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Despite the advent of advanced molecular prognostic tools, it is still difficult to predict the course 
of disease for cancer patients at the individual level. This lack of predictability is also reflected in 
many experimental cancer model systems, begging the question of whether certain biological 
aspects of cancer (eg. growth, evolution etc.) can ever be anticipated or if there remains an inherent 
unpredictability to cancer, similar to other complex biological systems. We demonstrate by a 
combination of agent-based mathematical modelling, analysis of patient-derived xenograft model 
systems from multiple cancer types, and in-vitro culture that certain conditions increase stochasticity 
of the clonal landscape of cancer growth. Our findings indicate that under those conditions, the 
cancer genome may behave as a complex dynamic system, making its long-term evolution inherently 
unpredictable.

In 1993, Donald S. Coffey hypothesized that cancer is an ‘abrupt’ and ‘emergent’ phenomenon caused by the 
transformation of the cell proliferation machinery from an ordered to a disordered, albeit self-organizing state1. 
The prevalent somatic mutation theory stating that near-random DNA lesions combined with disease-specific 
selection cause cancer still indicates a failure to grasp Coffey’s vision of using the self-organizing features of 
cancer to identify unifying aspects across malignancies2–4. With the advent of precision cancer medicine, major 
efforts are now being made to characterize the broad spectrum of genetic variation across individual tumors. This 
has resulted in a fine-tuned associative prognostication of many neoplasms and in identification of treatment 
targets based on molecular signatures. However, in many cases, the remaining threat of a relapse at an unknown 
time point, often manifesting as treatment-resistant aggressive disease, reminds us that cancer shares features of 
resilience with many other self-organizing systems. Cancer’s relapse mechanisms have been thoroughly studied 
through the lens of genetic diversity, elucidating how tumors evolve along different evolutionary trajectories5 and 
how resistant clones often appear due to excessive evolutionary branching early in disease, leading to dormant 
tumor cell populations with a potential to clonally sweep at later stages6,7. Despite the massive amount of data 
thus accumulated on the molecular routes of relapse, it remains an essentially unpredictable phenomenon. 
However, as inferred by Coffey decades earlier, cancer is not a purely stochastic phenomenon. Instead, it results 
from runaway tissue homeostasis, transitioning into a complex, dynamic, and adaptive system. This notion 
begs the question whether we can use generic knowledge from other complex systems to better understand 
tumorigenesis.

The generalized logistic model (with the Gompertz curve being a special case) is a commonly used construct 
for simulating spatially constricted (bounded) growth of species/cell populations, and it is often used to 
emulate solid tumor growth8–10. Several comparative studies analyzing in-vivo tumor growth have established 
the suitability of logistic functions in tumor growth estimation10,11. Additionally, logistic functions have been 
used to illustrate clonal selection and genetic drift in solid tumors in silico12. Simulations have shown that the 
evolutionary trajectories of cancers are highly dependent on how cell populations grow and how they interact 
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with the stromal boundary13. Recently it was shown that radiological estimates from merely three distinct time-
points can reliably predict the growth dynamics (based on logistic growth) of some solid tumors14. However, 
whether the logistic function as a mechanism for tumor growth can reliably predict emergent clonal geographies 
in tumorigenesis remains yet to be explored. Here, we probe this question with a focus on the predictability of 
mutational landscapes.

Results
In his seminal work on chaotic oscillations in dynamic systems, James A. Yorke showed that a self-repeating 
process, with a periodicity of three or more, experiences chaotic fluctuations. This was exemplified by the 
logistic function15, which is a sigmoidal curve with a periodically oscillating slope (Fig. 1A). Robert May further 
demonstrated how chaotic fluctuations could appear as a function of logistic growth in a bifurcation diagram16 
(Fig. 1B), presenting how a function can assume more than one value near its asymptotes (orbits).
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To investigate the potential for non-linear variations in the clonal composition of proliferating cancer cells, 
we conducted computational modeling predicated on the hypothesis that neoplasms, before the onset of the 
latest clonal expansion, originate from a genetically homogeneous cell population, hereinafter designated as 
ancestor cells. These ancestor cells underwent clonal expansion adhering to certain parameters (i.e., a growth 
rate governed by cell division and death rates, the rate of acquiring mutations at each cell division, and the 
probability of a mutation to be a driver mutation), which were set at initiation and remained unchanged, purely 
for the sake of simplicity. The selective advantages provided by a random mutation were sourced from the 
deleteriousness scores provided by the COSMIC database (detailed in Methods)17 and the maximum number of 
cells at the end of the simulation was fixed. To monitor clonal landscapes at the end of simulations, we focused 
on how the cells underwent genetic diversification due to variations in simulation parameters, making them 
genetically distant progenies of the ancestors. All the cells at the end of each simulation were clustered according 
to the number of acquired mutations, and the least mutated cluster was considered to represent the most recent 
common ancestors. With this, we arrive at a simple measure of the percentage of ancestors remaining at the end 
of a simulation run. We evaluated the change in the percentage of the remaining ancestors against varying initial 
conditions to observe possible indications of dynamic oscillation.

