c, respectively. Figure 5 
shows the truss section that constitutes the steel truss stiffening girder.

Some geometric parameters of the bridge are determined by practical and site conditions, and therefore 
remain unchanged during the optimization process4. Thus, for a suspension bridge with a fixed total span, the 
design variables considered in the optimization include the following:

Pylon: the width w1 and height w2 of the pylon, and the thicknesses of the plates T1 and T2;
Transverse beam: the height w3 of the transverse beam, and the thicknesses of plates T3 and T4;
Stiffening girder: as shown in Fig. 5, the stiffening girder consists of nine different ‘H’-shaped sections, with 

four design variables for each section. Therefore, the design variables are w4–w21 and T5–T22;
Cable system: the sag-to-span ratio (f/Lm), the area of the main cable A1 and hanger A2.

Multi-objective functions
Most designers focus on single-objective optimization in the design of suspension bridges, with material cost 
typically serving as the objective function. Although such optimization reduces material costs, it does not 
include a quantitative analysis of the impact on the structural safety of the bridge. Therefore, this paper conducts 
multi-objective optimization for suspension bridges, with objective functions consisting of two parts: one is 
the commonly used material cost function, and the other is a function representing the structural safety of the 
bridge, as shown below:

 




min f1 =
N∑

i=1
CiAiLi

max f2 = σcr
C

σC
+ σcr

H
σH

+ σcr
G

σG
+ σcr

P
σP

 (9)

where, f1 represents the material cost. Ci, Ai and Li denote the unit volume material cost, cross-sectional area, and 
length of component i, respectively. f2 is the safety factor, where σcr

C , σcr
H , σcr

G , and σcr
P  represent the allowable 

stresses for the main cable, hanger, girder, and pylon, respectively. σC , σH , σG, and σP  denote the maximum 
stresses of the main cable, hanger, girder, and pylon calculated in each FE analysis by ANSYS.

Since evolutionary optimization algorithms always seek to minimize the objective function, Eq.  (9) is 
transformed into the following form:

 




min f1 =
N∑

i=1
CiAiLi

min f2 = −
(

σcr
C

σC
+ σcr

H
σH

+ σcr
G

σG
+ σcr

P
σP

)  (10)

Fig. 4. Simplified cross sections of the pylon and cross beam.
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Multi-objective particle swarm optimization algorithm based on the dual-population 
coevolution strategy (DPMOPSO)
Proposal and improvement of the algorithm
NSGA-II has strong search capabilities but is highly dependent on parameters and sensitive to parameter 
selection. MOPSO converges quickly but tends to become trapped in local optima, failing to find the global 
optimal solution. Additionally, NSGA-II and MOPSO differ in their information-sharing mechanisms: NSGA-
II transmits information through genetic operators, whereas MOPSO uses the global best particle to guide 
other particles. This leads each algorithm to have its own advantages and disadvantages. Therefore, this paper 
combines the two algorithms to leverage their respective strengths and proposes DPMOPSO, with improvements 
to further enhance performance.

Dual-population coevolution strategy
The dual-population coevolution strategy divides the population into two halves on the basis of the non-
dominated sorting of NSGA-II. The upper half, with better Pareto rankings, forms the elite population, which 
leverages NSGA-II’s strong search capabilities to explore other Pareto solution sets within the region and identify 
non-dominated solutions. The lower half, with poorer Pareto rankings, adopts the MOPSO algorithm for 
learning within the nonelite population. To prevent premature convergence caused by the MOPSO algorithm, 
individuals from the elite population are selected through roulette wheel selection as the global best for MOPSO.

Crowding-based dynamic crossover and mutation probability
Crossover and mutation operations in NSGA-II are essential for the exploration of the solution space by 
population individuals. However, traditional crossover and mutation operations are often blind. To better control 
the range of crossover and mutation within the population, a dynamic crossover and mutation probability 
based on population crowding and the number of evolutionary iterations is adopted to enhance population 
convergence. The specific improvements are as follows:

 
Pc =

{
Pcavg + Tmax−t

Tmax
∗ (Pc max − Pc min), d(i) < davg(i)

Pcavg, d(i) = davg(i)
Pcavg − t

Tmax
∗ (Pc max − Pc min), d(i) > davg(i)

 (11)

Fig. 5. Truss sections of steel truss stiffened girder.
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Pm =

{
Pmavg + Tmax−t

Tmax
∗ (Pm max − Pm min), d(i) < davg(i)

Pmavg, d(i) = davg(i)
Pmavg − t

Tmax
∗ (Pm max − Pm min), d(i) > davg(i)

 (12)

Here, Pcavg , Pcmax, Pcmin, Pmavg , Pmmax, and Pmmin represent the average, maximum, and minimum 
values of the crossover probability Pc and mutation probability Pmrespectively. t is the current iteration number, 
and Tmax is the maximum number of iterations. d(i) denotes the crowding distance of the ith individual, and 
davg(i) is the average crowding distance of the front to which the ith individual belongs.

