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Predicting blastocyst formation poses significant challenges in reproductive medicine and critically 
influences clinical decision-making regarding extended embryo culture. While previous research 
has primarily focused on determining whether an IVF cycle can produce at least one blastocyst, less 
attention has been given to quantifying blastocyst yields. This study aims to develop and validate 
such a quantitative predictive tool for IVF cycles. We employed three machine learning models—SVM, 
LightGBM, and XGBoost—which demonstrated comparable performance and outperformed traditional 
linear regression models (R2: 0.673–0.676 vs. 0.587, Mean absolute error: 0.793–0.809 vs. 0.943). 
Ultimately, LightGBM emerged as the optimal model, due to utilizing fewer features (8 vs. 10–11 in 
SVM/XGBoost) and offering superior interpretability. We then stratified predictions and actual yields 
into three categories (0, 1–2, and ≥ 3 blastocysts) to evaluate the model’s discriminative performance. 
In this multi-classification task, LightGBM demonstrated robust accuracy (0.675–0.71) with fair-to-
moderate agreement (kappa coefficients: 0.365–0.5) across both the overall cohort and poor-prognosis 
subgroups. Feature importance analysis identified three critical predictors: the number of extended 
culture embryos, the mean cell number on Day 3, and the proportion of 8-cell embryos. By leveraging 
the potential of machine learning, this research provides clinicians with valuable insights for making 
individualized decisions regarding extended embryo culture.
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In vitro fertilization-embryo transfer (IVF-ET) has transformed the landscape of infertility treatment, offering 
hope to millions of couples worldwide. Advances in culture conditions have increasingly supported extending 
embryo culture to Day 5 or 6 (blastocyst stage), rather than the conventional Day 2 or 3 (cleavage stage), in an 
effort to enhance the live birth rates1. However, this strategy also raises concerns about the reduction in available 
embryos2 and its further impact on the cumulative success rate of each IVF cycle3,4 due to suboptimal culture 
conditions in vitro. Consequently, despite the potential benefits of extended culture, its overall safety and efficacy 
warrant careful scrutiny5.

To enhance the safety, some broad recommendations have been offered: American Society for Reproductive 
Medicine (ASRM) supports blastocyst culture for good-prognosis patients2and National Collaborating Centre 
for and Children’s (NICE) advocates cleavage-stage transfer for patients with limited embryos6. However, these 
recommendations focus on singular or narrowly defined factors. There is a wide variation (0-100%) in blastocyst 
formation rates among patients7which heightens the risk of losing potentially viable embryos. In practice, 
multiple patient-specific prognostic elements must be evaluated simultaneously. There is a clear clinical need 
for a cycle-based model to predict blastocyst yield, which would support individualized risk-benefit assessments 
and enhance the understanding of patient heterogeneity, ultimately improving the precision of extended embryo 
culture strategies.

Existing cycle-based models have been limited to binary prediction of complete culture failure810. These 
tools overlook the availability of surplus embryos after transferring a viable blastocyst, an essential consideration 
when determining whether to pursue extended embryo culture1.Although few studies have identified several 
potential determinants of blastocyst yield (e.g., oocyte number, day-3 embryo quality) using traditional statistical 
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methods11,12complex interactions among these parameters may limit the predictive accuracy of such models. 
Machine learning, known for its ability to capture nonlinear relationships13has not yet been applied to blastocyst 
yield prediction. To address this gap, we aimed to develop and internally validate machine learning models to 
quantitatively predict blastocyst yields.

We set out to create models that are clinically acceptable in performance, methodologically transparent, 
and reliable for supporting decisions on extended embryo culture. Following the TRIPOD + AI guidelines for 
clinical prediction model reporting14we analyzed over 9,000 IVF/intracytoplasmic sperm injection (ICSI) cycles 
using a structured and transparent methodology. Potential clinical predictors were incorporated to establish the 
initial feature set, and the dataset was randomly split into training and testing subsets. We trained three machine 
learning models alongside a baseline linear regression model using backward feature selection, iteratively 
removing the least informative features from the maximal set. Internal validation was performed on the testing 
set with multiple performance metrics to assess robustness in our center.