With each simulation cycle, mutations were drawn at random from a set of known somatic mutations (see 
Methods). Using fixed initial conditions, we evaluated whether genetic diversification remained predictable, 
given certain mutation parameters. Keeping the growth rate unchanged, we first varied the probability of 
acquiring a mutation at each cell division between 0.01 and 0.04 (Fig.  1C)12. Growth rates were affected by 
mutation rate, mutation type and mutation accumulation all of which conferred changes in cellular fitness. 
We also observed a nonlinear monotonically decreasing relationship between the percentage of ancestors and 
an increasing mutation rate. The fraction of the remaining ancestors at the end of the simulation varied on 
average between 92% (low mutation rate) and 36% (high mutation rate, calculated over 100 simulation runs). 
However, the relationship between the median number of mutations and growth rate was less straightforward. 
Mutation acquisition seemed to undergo a punctuated step-like increment (Fig. 1D). Clear jumps in median 
mutation accumulation were observed near logistic growth rates (r) 3.0 and 3.4, indicating rapid changes in the 
distribution of mutation accumulation at certain growth rates. Indeed, the jumps in mutation accumulation 
corresponded to the classic bifurcation diagram of the logistic function (Fig. 1B)16, when plotting the percentage 
of the remaining ancestor against the growth rate (Fig. 1E). It’s crucial to emphasize that these metrics aren’t 
interchangeably interpreted and the stochasticity or lack thereof in the observed MRCA proportion depends on 
initial conditions of the model parameter. A faster growth rate resulted in a markedly heterogeneous mutational 
landscape compared to a slower growth rate (Fig.  1F). The shape of the bifurcation diagram thus describes 
unpredictable behavior, i.e. a one-to-many solution of the logistic map at the asymptotes, as the growth constant 
increases over a certain threshold. In our simulations, this was observed at a growth rate above 3.0. This led us 
to conclude that unpredictable growth (at least in this case) is a biologically emergent feature that can occur in 
tumors following logistic growth above a certain rate.

Talkington and Durett evaluated in vivo growth characteristics of several cancer cell lines and found that 
numerous cell lines at least partly resemble logistic (specifically, Gompertzian) growth11. Some of the earliest 
investigations on in vitro growth experiments have also pointed towards a similar pattern18,19. However, the 
extent to which fast logistic growth occurs in tumors in vivo remains unclear.

To evaluate whether fast-growing tumors with a potentially unpredictable clonal evolution exist, we assessed 
how often logistic growth is observed across in vivo model systems in situations simulating relapse by implantation 
of a limited tumor population. Pediatric cancers are well known to have much higher growth rates than adult 
cancers. Neuroblastoma (NB) and Wilms tumor (WT) are two of the most common solid pediatric tumors, 
and high-risk NB and WT are notorious for their rapid growth. We estimated growth rates from previously 
published data on untreated patient-derived xenografts (PDX) derived from NB and WT5,20–23. For comparison 
with adult tumors (i.e., slow growers)24, we also evaluated uninhibited growth of several lung and breast cancer 
cell lines. Strikingly, 43% of the evaluated NB PDXs abided to logistic growth (73% of growth rates were more 
than 3.0, with a median of 10.0), considerably above the bifurcation limit of 3.0 (Supplementary Tables 2,3,5), 

