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Gear-bearing drive systems often exhibit manufacturing and installation errors, which can significantly 
affect system performance, and longevity, and increase the probability of failures. This paper focuses 
on the reliability analysis of gear-bearing drive systems with uncertainties in system parameters such 
as gear backlash and bearing clearance, caused by gear and bearing manufacturing and installation 
errors. First, a dynamic model of the gear-bearing drive system, incorporating coupled dynamic 
meshing parameters, is established. Then, the deterministic dynamic model of the system is combined 
with the Chebyshev interval analysis method to develop a reliability analysis model for the gear-
bearing drive system with uncertain parameters. The study analyzes the variations in system natural 
frequencies and vibration responses due to gear quality and initial gear and bearing clearances at 
different deviation rates. The results indicate that at the same rotational speed and deviation rate, 
the initial bearing clearance has a more significant impact on the system’s dynamic characteristics 
compared to the initial gear clearance. At different rotational speeds and the same deviation rate, 
system reliability decreases with increasing average initial interference of the bearing at low speeds. At 
high speeds, a large bearing clearance deviation may cause abnormal fluctuations in system vibration. 
This method provides a prioritization of parameter control for the structural optimization and design of 
gear-bearing systems.
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The power systems of aircraft1–3, vehicles4, wind turbines5, and ships6 are all complex rotating mechanical systems 
that involve numerous uncertain internal and external factors. With the increasing performance demands on 
rotating machinery, there are higher requirements for the manufacturing precision and assembly clearances of 
transmission components such as gears and bearings7.

The dynamic analysis of gear-bearing transmission systems inherently involves internal parameter 
uncertainties arising from limitations in manufacturing precision and unavoidable assembly errors. These 
uncertainties, particularly those associated with gear backlash and bearing clearance, directly govern system 
performance and operational reliability. Consequently, investigating the dynamic characteristics of such systems 
under uncertain gear backlash and bearing clearance conditions holds critical importance for understanding 
nonlinear vibration mechanisms, predicting failure modes, and optimizing tolerance design to mitigate 
performance degradation.

At present, a substantial body of research has been conducted by numerous scholars on the uncertainty issues 
in gear transmission systems. According to the employed methodologies, the models can generally be categorized 
into three types: probabilistic models, fuzzy models, and interval models. Among them, probabilistic models, 
which are based on probability theory and statistics, are widely applied in cases involving material parameter 
fluctuations and random vibrations due to their well-established theoretical framework and clear probabilistic 
interpretation8–10. Yu11 employed a PC-Kriging adaptive algorithm to analyze the reliability of thermo-structural-
dynamic coupled systems, addressing the high-temperature failure issues in aero-engine gear-rotor systems. 
Hajnayeb et al.12 proposed the use of power spectral density and frequency response functions to study the 
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effects of various random manufacturing errors on the vibration response of bearings. Feng et al.13 adopted an 
extended interval stochastic method to analyze the interval natural frequencies of systems with mixed uncertain 
parameters. Onur Can Kalay14 et al. proposed a one-dimensional convolutional neural network (1-D CNN) 
model for gear systems with cracks and tooth asymmetry. Probabilistic models have also been widely used to 
investigate uncertainties in wind turbine gear systems15–18. However, stochastic models typically require a large 
amount of experimental data for support. Fuzzy models19, based on fuzzy mathematical analysis, are another type 
of uncertainty quantification method. They offer advantages such as not relying on probability distributions and 
exhibiting strong flexibility. Jing20 employed a genetic fuzzy immune PID algorithm to tune immune parameters 
for controlling system responses. Zhao21 applied a fuzzy comprehensive evaluation method to determine the 
optimal combination of processing parameters for non-circular gears. Gu22 developed an integrated gear fault 
diagnosis model by combining a Hidden Markov Model (HMM) with a fuzzy evaluation model. However, fuzzy 
models are generally not well-suited for systems involving multiple uncertain parameters. Both probabilistic 
and fuzzy models tend to have high computational complexity. In scenarios where data are scarce23 or rapid 
evaluation of transmission system robustness is required24, interval models are more suitable.