Results
Dataset characteristics
A total of 9,649 cycles were included in our dataset, of which 3,927 (40.7%) produced no usable blastocysts, 
3,633 (37.7%) yielded one or two usable blastocysts, and 2,089 cycles (21.6%) resulted in three or more usable 
blastocysts. This dataset was randomly split into training and test sets (see Methods). Potential features and 
cycle-based outcome for both sets are summarized in Table 1.

Model evaluation
We performed model-RFE analysis to identify the optimal feature subset and compare the performance of the 
models (Fig. 1). The RFE results showed that all models maintained stable performance with 8 to 21 features. 
A sharp decline in R2 values occurred during the final phase of feature selection, when the number of features 
reduced to 6 or fewer. The MAE curves followed a similar trend. Table 2 provides a comparative summary of the 
optimal performance metrics across all models.

The three machine learning models had remarkably similar patterns, achieving optimal performance with 
approximately 8 to 11 features, reaching R2 values of 0.67–0.68 and MAE values of 0.79–0.81. In contrast, the 
linear regression model consistently underperformed, with an R2 of 0.59 and an MAE of 0.94. Among the three 
machine learning models with comparable performance, LightGBM was selected as the preferred choice due to 
its use of fewer features (8 versus 10–11 for SVM and XGBoost), which reduces overfitting risk and enhances 
simplicity for clinical application. It also offers greater interpretability than the complex kernel transformations 
used in SVM. Overall, LightGBM provides the best balance of accuracy, practicality and interpretability, making 
it well-suited for clinical decision support.

Subgroup characteristics by blastocyst yield
Given that poor prognosis patients face more urgent decision-making dilemmas during extended culture due to 
inherently lower blastocyst yields, we focused our subgroup analysis in this population. Figure 2 illustrates the 
three-class distribution of predicted versus actual blastocyst yields (0, 1–2, and ≥ 3 blastocysts) in the overall test 
sets and specific subgroups, with confusion matrices presented as bar plots. In the overall cohort, the predicted 
yields are noticeably skewed in favor of the actual yields. However, in the subgroups, this trend varies when 
actual yields are ≥ 3, as predictions tend to fall into the lower categories (0 and 1–2), suggesting that the model 
may underestimate yields in these subgroups. Fortunately, the proportion of actual yields ≥ 3 is relatively low 
in these subgroups, at 13.4% for advanced maternal age, 8.3% for poor embryo morphology, and 2.5% for low 
embryo count, compared to 21.6% in the overall test sets.

Table 3 presents the comprehensive evaluation metrics of our model on three-class classification. For the 
overall cohort, it achieved an accuracy of 0.678 and a Kappa coefficient of 0.5. When compared to the overall 
cohort, the three subgroups exhibited small variation in accuracy, ranging from 0.675 to 0.71, while the Kappa 
coefficients showed a decrease, ranging from 0.365 to 0.472. Additionally, F1(0) scores increased, whereas the F1 
scores for the 1–2 and ≥ 3 blastocyst cases declined.

Model interpretation
Feature importance analysis revealed the primary predictors of blastocyst yiled (Fig. 3A). The LightGBM model 
identified eight key features, with the number of extended culture embryos emerging as the most critical predictor 
(61.5%). Other predictors included Day 3 embryo-related metrics: mean cell number (10.1%), the proportion 
of 8-cell embryos (10.0%), the proportion of symmetry (4.4%), and mean fragmentation (2.7%), while Day 
2 characteristics—the proportion of 4-cell embryos (7.1%)—also contributed substantially. Demographic and 
treatment-related factors, including female age (2.4%) and the number of 2PN embryos (1.7%), demonstrated 
relatively lower importance in predicting blastocyst development.