Fig. 1.  Simulation of tumor evolution and growth dynamics. (A) Interpretation of the classical shape of a 
logistic growth curve. (B) Classical orbit diagram of logistic curve (logistic map) 16. (C) Change in percentage 
of remaining MRCA (most recent common ancestors) cells was plotted against increasing mutation rate. 
Examples were overlayed at the estimated mean calculated with 100 simulation runs. Confidence interval 
with shaded overlay depicts 3σ limit. Please note the reversed axes. (D) Average number of total distinct 
mutations at the end of simulation is plotted against growth rates (r). All estimates are calculated over 100 
separate runs. As the logistic map experiences chaotic fluctuations starting at r = 3.0, the x-axis is terminated 
at 4.0 with adequate variability depicted in the range (confidence interval depicts 3σ limit). (E) Cell growth 
rate was plotted against percentage of remaining ancestors at the end of simulations, grey section indicates 
r < 3.0, calculated by taking average; black section indicates 3.0 < r < 3.5, calculated by cluster centroids; red 
section indicates r > 3.5 where all estimates are plotted. (F) Three replicates of simulation are shown for 
growth rates (r) 1.0 and 3.0 to draw attention to the fact that higher ‘r’ results in markedly different mutational 
pattern compared to that in lower ‘r’. The colors in each simulation indicate a cluster of clonal cells. (G) Tumor 
growth data in mouse models are depicted; red: logistic growth and green: did not fit to logistic function. NB: 
neuroblastoma 21, WT: Wilms tumor (KT-47 sample, Murphy et. al.); LC: lung cancer (H441 cell line); BC: 
breast cancer (MCF7 cell line). (H) Box plots of growth rates of data shown in (1-G) plotted across cancer 
types. ‘X’ signifies the mean.
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whereas 75% of the WT PDXs showed logistic growth (all growth rates over 3.0) with a median growth rate 
of 31.0 (Fig. 1G,H; Supplementary Table 6). In PDXs from the H441 lung cancer and MCF7 breast cancer cell 
lines, 71% and 78%, respectively, experienced logistic growth, but none over 3.0 (Supplementary Tables 7,8). The 
median growth rates were only 1.13 and 0.9, respectively, far below that for chaotic fluctuations. In addition to 
patient-derived models, we also evaluated the growth of two lineages of the NB SK-N-BE(2)C cell line (referred 
as BE cell line hereinafter) in vitro, with median growth rates of 5.0 and 4.0, respectively (Supplementary Table 
4). When combined, the growth rates from all NB replicates had a median of 6.0, and those from WT replicates 
a median of 24.0. All but one breast cancer replicate that adhered to logistic growth had growth rates below 3.0, 
with a median of 0.99 and that for lung cancer replicates was 0.68, none reaching 3.0 (Supplementary Table 9).

The implications of the present study are limited to tumors that demonstrated a logistic growth curve; 
however, not all tumors did so. This is possibly due to different inherent growth characteristics, as the absolute 
volume of the tumors varies substantially between pediatric and adult tumors. By week four of observation, the 
average volume for the NB replicates exceeded 2000 mm3. In the same time frame, adult tumors grew only about 
400 mm3 except for one replicate (m3) of the MDA-MB-231 breast cancer cell line (growth rate 3.6). The WT 
PDXs at implantation had a volume of at least 200 mm3 with an average size of 308 mm3 which grew to 3800 
mm3 on average by week 3. Notably, NB PDXs underwent orthotopic implantation initially and were then re-
engrafted heterotopically23 whereas the WTs were heterotopic. Often, the reason that a curve failed to reasonably 
fit a logistic function was due to abrupt changes in the growth pattern (measurement artifacts, etc.), which is 
not unexpected. Nevertheless, the presence of any systematic artifact responsible for the low growth rates in the 
adult tumors was ruled out, as the experiments yielded growth rate within-variances of 0.023 and 0.012.

To investigate experimentally the effects of varying growth rates on acquisition of mutations and subsequent 
shift in clonality, we then assessed growth dynamics of the BE neuroblastoma cell line. Standard experimental 
methods fall short in studying evolutionary changes in vitro due to their restriction to small populations, failing 
to mimic the extensive intra-tumor heterogeneity observed in most human cancers25. Current techniques 
for examining rapid genomic changes in cell culture systems involve prolonged exposure of cells to repeated 
bottlenecks, typically taking six months to a year26. Mutation rates in cancer per base per cell division vary 
approximately between 10−8 and 10−7, and even with T175 flasks, less than 10 passages (assuming 1:10 re-
plating) are insufficient to have a single clonal mutant in the population. Therefore, small culture systems may be 
inadequate to observe a mutational drift reliably and may inadvertently drive the evolutionary dynamics towards 
a highly unpredictable and unstable mutational niche.