Interval models, which are characterized by low information requirements, high computational efficiency, and 
strong robustness assurance, have been widely applied by researchers in the uncertainty analysis of gear systems. 
Wu25 was the first to combine interval analysis with multibody dynamics, proposing an interval algorithm based 
on Chebyshev polynomial function approximation. Due to its rapid convergence and compatibility with various 
dynamic models, this interval method has since been applied by scholars to efficiently evaluate uncertainty in 
dynamic engineering problems. Subsequently, Wei26–28 was the first to introduce the Chebyshev interval analysis 
method into gear dynamics, demonstrating its feasibility through both numerical simulations and experimental 
validation. The study revealed that even small variations in certain uncertain parameters within a limited range 
can lead to significant uncertainty in system responses. Hu29 proposed a multi-degree-of-freedom nonlinear 
dynamic model of a spur gear system with misalignment uncertainty, based on Chebyshev polynomial function 
approximation. Zhao30 combined interval and stochastic analysis to develop a hybrid interval uncertainty 
structural dynamic analysis method. Guerine, A31 introduced a method based on polynomial chaos projection 
to evaluate the uncertainty in the dynamic response of gear systems. Guo32 proposed a method based on 
polynomial chaos expansion (PCE) to analyze the uncertainty in gear manufacturing errors. Beyaoui, M33 
developed a computational approach to assess the robustness of wind turbine gearbox system responses while 
considering uncertainties in wind direction and blade pitch angle. Wu34 used PCE to model the uncertainties 
in mesh stiffness, bearing stiffness, and damping parameters of a double-helical gear–bearing system. Wei et 
al.35 studied the dynamic response of gear transmission systems with uncertainties in mass, mesh stiffness, and 
support stiffness using an interval analysis method based on Chebyshev inclusion functions. Yuhang Hu et 
al.29 also adopted the Chebyshev inclusion function approach to analyze misalignment uncertainties in multi-
degree-of-freedom gear systems. Chao-Fu36 combined PCE with polynomial surrogate analysis (PSA) to address 
hybrid aleatory and epistemic uncertainties in transmission systems. Bel-Mabrouk37 proposed a polynomial 
chaos-based approach to study aerodynamic parameter uncertainties in bevel gear systems. Najib38 investigated 
the effect of static transmission error uncertainty, caused by gear manufacturing deviations, on the dynamic 
response of gear systems. In summary, previous studies have mainly focused on the application of interval 
analysis methods to parameter uncertainties in gear systems. However, the uncertainty associated with gear 
backlash and bearing clearance in gear–bearing transmission systems has not yet been adequately addressed.

The objective of this study is to propose a reliability analysis method for gear–bearing transmission systems 
considering gear manufacturing and installation errors. By integrating the Chebyshev interval analysis method 
with a gear transmission system dynamic model that incorporates coupled dynamic meshing parameters, the 
interval estimation of the inherent characteristics and vibration responses of a gear–bearing transmission system 
is investigated under uncertainties in gear mass, initial gear backlash, and initial bearing clearance. The proposed 
method is applicable for evaluating the dynamic behavior of gear transmission systems when uncertainties in 
gear backlash and bearing clearance are present.

The motivation of this paper is to propose a reliability analysis method for gear-bearing transmission systems 
that accounts for gear manufacturing and installation errors. By integrating the Chebyshev interval analysis 
method with a dynamic model of the gear transmission system that incorporates coupled dynamic meshing 
parameters, the paper achieves interval estimation of the inherent characteristics and vibration responses of 
the gear-bearing transmission system under uncertainties in gear quality, initial gear clearance, and initial 
bearing clearance. This method is suitable for evaluating the interval variations in dynamic characteristics of 
gear transmission systems when the ranges of certain uncertain parameters are known.