Individual conditional expectation (ICE) and partial dependence plots (Fig.  3B) elucidated how the top 
six features modulated model predictions. The number of extended culture embryos, mean cell number (D3), 
proportion of 8-cell embryos (D3), proportion of symmetry (D3), and proportion of 4-cell embryos (D2) 
positively influenced blastocyst yield, while fragmentation negatively impacted it. Although these general trends 
were evident, substantial variability in individual predictions at specific feature values underscores that blastocyst 
yield results from a complex interplay of multiple factors rather than being determined by a single predictor.
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Discussion
In this study, we developed machine learning models to quantitatively predict blastocyst yields in IVF cycles, 
demonstrating that machine learning algorithms significantly outperformed traditional linear regression. 
LightGBM emerged as the most effective model, achieving superior predictive performance with fewer features 
and offering enhanced interpretability compared to other models. We also identified the number of embryos in 
extended culture and early embryo morphology contributed substantially to the prediction of blastocyst yield. 
Our research provides a cycle-level perspective for personalized decision-making regarding embryo culture 
strategies, differing from previous tools that focused on binary predictions for individual embryo 1518 or per 
cycle 810.

Characteristic Training set Test set

Cycles, n 6756 2893

Female age, year 33.5 ± 5.2 33.5 ± 5.2

Male age, year 35.9 ± 6.2 35.9 ± 6.1

BMI, kg/m2 21.6 ± 2.9 21.8 ± 2.9

Infertility type

Primary 36.7% 37.6%

Secondary 63.3% 62.4%

Infertility cause

Female tubal factors 59.9% 59.1%

Other female factors (with or without tubal involvement) 11.7% 13.2%

Male factors 16.1% 14.9%

Combined factors 5.2% 5.2%

Unexplained causes 7.0% 7.5%

Stimulation protocol

Agonist 43.5% 43.0%

Antagonist 43.4% 44.1%

Minimal stimulation 9.5% 9.6%

Others 3.6% 3.2%

Total gonadotropin dose, IU 2153.0 ± 881.6 2174.2 ± 893.7

Stimulation duration, day 10.1 ± 2.4 10.2 ± 2.5

Number of oocytes retrieved 11.9 ± 6.6 12.0 ± 6.7

Fertilization method

IVF 74.7% 75.2%

ICSI 13.9% 13.2%

IVF + ICSI 7.0% 7.4%

PESA/TESA 4.4% 4.2%

Number of 2PN embryos 7.4 ± 4.4 7.5 ± 4.4

Number of extended culture embryos 5.2 ± 3.8 5.3 ± 3.8

Embryo proportion, per cycle

4-cell (D2) 0.38 ± 0.30 0.37 ± 0.30

> 4-cell (D2) 0.29 ± 0.28 0.30 ± 0.28

8-cell (D3) 0.14 ± 0.21 0.14 ± 0.21

> 8-cell (D3) 0.23 ± 0.28 0.24 ± 0.28

< 10%-fragmentation (D3) 0.44 ± 0.37 0.45 ± 0.37

symmetry (D3) 0.77 ± 0.28 0.76 ± 0.28

Mean cell number (D2), per cycle 3.9 ± 0.9 4.0 ± 0.9

Mean cell number (D3), per cycle 6.9 ± 1.6 6.9 ± 1.6

Mean fragmentation (D3), per cycle 10.1 ± 4.7 9.9 ± 4.7

Outcome

Blastocyst yield, per cycle 1.5 ± 2.0 1.5 ± 2.0

Proportion of cycles without a usable blastocyst 40.5% 41.1%

Proportion of cycle with 1–2 usable blastocyst 37.8% 37.3%

Proportion of cycle with 3 or more usable blastocysts 21.7% 21.6%

Table 1.  Patient and cycle characteristics. BMI, body mass index; IVF, in vitro fertilization; ICSI, 
intracytoplasmic sperm injection; PESA, percutaneous epididymal sperm aspiration; TESA, testicular sperm 
aspiration; PN, pronuclei; D2, day 2 after fertilization; D3, day 3 after fertilization.
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The standard evaluation across multiple models and the use of explainable approach here, address critical 
gaps in prior studies11,12,19and align with recent methodological recommendations14,20,21. Establishing statistical 
associations11,12does not imply the ability to make generalized predictions; therefore, evidence for prediction 
requires testing the model on data separate from that used to estimate its parameters22. While summing 
individual embryo probabilities, as suggested by Jiang et al., can also estimate blastocyst yield, this indirect 

Models Feature R2 MAE RMSE

Linear regression 8 0.587 0.943 1.26

SVM 10 0.676 0.793 1.12

Lightgbm 8 0.675 0.813 1.12

XGBoost 11 0.673 0.809 1.12

Table 2.  Performance of models. MAE, mean absolute error; RMSE, root mean square error.