Linear learning factor
Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart in 199536. In 2002, Coello et al.37 
applied the PSO algorithm to solve multi-objective optimization problems and proposed the multi-objective 
particle swarm optimization (MOPSO) algorithm. The position update equation and the velocity update 
equation are shown as follows:

 vid(t + 1) = wvid(t) + c1r1(pbestid(t) − xid(t)) + c2r2(gbestid(t) − xid(t)) (13)

 xid(t + 1) = xid(t) + vid(t + 1) (14)

where vid represents the velocity of the ith particle in the dth dimension; w is the inertia weight; pbestid denotes 
the personal best of the ith particle in the dth dimension, and gbestid represents the global best of the ith particle 
in the dth dimension; and xid is the position of the ith particle in the dth dimension. Additionally, c1 and c2 
are two learning factors, and  r1 and r2 are random numbers that are uniformly distributed between 0 and 1.

As shown in Eq. (13), the standard MOPSO uses fixed learning factors, which are not conducive to a global 
search for the optimal solution. Clerc and Kennedy38 pointed out that during the early stages of the algorithm, 
the individual learning factor c1 should be set to a larger value, while the social learning factor c2 should be set 
to a smaller value. This helps to expand the search range and increase the diversity of the population. In the later 
stages of the algorithm, when the number of iterations is large, c1 should be smaller, and c2 should be larger, 
which promotes local search and accelerates the convergence speed of the algorithm. On this basis, the learning 
factors are adjusted, and the improved iteration formula is as follows:

 

vi(k + 1) = wvi(k) + c1r1(pi(k) − xi(k)) + c2r2(xNSGA−IIr(k) − xi(k))
c1 = c1 max − (c1 max − c1 min) ∗ t

Tmax
c2 = c2 min + (c2 max − c2 min) ∗ t

Tmax
xi(k + 1) = xi(k) + vi(k + 1)

 (15)

In this formula, c1max, c1min, c2max, and c2min are the maximum and minimum values of the learning factors 
c1 and c2, respectively. xNSGA−IIr  is an individual randomly selected from the NSGA-II population.

Generation distance (GD)-based adaptive mutation strategy
Non-dominated sorting is performed on individuals obtained after NSGA-II’s genetic operations and MOPSO-
guided optimization, with individuals ranked as non-dominated level 1 containing the current optimal 
evolutionary information. However, both NSGA-II and MOPSO are prone to getting trapped in local optima, 
potentially leading to many similar individuals after several generations, which can prevent the algorithm 
from finding the optimal Pareto front. Therefore, mutation operations are applied to this subset of solutions to 
increase the ability of the population to escape local optima. Additionally, the dynamic changes in the group of 
level 1 non-dominated individuals are also important to monitor. GD is used to measure these changes, and the 
mutation scale is dynamically adjusted accordingly.

Polynomial mutation is used for mutation, where one dimension of the individual is randomly selected for 
mutation:

 xd
new = xd + (xd

U − xd
L)δ ∗ k (16)

where xd
U  and xd

L are the upper and lower bounds of the dth dimension of the individual, δ is the disturbance 
term, and k is the disturbance ratio coefficient. The disturbance term δ is calculated as follows:

 
δ =

{
(2r)

1
µ+1 −1

, r < 0.5
1 − [2(1 − r)]

1
µ+1 , r ≥ 0.5

 (17)

where r is a random number between 0 and 1, and µ is the mutation distribution index.
GD represents the Euclidean distance between the solutions in the evaluated solution set and the true Pareto 

front. To measure the dynamic change in the level 1 non-dominated group, the generation distance between 
the current generation and the previous generation is denoted as GD∗. The difference in GD∗ between two 
consecutive generations is denoted as ∆GD∗, and is given by:

 ∆GD∗(t) = GD∗(t) − GD∗(t − 1), t ≥ 4 (18)
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∆GD∗ can measure the convergence rate of the algorithm. When ∆GD∗ > 0, the algorithm converges quickly, 
so the mutation scale should be reduced to improve algorithm efficiency. When ∆GD∗ < 0, the mutation scale 
needs to be increased to enhance the convergence and diversity of the algorithm. The adjustment of the mutation 
scale is as follows:

 
Q(t + 1) =

{
round(0.75Q(t)), ∆GD∗(t) > 0

Q(t), ∆GD∗(t) = 0
round(1.25Q(t)), ∆GD∗(t) < 0

 (19)

where, round() denotes the rounding function, and Q(t) represents the mutation scale of the tth generation. When 
t = 1, 2, 3, Q(t) is equal to the current number of individuals with a non-dominated rank of 1. The flowchart of 
the proposed algorithm is shown in Fig. 6.

Performance evaluation of DPMOPSO
The ZDT1-4 and ZDT6 test functions from the ZDT series39 are selected to evaluate the performance of the 
proposed optimization algorithm. The ZDT5 function, which describes a deceptive problem, differs from 
the other test functions and is therefore not used in this study. Additionally, MOPSO, NSGA-II40, SMPSO41, 
MPSO/D42 and NSGA-III43 are selected as comparison algorithms. The inverted generational distance (IGD)44, 
hypervolume (HV)45, Spacing46 and Coverage47 are used as evaluation metrics for the algorithms. To ensure 
fairness in the comparison, the maximum number of iterations for each algorithm is set to 1000, and the 
population size is set to 200. The source code of the comparison algorithms used in this paper is provided by 
PlatEMO48.

Tables 1, 2, and 3 show the IGD, HV, and Spacing values of DPMOPSO and the comparison algorithms 
on the ZDT series test functions, with the optimal values highlighted in bold. From the three tables, it can 
be observed that DPMOPSO performs the best, achieving the optimal value for each performance evaluation 
metric, demonstrating the superiority of the proposed algorithm. Table 4 shows the Coverage values between the 
results obtained by DPMOPSO and the comparison algorithms. From the table, it can be seen that the solutions 
obtained by DPMOPSO completely cover those obtained by the comparison algorithms, further proving 
the superiority of the proposed algorithm. To more intuitively demonstrate the superiority of the proposed 

Function MOPSO SMPSO MPSO/D NSGA-II NSGA-III DPMOPSO

ZDT1 1.6665e+0 1.4153e+0 1.7126e+0 1.5695e+0 1.7595e+0 2.6588e−3

ZDT2 2.5506e+0 2.2137e+0 2.8613e+0 2.7382e+0 2.9672e+0 2.6875e−3

ZDT3 1.5094e+0 1.3158e+0 1.4342e+0 1.1929e+0 1.3940e+0 2.8077e−3

ZDT4 4.2616e+1 4.1884e+1 5.8814e+1 4.9059e+1 5.5870e+1 2.6530e−3

ZDT6 5.6434e+0 4.6610e+0 5.9292e+0 5.7420e+0 6.0796e+0 2.1962e−3

Table 1. IGD values of the DPMOPSO and the comparison algorithms on the test functions.

 

Fig. 6. Flowchart of the proposed algorithm.
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algorithm, a validation using the Pareto front simulation charts is also provided. Figures 7, 8, 9, 10, and 11 show 
the Pareto simulation fronts of DPMOPSO and the comparison algorithms on the ZDT series test functions. 
From these figures, it can be seen that only the results obtained by DPMOPSO coincide with the true Pareto 
front, while the results of the other comparison algorithms significantly deviate from the true Pareto front. This 
further confirms the conclusions drawn from Tables 1, 2, 3 and 4: the proposed DPMOPSO has a stronger ability 
to handle complex problems.

Fig. 7. Simulation results of DPMOPSO and comparison algorithms on ZDT1.

 

Algorithms Function

A B ZDT1 (%) ZDT2 (%) ZDT3 (%) ZDT4 (%) ZDT6 (%)

DPMOPSO

MOPSO 100.0 100.0 100.0 100.0 100.0

SMPSO 100.0 100.0 100.0 100.0 100.0

MPSO/D 100.0 100.0 100.0 100.0 100.0

NSGA-II 100.0 100.0 100.0 100.0 100.0

NSGA-III 100.0 100.0 100.0 100.0 100.0

Table 4. Coverage values of DPMOPSO and the comparison algorithms on the test functions (A ≽ B).