The remainder of this paper is organized as follows. In the second section, a dynamic model of the gear-
bearing drive system has been established, considering dynamic meshing parameters. Then, in the third section, 
a modeling method for gear-bearing drive systems based on the Chebyshev interval analysis method has been 
developed, and the relevant formulas have been derived. In the fourth section, the uncertainty of the system’s 
natural frequencies under uncertain mass parameters has been calculated and analyzed. Finally, in the fifth 
section, the variation ranges of gear meshing parameters, gear backlash, and bearing clearance have been 
analyzed under different initial gear and bearing clearances.

Dynamic modeling of gear-bearing systems
In practical engineering, factors such as manufacturing precision and assembly errors lead to uncertainties in 
the initial gear backlash, gear mass, and initial bearing clearance within gear-bearing drive systems. However, 
these parameters are constrained within specific ranges according to design guidelines. Due to the presence of 
numerous nonlinear factors in the system, even slight variations in parameters can have a significant impact 
on the system. Therefore, these uncertainties are essential considerations in the dynamic modeling of gear-
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bearing drive systems. To more clearly analyze the dynamic characteristics of gear-bearing drive systems, this 
paper introduces a reliability analysis modeling method for gear-bearing drive systems based on the Chebyshev 
interval analysis method.

First, a dynamic model with deterministic parameters is established for the gear-bearing transmission system, 
focusing on the coupled relative positions of gears, dynamic gear backlash, and dynamic bearing clearance. It is 
assumed that the gear system moves only within a plane, and all gears are treated as rigid discs39. Changes in the 
relative positions of the gears affect the meshing force.

The variation in the geometric positional relationship of the gear-bearing transmission system at adjacent 
moments is shown in Fig.  1. At the previous moment, the mass centers are denoted as G1and G2, and the 
geometric centers of the system are denoted as O1 and O2. At the subsequent moment, the geometric centers 
change to C1 (xp, yp)C1 (xp, yp) and C2 (xg, yg). At this point, the relative position of the gears changes, 
resulting in alterations in the center distance L, deflection angle β, and engagement angle α.

	 L =
√

(L0 + xg − xp)2 + (yg − yp)2� (1)

	 β = tan−1 [(yg − yp)/(L0 + xg − xp)]� (2)

	 α = cos−1(rbp + rbg)/L� (3)

where L0 represents the original center distance, rb represents the base circle radius, and ra represents the 
addendum circle radius. Subscripts p and g denote the driving and driven gears, respectively.

Each gear can be represented by three generalized coordinates, x, y and θz . Considering factors such as 
gravity and torque, the equations of motion for the gear-bearing system are established and expressed as Eq. (4).

	 Msq̈s + Csq̇s = Fw + Fm + FT g − F s
b � (4)

The mass matrix is expressed asMs.

	

Ms =




mp 0 0 0 0 0
0 mp 0 0 0 0
0 0 Jp 0 0 0
0 0 0 mg 0 0
0 0 0 0 mg 0
0 0 0 0 0 Jg


� (5)

where mp, Jp, mg , and Jg  represent the masses and moments of inertia of the input and output gears, respectively. 
T﻿he damping matrix Csis denoted as Eq. (6).

	 Cs = diag (cx1 , cy1 , 0, cx2 , cy2 , 0)� (6)

The terms F s
b , FT g , Fw , and Fm on the right-hand side of Eq.  (4) are expressed as Eq.  (7) through (10), 

respectively.

	 F s
b = diag (Fbx1 , Fby1 , 0, Fbx2 , Fby2 , 0)� (7)

	 FT g = [ 0 −mpg Tp 0 −mgg −Tg ]T� (8)

	
Fw =

[
mpρp

.