 

Fig. 1.  Performance comparison of machine learning models using recursive feature elimination (RFE). The 
figure illustrates the impact of RFE on model performance across four machine learning algorithms: Light 
Gradient Boosting Machine (LightGBM), Linear Regression (LR), Support Vector Machine (SVM), and 
Extreme Gradient Boosting (XGBoost). Features are systematically eliminated from 21 down to 2. The top 
panel presents the test R2 (coefficient of determination), where higher values indicate better model fit, while 
the bottom panel displays the test Mean Absolute Error (MAE), where lower values represent better prediction 
accuracy.
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mapping approach fails to identify key factors and struggles to fully utilize features that have been shown to have 
independent effects in cycle-level binary predictions, such as the proportion of high-quality embryos and female 
age8,9. This methodological shift not only enhanced performance but also provides biological insights, which are 
significant for health workers in applications23.

Regarding optimal model selection, various levels of assessment exist. First and foremost, accuracy is crucial; a 
method lacking accuracy is irrelevant, even if it is easy to understand24. Machine learning’s superior performance 
highlights the limitations of traditional linear regression in capturing complex, non-linear interactions inherent 
to blastocyst development25. Moreover, the close performance among LightGBM, XGBoost, and SVM suggests 
that we may be approaching the theoretical prediction limit with the current feature set. Further improvements 
of predictive accuracy may require the identification of novel predictors.

For high-performing models, we then focus on their interpretability– a critical ethical consideration in 
IVF practice21. For clinicians, using decision support without the underlying factors driving those decisions 
is difficult. Fewer biomarkers in treatment guidelines enhance clinicians’ comprehension, making the number 

Groups Accuracy Kappa F1(0) F1(1–2) F1( > = 3)

All cohort 0.678 0.500 0.738 0.589 0.722

Age > = 35 0.696 0.472 0.790 0.545 0.673

Number of embryos < = 4 0.710 0.365 0.802 0.543 0.140

No good embryos 0.675 0.396 0.771 0.560 0.478

Table 3.  Model performance metrics across the overall cohort and subgroups.

 

Fig. 2.  Distribution of predicted versus actual blastocyst yields in bins across the overall cohort and subgroups. 
The confusion matrices visualized as bar plots show the relationship between predicted and actual blastocyst 
yields (0, 1–2, and ≥ 3) for the overall cohort and three clinical subgroups. The plots illustrate the class 
imbalance and prediction patterns across different clinical scenarios, with notably skewed distributions in 
adverse subgroups.
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Fig. 3.  Feature importance and partial dependence analysis using LightGBM. (A) The bar plot reveals the 
relative importance of features in the LightGBM model, with values quantifying each feature’s proportional 
contribution to the model’s predictive performance. (B) Individual conditional expectation and partial 
dependence plots illustrate the nuanced effects of the top six features on blastocyst yields. Thirty gray lines 
track the prediction trajectories of 30 samples, illustrating how predictions dynamically shift as a specific 
feature varies while other features remain constant. The red line delineates the mean effect across all samples, 
providing a comprehensive view of each feature’s impact on model predictions.
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of variables a key factor in assessing a method’s interpretability24,26. The understandability of methods is also a 
key aspect of explainability24. While both tree-based models, such as LightGBM, and kernel-based models, like 
SVM, can visualize their decision-making processes, SVMs tend to be less intuitive and harder to comprehend 
raising concerns about their visualizations27. LightGBM, which utilizes fewer features and is relatively easy to 
understand, strikes a balance between performance and interpretability, which is supported by a recent study 
predicting the number of oocytes retrieved28.

Our interpretability analysis provides a global view on the cohort using importance ranking and also instance-
level explanations through ICE plots26. Importance ranking revealed the number of embryos for extended 
culture as the primary predictor of blastocyst yield. This highlights the importance of having an adequate 
number of embryos to optimize extended culture outcomes, a key focus of previous studies and guidelines aimed 
at avoiding extended culture failure6,29. However, other previously recognized predictors such as 2PN embryos11 
and oocyte yield11,12did not emerge as significant factors in our model. Their strong correlation with the number 
of embryos for extended culture (r: 0.76–0.84) suggests they may influence blastocyst yield indirectly, with this 
number acting as a mediating factor.