 

Function MOPSO SMPSO MPSO/D NSGA-II NSGA-III DPMOPSO

ZDT1 8.1588e−2 6.9726e−2 1.2769e−1 1.0655e−1 1.1064e−1 4.6289e−3

ZDT2 5.0312e−2 1.1288e−1 1.3586e−1 1.8090e−1 1.7973e−1 4.6052e−3

ZDT3 8.9926e−2 7.7011e−2 1.5653e−1 9.8925e−2 1.0729e−1 4.4646e−3

ZDT4 3.7087e+0 2.5247e+0 1.3283e+1 4.2966e+0 5.8576e+0 4.6115e−3

ZDT6 1.7991e−1 2.7853e−1 2.2518e−1 2.3541e−1 2.0191e−1 4.4356e−3

Table 3. Spacing values of DPMOPSO and the comparison algorithms on the test functions.

 

Function MOPSO SMPSO MPSO/D NSGA-II NSGA-III DPMOPSO

ZDT1 0.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 7.2174e−1

ZDT2 0.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 4.4627e−1

ZDT3 6.8110e−5 2.0782e−3 0.0000e+0 6.3706e−4 0.0000e+0 6.0037e−1

ZDT4 0.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 7.2178e−1

ZDT6 0.0000e+0 3.0307e−3 0.0000e+0 0.0000e+0 0.0000e+0 3.8964e−1

Table 2. HV values of DPMOPSO and the comparison algorithms on the test functions.
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Fig. 10. Simulation results of DPMOPSO and comparison algorithms on ZDT4.

 

Fig. 9. Simulation results of DPMOPSO and comparison algorithms on ZDT3.

 

Fig. 8. Simulation results of DPMOPSO and comparison algorithms on ZDT2.

 

Scientific Reports |        (2025) 15:22950 10| https://doi.org/10.1038/s41598-025-06392-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Case study
Description of the suspension bridge and FE model
The feasibility and effectiveness of the proposed optimization method were verified through the optimization 
design of a single-span steel truss suspension bridge with a total length of 660  m and width of 28  m, 
accommodating a two-way four-lane roadway. Table 5 lists the materials and properties used for each bridge 
component. Table 6 lists the fixed geometric and dimensional parameters of the bridge, with a distance of 8 m 
between adjacent hangers.

This example includes the 46 design variables mentioned in section “Design variables”. Table 7 lists the range 
of each design variable, estimated on the basis of similar bridges. Structural analysis was conducted via the 3D 

Variables Range Variables Range Variables Range Variables Range

W1(mm) [4000, 10000] W13(mm) [200, 800] T4(mm) [500, 2000] T16(mm) [5, 50]

W2(mm) [4000, 8000] W14(mm) [200, 800] T5(mm) [5, 50] T17(mm) [5, 50]

W3(mm) [4000, 8000] W15(mm) [200, 800] T6(mm) [5, 50] T18(mm) [5, 50]

W4(mm) [200, 800] W16(mm) [200, 800] T7(mm) [5, 50] T19(mm) [5, 50]

W5(mm) [200, 800] W17(mm) [200, 800] T8(mm) [5, 50] T20(mm) [5, 50]

W6(mm) [200, 800] W18(mm) [200, 800] T9(mm) [5, 50] T21(mm) [5, 50]

W7(mm)
W8(mm)
W9(mm)
W10(mm)
W11(mm)
W12(mm)

[200, 800]
[200, 800]
[200, 800]
[200, 800]
[200, 800]
[200, 800]

W19(mm)
W20(mm)
W21(mm)
T1(mm)
T2(mm)
T3(mm)

[200, 800]
[200, 800]
[200, 800]
[500, 2000]
[500, 2000]
[500, 2000]

T10(mm)
T11(mm)
T12(mm)
T13(mm)
T14(mm)
T15(mm)

[5, 50]
[5, 50]
[5, 50]
[5, 50]
[5, 50]
[5, 50]

T22(mm)
A1(mm2)
A2(mm2)
f/Lm

[5, 50]
[1e+5, 5e+5]
[1e+3, 5e+3]
[1/12, 1/8]

Table 7. Range of design variables.