θ2
zp

cos φp mpρpθ2
zp

sin φp 0 mgρgθ2
zg

cos φg −mgρgθ2
zg

sin φg 0
]T

� (9)

Fig. 1.  Schematic diagram of the positional relationship of the system at previous and subsequent moments.
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Fm = −Fd

m
[

∂Fd
m

∂xp

∂Fd
m

∂yp

∂Fd
m

∂θzp

∂Fd
m

∂xg

∂Fd
m

∂yg

∂Fd
m

∂θzg

]T
� (10)

Among them, the gear meshing force on the tooth surface can be expressed by Eq. (11). Ball bearings are used 
to support the gear system and are simplified into a bearing model with time-varying clearance. The specific 
expression is given in Eq. (12).

	

Fd
m = F k

md + F c
md =





kd
m [δd − b (t)] + cd

m

[
.

δd −
.

b (t)
]

0
kd

m [δd + b (t)] + cd
m

[
.

δd +
.

b (t)
]

δd > b (t)
|δd| ⩽ b (t)
δd ⩽ −b (t)

� (11)

	

[
Fbxi

Fbyi

]∣∣∣
i=1,2

= Kbear

Nb∑
k=1

δ
3/2
k H (xicosθk + yi sin θk − δ0)

[ cos θk

sin θk

]
, (k = 1, 2, · · · , Nb)� (12)

In Eq. (11), kd
m represents the time-varying meshing stiffness of the gear, calculated using the potential energy 

method40,41 during coupled gear vibration. The calculation method of gear meshing stiffness based on dynamic 
meshing parameters can be derived from Eq. (1) to (3) in combination with the potential energy method. The 
damping ratio cd

m, dynamic transmission error δd, and half tooth side clearance b (t) are represented by Equations 
(13) through (15), respectively. Where ξm is the damping coefficient, Jp and Jg  represent the moments of inertia 
of the driving and driven gears, respectively, ea denotes the static transmission error magnitude, ωp is the 
angular velocity of the driving gear, and b0 is the initial half tooth side clearance. In Eq. (12), Kbearis the Hertz 
contact stiffness of each ball. H (·)serves as the criterion for deter-mining the contact between each ball and the 
bearing. H (x) = 1 (x ⩾ 0)indicates that the kth roller is engaged with the raceway, and H (x) = 0 (x < 0) 
indicates that the kth roller is disengaged from the raceway. δ0 represents the initial bearing clearance, and Nb 
denotes the number of rolling elements.

	 δd = (xp − xg) sin (α − β) + (yp − yg) cos (α − β) + rbpθzp − rbgθzg − ea sin (ωpZpt)� (13)

	
cd

m = 2ξm

√
kd

mJpJg

(
Jgr2

bp + JpRr2
bg

)
� (14)

	 b (t) = b0 + (rbp + rbg) [(tan (α) − α) − (tan (α0) − α0)]� (15)

Reliability analysis model of the gear-bearing transmission system
For cognitive uncertainties such as manufacturing and installation defects, conducting extensive experiments42 
or statistical analysis is both time-consuming and labor-intensive. This paper employs the Chebyshev interval 
analysis method, which is computationally convenient and applicable to various dynamic models43. These 
uncertainties can be described using vectors⇀

κ = (κ1, κ2, κ3, . . . , κm).

	 κi =
[
κi, κi

]
=

{
κi| κi ⩽ κi ⩽ κi

}
, i = 1, · · ·, m� (16)

The objective function of the gear system can be represented using Chebyshev polynomial fitting.

	
f(κ) ≈ pk (κ) = θ0 +

k∑
i1=0

· · ·
k∑

im=0

θi1...im κi1
1 · · · κim

m = Qφ� (17)

	
θi1,i2,...ik =

( 2
m

)k
m∑

j1=1

....

m∑
jk=1

f (cos φj1 , ..., cos φjk ) cos i1φj1 ... cos i1φjk � (18)

	
φi = arccos

(
2κi −

(
κi + κi

)
κi − κi

)
= [0, π]� (19)

Here, ψ represents the rearranged Chebyshev polynomial coefficient matrix, Q is the matrix constructed from 
the values of interpolation points corresponding to n uncertain parameters, and pi​ contains the function values 
at the interpolation points.