Interestingly, partial independency plots revealed that blastocyst yields progressively increased with higher 
mean cell numbers in Day 3 embryos, even beyond the eight-cell stage. This finding highlights the developmental 
advantage of rapid-cleaving embryos during in vitro culture, consistent with prior studies30,31and warrants 
further investigation. Additionally, the proportion of four-cell embryos on Day 2 emerged as an independent 
predictor, aligning with recent research32,33. These findings suggest that current assessment protocols may 
undervalue early developmental kinetics34.

ICE plots provide natural direct effects by holding confounders other than exposures constant to isolate the 
effects caused by changes in exposure35. We observed that single-feature interventions elicit varied responses 
across individuals. For instance, increasing the number of embryos for extended culture to five resulted in 
predicted blastocyst yields ranging from 0 to 3 across cycles. Such variability underscores the importance 
of personalized interventions in clinical practice, moving beyond single-feature threshold approaches. 
Understanding the complex interplay of multiple factors is crucial for guiding future policy development and 
research directions.

The subgroup analysis revealed variations in our predictive model for clinically complex cases. While 
accuracy remained stable (68-71%), predictive consistency declined (kappa: 0.37–0.50). In the “low embryo 
numbers” subgroup, the model performed poorly in predicting cycles with ≥ 3 blastocysts (F1 score = 0.14) 
but achieved a high F1 score (0.8) in the 0-blastocyst category. This aligns with Bayes’ theory, which indicates 
that false alarm rates are high for events with low baseline occurrence rates (≥ 3 blastocysts account for only 
2.5%, while 0 blastocysts account for 61.6%). Overall, due to the severe class imbalance in the subgroups, the 
model primarily demonstrates binary classification capabilities and struggles with nuanced high or low yield 
predictions. However, since having ≥ 3 blastocysts in subgroups is a clinically rare event, this does not undermine 
the model’s utility.

This study also has several limitations. The single-center retrospective design and the lack of evaluation on an 
independent external cohort may constrain the robustness of the model. Furthermore, the non-all-blastocyst-
culture policy at our center introduced an inherent selection bias: by transferring or freezing the highest-quality 
embryos on Day 3, the remaining embryos available for extended culture were likely of lower developmental 
potential. This practice may have led to an underestimation of actual blastocyst yield compared to settings 
that pursue whole-cohort blastocyst culture. As a result, our dataset reflects only a subset of clinical workflows 
3638. Future prospective studies including all embryos produced would help develop more comprehensive and 
generalizable prediction models.

Despite these limitations, our study represents an important step toward personalized reproductive 
medicine by providing a quantitative framework for predicting blastocyst yields and identifying key biological 
determinants. Note that our framework is intended as a proof-of-concept, demonstrating that quantitative 
blastocyst yield prediction is feasible through tailored model development based on local clinical practices. 
By supporting individualized clinical decision-making and patient counseling, this approach may help reduce 
psychological stress associated with uncertainty in IVF outcomes. Moving forward, efforts to validate and refine 
this model across diverse clinical settings, including centers employing full-cohort blastocyst culture or using 
time-lapse technologies, will be essential. Additionally, integrating dynamic morphokinetic data and molecular 
biomarkers into predictive models could further enhance their accuracy and clinical applicability.

Methods
Study subjects
A retrospective study was conducted at the Center for Reproductive Medicine, Nanfang Hospital, Southern 
Medical University, China, between January 2016 and May 2022. The study was approved by the Institutional 
Review Board of Nanfang Hospital, as authorized by the Ethical Committee (approval number: NFEC-2024-
326). Informed consent was waived due to the use of non-identifiable patient records.