 

Ll
a( m) 215 Lm( m) 660

Lr
a( m) 268 Hs( m) 4

Table 6. Fixed geometric parameters of the suspension bridge.

 

Component Material Elasticity Modulus (GPa) Density (103 kg/m3)

Stiffening girder Q345D steel 206 7.85

Pylon, cross beam C50 concrete 34.5 2.5

Main cable Parallel wire 206 7.85

Hanger Parallel wire 190 7.85

Table 5. Materials and properties of bridge components.

 

Fig. 11. Simulation results of DPMOPSO and comparison algorithms on ZDT6.

 

Scientific Reports |        (2025) 15:22950 11| https://doi.org/10.1038/s41598-025-06392-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


beam-truss model in the FE analysis software ANSYS. The FE model uses beam elements (Beam188) for the 
main girder, pylon, and transverse beam, and truss elements (Link10) for the cable system. Each FE model 
consists of 6219 beam elements and 330 truss elements, with a total of 3946 nodes.

Constraints
The constraints include strength and serviceability requirements, as specified below:

Strength requirements: The allowable stresses for the main cable and hanger are 708 MPa and 590 MPa, 
respectively; the allowable tensile and compressive stresses for the stiffening girder are 115  MPa; and the 
allowable stresses for the pylon and transverse beam are 32.4 MPa.

Serviceability requirements: The maximum allowable vertical deflection of the girder should be less than 
Lm/500, and the maximum displacement of the pylon should not exceed 1/800 of the total pylon height.

Parameter selection of the algorithms
The parameter settings for the proposed optimization algorithm in suspension bridge optimization are as follows: 
Np = Nr = 80, c1max = c2max = 2, c1min = c2min = 0.2, w = 0.8, Pcmax = 0.8, Pcmin = 0.4, Pmmax = 
0.2, Pmmin = 0.001, k = 0.1, and Tmax = 20.

In the suspension bridge optimization process, the parameters for MOPSO are set as follows: Np = Nr = 80, 
c1 = c2 = 1.1, w = 0.8, and Tmax = 20.

The parameter settings for NSGA-II are set as follows: Np = Nr = 80, Pc = 0.9, Pm = 0.1, and Tmax = 20.
Figure 12 presents the flowchart of the suspension bridge optimization process using the proposed DPMOPSO 

and coupled modeling.

Results and discussion
All the optimization processes were executed on an Intel Core i5-12490F, 3.00 GHz machine. DPMOPSO was 
used for multi-objective optimization of the suspension bridge, with MOPSO and NSGA-II as comparison 
algorithms. Using Spacing, Set Coverage, and Frontier Spread, a comprehensive evaluation was conducted on 
the solution sets obtained by the three algorithms49,50. Table 8 presents the computational time and the solution 
set comparisons for each algorithm.

As shown in Table 8, DPMOPSO requires the longest computation time because it has a greater complexity 
than do NSGA-II and MOPSO and requires more evaluations of the objective function. Since calculating the 
objective function requires FE analysis, which is the most time-consuming part of the optimization process, 

Algorithms Computation time (h) Spacing
Set coverage
(SC) Frontier spread (FS)

DPMOPSO 104.53 2.4884 × 105 1 / 1 5.6033 × 107

NSGA-II 79.96 3.0900 × 105 0 / 0.3333 5.2451 × 107

MOPSO 55.28 3.9389 × 105 0 / 0.9875 1.0005 × 107

Table 8. Comparison of the solution sets obtained by different algorithms.

 

Fig. 12. Flowchart of suspension bridge optimization program.
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DPMOPSO consequently takes more computation time. DPMOPSO outperforms the other two algorithms in 
terms of solution quality (distribution uniformity, dominance, and coverage).

Figure  13 shows the solutions obtained by the three algorithms after the optimization of the suspension 
bridge. This figure shows that although NSGA-II yields more solutions, most of them are dominated by the 
optimal solutions of the other two algorithms, indicating lower solution quality. The solutions obtained by 
DPMOPSO can dominate those obtained by the other two algorithms, indicating that its solution quality is the 
best. This further confirms the robust optimization capability of the proposed DPMOPSO.

Figure 14 shows a trend plot of the two objective functions (f1 and f2) after sorting the solutions obtained 
by the three algorithms in ascending order of f2. Here, the independent variable is the design scheme index; 
the dependent variable f1 represents the material cost, measured in yuan; and f2 is the safety factor, which is 
dimensionless.