	 ψ =
(
QT Q

)−1
QT P � (20)

where,
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Q =




1 ζ1 (κ1) · · · ζp (κ1)
...

...
...

1 ζ1 (κn) · · · ζp (κn)




n∗ (m+k)!
m!k!

� (21)

	 P = [p1,p2, ..., pn]T � (22)

	
ζp

(
⇀
κ

)
=

(
κk

1 , κk−1
1 κ2, κk−1

1 κ3, · · · , κk
m

)T
� (23)

Since Eq. (19) has explicit upper and lower bounds, the boundaries of Equation can be approximately equivalent 
to Eqs. (24) and (25).

	
f
−

(κ) = f(0,···,0) −
∑k

i1=0

∑k

ii=0
|f(κ(i1)

1 , · · ·, κ(ir)
r )|� (24)

	
f̄(κ) = f(0,···,0) +

∑k

i1=0

∑k

ii=0
|f(κ(i1)

1 , · · ·, κ(ir)
r )|� (25)

To systematically evaluate the reliability of gear-bearing transmission systems under manufacturing and 
installation uncertainties, this section proposes a hybrid analytical framework integrating deterministic dynamic 
modeling with Chebyshev interval analysis. The methodology shown in Fig. 2 follows a rigorous four-phase 
workflow:

Fig. 2.  Flowchart for the analysis of gear-bearing transmission systems based on the Chebyshev interval 
analysis method.
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(1) Deterministic System Characterization.
A dynamic model of the gear-bearing transmission system is established, as detailed in Sect. 2, incorporating 

critical deterministic parameters such as the geometric configurations of gear pairs and bearings, material 
properties, and operational load conditions.

(2) Uncertainty Quantification.
Key stochastic parameters are identified through manufacturing tolerance analysis, including variations in 

gear mass, ranges of initial gear backlash, and tolerance intervals of initial bearing clearance. Each parameter is 
quantified with its respective variation domain.

(3) Chebyshev Surrogate Modeling.
Interval analysis is conducted by evaluating the system’s dynamic response using the Chebyshev interval 

method. This approach enables the numerical determination of bounds for system characteristics, such as 
natural frequency intervals, vibration response envelopes, and critical dynamic thresholds.

(4) Reliability analysis.
The reliability of the system is assessed by evaluating the extent to which different uncertain parameters 

influence its dynamic behavior. This analysis identifies priority control parameters that necessitate stringent 
tolerance management during manufacturing and installation processes, such as backlash-sensitive gear 
components, mass-critical gear elements, and clearance-dependent bearing assemblies.

The gear-bearing transmission system can be simplified into a schematic of a single-stage gear transmission 
system, as shown in Fig. 3. Assuming fluctuating input and output torques for the gears, the single-stage gear 
system is equivalent to rigid disks connected by a time-varying stiffness spring and a time-varying damper. Both 
the driving and driven gears are considered as lumped mass elements. The specific model parameters of the 
system are listed in Table 1.

Physical parameters Variable Value

Number of teeth of wheel Zp ,Zg 20

Modulus (mm) m 30

Elastic modulus (Gpa) E 206

Standard pressure angle (°) α0 20

Tooth width (mm) B 22

Standard center distance (mm) L0 200

Static transmission error (µm) ea 20

Mass of wheel(kg) mp ,mg 6.57

Moment of inertia (kg ∗ m2) Jp ,Jg 0.0365

Damping factor ξm 0.07

Torque average(N/m) To1 ,To2 300

Torque amplitude(N/m) Ta1 ,Ta2 100

Initial half tooth clearance measurement (µm) b0 50

Gravitational acceleration (N/m2) g 9.85

Standard contact ratio mp 1.557

Inner circle radius (mm) ri 10

Outer circle radius (mm) ro 23.5

Bearing widths (mm) B 14

Number of balls Nb 10

Bearing damping (N ∗ s/m) cb 512.64

Hertz contact stiffness (N/m) Kb 2*10^8

Table 1.  Parameters of the Gear-Bearing system Model.