The inclusion criteria were as follows: (1) Autologous IVF/ICSI cycles performed at our center without 
egg or sperm donation; (2) Cycles with embryos undergoing extended culture to day 5/6; (3) No restrictions 
on patient characteristics (e.g., female age), ovarian stimulation protocols (conventional antagonist, agonist, 
or other unconventional regimens), and gamete states (fresh or frozen). The exclusion criteria included: (1) 
Cycles recorded with missing blastulation outcomes; (2) Cycles that contained an exceptionally high number of 
embryos in extended culture (> 20). We initially collected a total of 9,857 blastocyst culture cycles. After applying 
exclusion criteria, we removed 128 cycles with incomplete outcome labels and 80 cycles with an unusually high 
number of embryos. Our final dataset included 9,649 cycles.
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Treatment procedures
Most patients underwent personalized ovarian stimulation protocols using standard agonist or antagonist 
regimens, while a few received alternative stimulation approaches, such as minimal stimulation, individualized 
based on patient-specific characteristics including age, antral follicle count, menstrual cycle, body mass index 
(BMI), and anticipated ovarian response. Ovarian stimulation typically began between the 2nd and 5th days 
of the menstrual cycle or during the luteal phase. Patients received 75–375 IU of gonadotropin daily during 
the ovarian stimulation process. Recombinant FSH or urinary hMG (human menopausal gonadotropin) was 
administered for gonadotropin stimulation. The initial dosage was maintained for 4 days and then adjusted based 
on the patient’s follicular growth response and serum E2 levels. For antagonist protocols, GnRH antagonists 
were flexibly administered until the trigger day. Final oocyte maturation was triggered when at least one follicle 
reached 18 mm in diameter, using intramuscular human chorionic gonadotropin (hCG: 2000–10000 IU, Livzen, 
China; or 250 µg, Ovidrel, Merck-Serono, Switzerland), with or without Triptorelin (0.2 mg, Decapeptyl, Ferring, 
Switzerland). Oocyte retrieval occurred 34–36  h post-hCG administration under transvaginal ultrasound 
guidance.

Both conventional IVF and ICSI were employed as primary fertilization techniques. For a few patients with 
severe male factor infertility, percutaneous epididymal sperm aspiration or testicular sperm aspiration were 
additionally utilized to retrieve sperm for subsequent fertilization. Following insemination, oocytes were cultured 
in pre-equilibrated cleavage medium under mineral oil in incubators maintained at 37 °C, 6% CO2, and 5% O2 in 
a humidified atmosphere. On Day 3, the top embryos (with 73% being the top 1–2) was selected for fresh transfer 
or cryopreservation and the remaining embryos were extended cultured in blastocyst medium under the same 
conditions. This non-all-blastocyst-culture strategy aims to avoid having no embryos for transfer after a failed 
extended culture. Embryo development was monitored according to the Istanbul consensus timelines34with 
detailed records of cell number, fragmentation, and blastomere symmetry on Day 2 and 3. According to the 
Istanbul consensus, a good day-3 embryo was defined as having 8 equally-sized, mononucleated blastomeres 
with less than 10% fragmentation. Blastocyst formation was defined by the development of viable embryos 
suitable for transfer or cryopreservation. Usable blastocysts were classified as those embryos achieving a Gardner 
score of ≥ 3BC on Day 5 or 6. Blastocyst yield was calculated as the total number of usable blastocysts per cycle.

Feature selection
A comprehensive set of 21 features were selected from the database based on three criteria: (1) temporal relevance 
– only data collected before extended culture initiation were included; (2) literature-based predictors – twelve 
established factors such as female age, fertilization method, number of extended culture embryos8infertility 
cause, number of oocytes retrieved, and number of normally fertilized oocytes (2 pronuclei;11 were incorporated. 
Additionally, Day 3 embryo properties (e.g. proportion of 8-cell and > 8-cell embryos, mean cell number, 
proportion of < 10% fragmentation rate, mean fragmentation and proportion of symmetry) were included11,19; 
(3) expert-driven parameters – nine clinically relevant features such as patient demographics (male age, BMI, 
infertility type), stimulation protocols, total gonadotropin dosage, stimulation duration, and Day 2 embryo 
characteristics (e.g. proportion of 4-cell embryos, proportion of > 4-cell embryos and mean cell number) were 
selected.