Figure 14 shows that some design schemes incur higher material costs while achieving lower safety factors. 
To investigate the reasons behind this phenomenon and facilitate more rational suspension bridge design, the 
Lasso function51 is used to conduct elastic net regression, analyzing the impact of the selected design variables 
on the two objective functions. Figure 15 shows the degree of fit between the actual and predicted values of the 
objective functions (Fig. 15a represents objective function f1, and Fig. 15b represents objective function f2).

As shown in Fig. 15, both objective functions are well fitted. The R2 value for f1 is 0.9997, and for f2, it is 
0.9544, both greater than 0.9, which confirms the good fit of the objective functions. Thus, the impact of the 
design variables on the objective functions, as derived from this regression model, is reliable. Fig. 16 shows the 
influence of partial design variables on the objective functions, and Table 9 presents the 10 design variables with 
the greatest impact on the objective functions and the magnitude of their influence coefficients.

As shown in Table 9, increasing the sag-to-span ratio (f/Lm) results in the highest increase in material cost. 
The remaining design variables that have a positive impact on material cost, in descending order of influence 
coefficients, are the width of the lower chord web of the truss transverse beam (T14), the width of the upper 
horizonal link web of the truss (T20), and the width of the lower chord flange plate of the truss transverse beam 
(T13). On the other hand, increasing the width of the upper horizontal flange plate of the truss (T19) actually 
reduces the material cost of the bridge. For the bridge safety factor (f2), since this objective function is set to 
its negative value, a positive influence coefficient implies a negative effect on the function, whereas a negative 
influence coefficient implies a positive effect. Thus, from Table 9, it can be concluded that appropriately increasing 
the f/Lm is beneficial for enhancing the bridge’s safety factor. Other design variables with a positive impact on 
the bridge’s safety factor include the width of the lower chord flange plate of the truss transverse beam (T13), 
the width of the lower horizonal link web of the truss (T22), and the length of the upper chord web of the truss 

Fig. 13. The solutions for suspension bridge optimization.
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transverse beam (W4). The design variables with a negative impact on f2 include the width of the inner diagonal 
webs flange plate of the truss transverse beam (T17) and T19.

In summary, for a single-span steel truss suspension bridge with pylons of unequal heights, appropriately 
increasing the sag-to-span ratio can increase the bridge safety factor. Increasing the width of the lower chord 
flange plate of the truss transverse beam (T13) is the most economical way to improve the safety factor of the 
bridge. Although increasing the width of the upper horizontal flange plate of the truss (T19) can reduce the 
material cost, it also reduces the safety factor of the bridge.

Conclusion

 (1) The coupled method based on BP shape-finding and the traditional FE modeling strategy meets the re-
quirement of repeatedly generating FE models during the optimization process. Additionally, through 
shape-finding analysis of the suspension bridge case in this paper, it is demonstrated that the BP shape-find-
ing method is theoretically simple and highly computationally efficient.

 (2) By combining MOPSO and NSGA-II, a multi-objective particle swarm optimization method based on a 
dual-population coevolution strategy (DPMOPSO) was proposed. The performance of the proposed algo-
rithm was tested via the ZDT series of test functions. The test results indicate that the proposed DPMOPSO 
is a more robust multi-objective optimization algorithm.

 (3) DPMOPSO, MOPSO, and NSGA-II were each applied to the multi-objective optimization design of the 
suspension bridge case presented in this paper. The solutions obtained from the optimization process reveal 
that DPMOPSO achieved a solution set with higher quality. However, owing to the extensive improvements 
made to the proposed algorithm, the computational complexity increased, thereby increasing the computa-
tion time.

 (4) Elastic net regression analysis using the Lasso function on the solutions obtained from the multi-objec-
tive optimization of the suspension bridge indicates that appropriately increasing the sag-to-span ratio can 
increase the bridge’s safety factor. The most economical way to increase the safety factor is to increase the 
width of the lower chord flange plate of the truss transverse beam. Although increasing the width of the 
upper horizontal flange plate of the truss can reduce the material cost overall, it simultaneously decreases 
the safety factor of the bridge.

Fig. 14. The change trend of two objective functions.
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Fig. 15. The fitting of two objective functions.
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The data will be made available upon request and can be obtained by contacting first author Peiling Yang at 
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