 

Fig. 3.  Schematic diagram of the gear-bearing transmission system structure.
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Analysis of system natural frequencies with parameter uncertainty
This section focuses on the impact of mass uncertainty caused by gear manufacturing errors on the natural 
frequencies of the system. It is assumed that the center of mass is the geometric center of the gear. For the gear-
bearing transmission system with parameters listed in Table 1, the first five natural frequencies of the system 
with deterministic parameters are calculated and presented in Table 2.

Figure 4 shows the fluctuation curves of the first, third, and fifth-order natural frequencies of the system with 
respect to the deviation rate when the driving gear mass parameter is considered uncertain. It also depicts the 
fluctuation curves of their upper and lower bounds with respect to the deviation rate. From Figs. 4 (a), (c), and 
(e), it can be observed that these natural frequencies exhibit a positive correlation with the deviation rate of the 
uncertain parameter. Figures 4 (b), (d), and (f) reveal that, under the same deviation coefficient, the fifth-order 
natural frequency f5 is most sensitive to the variation of the parameter, followed by the third-order natural 
frequency f3. Additionally, the fluctuation of the upper and lower bounds of the fifth-order natural frequency 
is highly symmetric.

Analysis of system vibration response under parameter uncertainty
It is well known that controlling gear clearance and bearing clearance during the design, manufacturing, and 
installation of gears is crucial to ensure the stability and reliability of the gear-bearing transmission system 
during operation. Assuming the bearing clearance is based on the clearance between the rolling balls and the 
bearing outer ring, where the clearance is zero when they are in contact, and ignoring the deformation of the 
bearing; the variation in gear clearance is described by changes in the half-tooth side clearance. This section 
investigates the impact of clearance uncertainty on system response by varying the initial bearing clearance and 
initial gear clearance.

Analysis of system vibration response with uncertainty in initial gear clearance
In this subsection, to investigate the impact of the deviation rate of gear clearance on the reliability of the gear-
bearing transmission system, it is assumed that the driving gear speed and initial gear clearance are given as 
r = 1000 rad/min and b0 = 50µm, respectively. The deviation rates are categorized into seven groups, with 
the maximum upper and lower limits being 20%. The time-varying states of meshing parameters such as center 
distance, pressure angle, and deflection angle, as well as the interval ranges of the meshing parameters, are shown 
on the left and right sides of Fig. 5. The time-varying states of gear clearance and bearing clearance, along with 
their interval ranges with deviation rates, are shown on the left and right sides of Fig. 6, respectively.

From the meshing parameter variation curves and interval fluctuation ranges shown in Fig.  5, it can be 
observed that: when the initial gear clearance varies from 0 to 20%, the changes in meshing parameters such 
as center distance, pressure angle, and deflection angle are relatively small. However, their average fluctuation 
amplitudes are within the upper and lower boundary ranges.

From the curves of gear and bearing clearances over time and their average value ranges shown in Fig. 6, 
the following observations can be made: In Figure (a), it is evident that the gear clearance exhibits noticeable 
variations with different initial gear clearances. Figure (c) describes the change in clearance between a particular 
rolling ball and the bearing outer ring, showing that the bearing clearance gradually increases from zero to 
its maximum value and then decreases back to zero. This reflects the rolling ball moving away from and then 
approaching the bearing outer ring until they make contact, with the entire process exhibiting fluctuating 
behavior. Figures (b) and (d) illustrate that the impact on gear clearance is significant and increases linearly.