Missing data were addressed through imputation methods, with mean imputation applied to continuous 
variables (e.g., female age, BMI) and mode imputation for categorical variables (e.g., fertilization method, 
stimulation protocol). All included variables demonstrated missing rates below 5%. Detailed definitions of the 
included features are provided in Supplementary Table S1, and Pearson correlation coefficients among numerical 
variables are shown in Supplementary Figure S1.

Recursive Feature Elimination (RFE), a wrapper-based feature selection method39was applied to enhance 
model performance and reduce dimensionality. RFE was conducted independently for each model, beginning 
with the full set of features. Feature importance was iteratively assessed, and the least significant features were 
systematically removed until only two features remained. Performance metrics for each model were recorded 
at each iteration across feature subsets of varying sizes. The optimal feature subset was identified by balancing 
model performance and feature parsimony. The highest R-squared (R2) value achieved across all feature subsets 
was first identified, and a tolerance threshold of 0.005 below this maximum was applied. Among all the feature 
subsets meeting this criterion, the one containing the fewest features was selected as optimal. This approach 
ensured the selection of a minimal feature set while maintaining near-optimal performance.

Model development
For model development, the dataset was randomly split into training (70%) and test (30%) sets, with the test 
set held out during training to ensure unbiased performance evaluation. Three machine learning models – 
Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM) and Xtreme Gradient Boosting 
(XGBoost) – were evaluated alongside a linear regression baseline to capture linear and non-linear relationships, 
handle feature interactions, and mitigate overfitting.

Hyperparameter optimization was performed using grid search with 5-fold cross-validation40. The training 
set was divided into five equal parts, with four used for training and one for validation in each iteration. This 
process was repeated five times, allowing each subset to serve as validation data once. Performance metrics 
were averaged across all iterations, providing reliable hyperparameter evaluation and reduced overfitting risks. 
After each feature reduction in RFE, optimal hyperparameters were re-searched to ensure the best model 
performance with the updated feature set. The optimal hyperparameter configurations for each model, along 
with the corresponding optimal feature set, are detailed in Supplementary Table 2. Following optimization, each 
model was retrained on the full training set using the identified optimal hyperparameters and feature subset. 
Model performance was then assessed on the held-out test set to evaluate the generalization capacity.
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Model evaluation
All analyses were performed using R Statistical Software (v4.4.1, RStudio 2023.9.1). Regression performance 
was measured using R2, mean absolute error (MAE), and root mean square error (RMSE). R2 quantifies the 
proportion of variance in the dependent variable explained by the model, with values ranging from 0 to 1, where 
higher values indicate better model performance. MAE represents the average absolute difference between 
predicted and actual values, with lower MAE indicating greater accuracy. RMSE, calculated as the square root 
of the mean squared differences between predicted and actual values, penalizes larger errors more heavily than 
MAE, making it more sensitive to outliers.

After consulting two experienced clinicians, it was determined that considering blastocyst yield in ranges, 
rather than as precise numbers, holds greater practical significance. Consequently, the predict values of the 
target variable were discretized into bins, resulting in a three-category system (0, 1–2, and ≥ 3 blastocysts). The 
three-class classification was evaluated using multiple metrics, including accuracy, Cohen’s kappa coefficient, 
and F1 scores. Accuracy reflects the proportion of correct predictions out of the total predictions made, with 
values ranging from 0 to 1, where higher values indicating better performance. However, as accuracy can be 
misleading in cases of imbalanced class distributions, Cohen’s kappa coefficient and class-specific F1 scores were 
also employed to provide a more comprehensive evaluation. Cohen’s kappa measures the level of agreement 
between predicted and actual categories while a numbering for the possibility of agreement occurring by chance. 
Kappa values range from − 1 to 1 and are interpreted as follows: >0.80 as excellent, 0.61–0.80 good, 0.41–0.60 
moderate, 0.21–0.40 fair, 0-0.20 poor, and < 0 worse than random. The F1 score, ranging from 0 to 1, reflects the 
balance between precision and recall. It provides a harmonic mean of these two metrics, offering insight into the 
model’s performance across different classes. F1 scores above 0.9 are considered excellent, those above 0.8 very 
good, and scores exceeding 0.7 are deemed good. Class-specific F1 scores were calculated to assess performance 
across individual categories.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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