Analysis of system vibration response with uncertainty in initial bearing clearance
In this subsection, to investigate the impact of the deviation rate of the bearing initial clearance on the reliability 
of the gear-bearing transmission system, it is assumed that the midpoint value of the bearing initial clearance is 
30 µm. Two cases of driving gear speeds are considered: 1000 rad/min and 4000 rad/min. Seven sets of variations 
are made, with the upper and lower deviation rates having a maximum limit of 20%. The time-varying states of 
the gear-bearing system parameters such as center distance, pressure angle, and deflection angle, as well as the 
interval ranges of the meshing parameters, are shown in the left and right sides of Fig. 7. The time-varying states 
of the gear clearance and bearing clearance and their interval ranges with the deviation rates are shown in the 
left and right sides of Fig. 8, respectively.

From the curves and interval fluctuation ranges of meshing parameters shown in Fig. 7, it can be observed 
that: as the initial gear clearance varies from 0 to 20%, the changes in meshing parameters such as center distance, 
pressure angle, and deflection angle are relatively large. Additionally, the average value fluctuation ranges show 
a linear increase.

Physical parameters Variable Value (Hz)

First-order f1 537.63

Second-order f2 620.92

Third-order f3 2223.98

Fourth-order f4 2776.85

Fifth-order f5 3634.98

Table 2.  Natural frequencies of the transmission system.
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From Fig.  8, the time-varying curves and average value ranges of gear and bearing clearances reveal the 
following: In Figure (a), it is evident that the gear clearance shows noticeable changes with different initial gear 
clearances. Figure (c) describes the variation in the clearance between a ball and the bearing outer ring, showing 
that the bearing clearance increases from zero to a maximum and then decreases back to zero, indicating the ball 
moving progressively away from and then towards the bearing outer ring until contact is made, with the entire 
process exhibiting fluctuations. Figures (b) and (d) illustrate that the bearing clearance increases from 71 µm 
to 76 µm and the gear clearance increases from 83.5 µm to 84.5 µm, with the bearing clearance showing a more 
significant increase.

In Figs. 9 and 10, the variation in the time-varying states and average values of gear meshing parameters, as 
well as gear and bearing clearances, are illustrated for a gear rotational speed of 4000 rad/min, showing how they 
change with different deviation rates.
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the deviation rate
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Fig. 4.  When m1 is an interval uncertainty parameter, the curves of natural frequency variation with respect 
to the deviation coefficient and the corresponding interval fluctuation range.
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From the variation curves and range of fluctuations of the meshing parameters shown in Fig. 9, it can be 
observed that when the gear initial clearance varies within the range of 0–15%, the trends of parameters such as 
center distance, pressure angle, and deflection angle are similar. However, there are significant differences when 
the deviation rate reaches 20%. The average values of these parameters all show a linear increase. Compared 
to gear clearance, the impact of bearing initial clearance on the system is more pronounced under the same 
deviation rate conditions.

From Fig.  10, the time-varying curves and average value ranges of gear clearance and bearing clearance 
clearly show that: In Figures (a) and (c), it is evident that both gear clearance and bearing clearance exhibit 
significant changes with different deviation rates. The trend of bearing clearance remains consistent with 
previous observations. Figures (b) and (d) illustrate that bearing clearance increases from 71.2 µm to 76.1 µm 
and gear clearance increases from 83.9 µm to 84.9 µm, both showing a linear increase. Compared to the trends 
observed at 1000 rad/min, there are notable changes in the fluctuation trends of gear meshing parameters and 
gear clearance, with both gear and bearing clearances showing increased average values.

To validate the effectiveness and practicality of the proposed method, we performed a comparative analysis 
using the model parameters and results reported in References39. Figure 11(a) compares the displacement of the 
driving wheel obtained from our dynamic model with that from the literature. Figure 11(b) shows the theoretical 
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the pressure angle
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Fig. 5.  Variation curves and average value ranges of gear meshing parameters with deviation coefficient when 
b0 is an interval uncertainty parameter.
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response alongside the literature results for gear backlash varying within 50 μm ± 20%, and Fig. 11(c) presents a 
close-up of the region highlighted in Fig. 11(b). As shown in Fig. 11, our computed results closely match those 
reported in the literature. Moreover, the uncertainty analysis indicates that variations in gear backlash have a 
minimal effect on system behavior, and all literature values fall within our calculated interval bounds.

Conclusions
This paper has proposed a reliability analysis model for gear–bearing transmission systems based on Chebyshev 
interval analysis methods, aiming to reveal the impact characteristics of manufacturing and installation errors 
on the dynamic properties of gear systems. First, the dynamic model of the uncertain gear–bearing system has 
been formulated as a differential equation with uncertain parameters. Next, Chebyshev interval analysis has 
been incorporated, and numerical integration methods have been used to solve for the target function values. 
The effects of uncertain gear mass, initial gear backlash, and initial bearing clearance on system reliability have 
been studied. The main conclusions are as follows:

	1.	 When the mass of the driving wheel is an uncertain parameter, the fifth-order natural frequency is most 
sensitive to fluctuations under the same deviation rate, and the upper and lower bounds of the fifth-order 
natural frequency exhibit highly symmetrical fluctuation patterns.

	2.	 Under identical rotational speeds and deviation ratios, the initial bearing clearance demonstrates greater 
influence on the vibrational characteristics of the proposed gear–bearing transmission system compared to 
the initial gear backlash.

	3.	 Significant variations emerge in the temporal response patterns of the system under identical bearing initial 
clearance deviation ratios at different rotational speeds. At specified low-speed conditions, dynamic reliabil-
ity decreases with increasing initial mean clearance deviations. However, nonlinear interactions arising from 
clearance-dependent contact transitions (engagement/disengagement states) induce anomalous vibration 
oscillations at high-speed operations with excessive bearing initial clearance deviation ratios.

This systematic approach bridges theoretical modeling with practical engineering applications. The results 
of this analysis can be used to optimize the design and maintenance of gear–bearing systems by considering 
uncertainties such as gear manufacturing errors and bearing clearance. In practice, the findings can guide 
engineers in determining optimal tolerance allocations, improving the reliability of gear–bearing systems, 
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Fig. 6.  Variation curves and interval fluctuation ranges of gear and bearing clearances with uncertainty 
parameter b0.
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and minimizing the risk of performance degradation or failure under uncertain operational conditions. By 
integrating this model into the design phase, manufacturers can ensure better performance and longevity of gear 
systems, particularly in applications where precision and reliability are critical, such as in automotive, aerospace, 
and industrial machinery.
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Fig. 7.  Variation of gear meshing parameters with δ0 at 1000 rad/min for the driving gear.
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(a) The fluctuation curve of gear clearance (b) The range of average variation in gear 

clearance

(c) Variation curve of bearing clearance (d) Variation range of the average bearing 

clearance

5% 10% 15% 20%
Deviation ratio

8

8.2

8.4

8.6

In
cr

em
en

t o
f d

yn
am

ic
 c

le
ar

an
ce

(m
) 10-5

Lower bound Upper bound

5% 10% 15% 20%
Deviation ratio

6

6.4

6.8

7.2

7.6

In
cr

em
en

t o
f B

ea
ri

ng
 c

le
ar

an
ce

(m
) 10-5

Lower bound Upper bound

Fig. 8.  Variation curves and interval fluctuation ranges of gear and bearing clearances with uncertainty 
parameter δ0.
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(a) Fluctuation curve of center distance (b) Range of mean amplitude variation of 

venter distance
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Fig. 9.  Variation of gear meshing parameters with δ0 at 4000 rad/min for the driving gear.
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(a) The fluctuation curve of gear clearance (b) The range of average variation in gear 

clearance

(c) Variation curve of bearing clearance (d) Variation range of the average bearing 

clearance
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Fig. 10.  Variation of gear clearance and bearing clearance with δ0 at 1000 rad/min for the driving gear.
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