To mimic the evolutionary dynamics of large populations (to accelerate evolutionary timeframe), we utilized 
a HYPERflask® (HF) cell culture system for adherent cells (Fig. 2A). This system allows each flask to hold up to 
150–200 million cells, which is approximately 10 times more than a standard T175 flask. We seeded 5 million BE 
cells from a single culture (hereafter referred to as seed culture) in six HFs. We know from previous experiments 
that BE cells have markedly different growth dynamics when cultured in media supplemented with varying 
concentration of fetal bovine serum (FBS). We determined that for a growth medium supplemented with 1% 
FBS, BE cells demonstrate a logistic growth rate of approximately 1 and that for a 5% FBS media is well over 3 
(Supplementary Fig. 31). Since these growth rates lie on two sides of the first bifurcation rate, we anticipated 
to recapitulate the differential growth under the two growth conditions by means of variability in mutation 
accumulation.

Cell pellets collected at the 3-week and at the 6-week (end of experiment) time points were subjected to 
whole genome sequencing; the seed culture was used as reference to call accumulated variants (Fig. 2B). Among 
the HF replicates, after 3 weeks both the 1% and the 5% cultures had acquired 6 novel single nucleotide variants 
(SNVs) on average. After 6 weeks this was 7 for the 1% culture whereas it increased to 20 SNVs on average for the 
5% culture. The within group variance was quite low for the former at 0.19 but as high as 3.61 for the latter. This 
indicated not only a high rate of accumulation of mutations but also a large variation at rapid growth, consistent 
with the hypothesis of non-linear unpredictability; between group variation was statistically significant with a 
two/way ANOVA tested with two-tailed p value at 0.04 (Fig. 2C). Then we investigated the change in variant 
allele frequency (VAF) distribution between the two time points within and between groups, since a shift in 
VAF distribution may indicate change in fitness landscape (ex. Clonal sweep, fixation). We did not find any 
statistically significant difference, and VAFs of all groups clustered unimodally around 0.25 as expected (Fig. 2D-
E; Supplementary table 10–12).

Since the seed culture was used as a baseline genome in these experiments, one concern was that subclonal 
mutations in the seed culture that would later increase in frequency and contribute the clonal landscape, would 
be filtered out, in turn resulting in a biased mutational landscape. We therefore released the baseline variant cut 
off to include variants with a VAF up to 0.1 in the seed culture (Supplementary Fig. 32). The larger variant pool 
was then tested with two-way ANOVA to detect varying mutation accumulation. This analysis was performed 
chromosome-wise and only those chromosomes were included for which at least 4 variants were detected across 
all samples. The 5% culture again had a statistically significant larger variation across cultures (two tailed p value 
0.03), compared to the 1% culture. More telling was the between group sum of square estimate, which for the 1% 
culture was 0.007 compared to 0.11 for the 5% culture (Supplementary table 13).

Discussion
Simulations of fast tumor growth (growth rates > 3.0) resulted in massively varied mutational landscapes, 
implying that evolutionary trajectories, even in controlled model systems, are unpredictable under conditions 
that invoke non-linearity. We simulated the population expansion process with a discrete growth following 
a logistic equation. This enabled us to implement an analytical approach to spatial simulation,  but to some 
degree restricted genetic evolution as the population numbers reached at each generation were set to follow a 
logistic curve. A model of “genome chaos” has been used to describe non-continuous accumulation of genetic 
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lesions during cancer evolution27. This model claims that tumor evolution is bi-phasic, starting with punctuated 
accumulation of mutations followed by a maintenance phase. The phase transition happens periodically based 
on changes in environmental factors also determining the rate at which the tumor grows/evolves. The co-
dependence of the phases has been argued to result in macroevolutionary chaos originating from a predictable 
microevolutionary background28. Our experimental data imply that non-linear evolution is particularly likely 
to occur in fast-growing (pediatric) tumors. The mouse model data demonstrate that certain tumor types 
exhibit distinct growth characteristics, such as non-logistic or logistic growth patterns and slow or fast growth 
rates. These characteristics determine whether these tumors evolve clonally in an unpredictable or predictable 
manner. While the correlative evidence suggests a link between logistic growth rates exceeding the threshold of 
bifurcating states and complex genomic changes, further validation is necessary to establish a definitive causal 
relationship.

Our simulations model tumor expansion beginning from a small population (N₀ ≪ C), emulating early 
tumor growth below carrying capacity. This differs from systems at equilibrium (e.g., Fig. 1B) where population 
dynamics are governed by saturation effects. The initial conditions, whether in silico (N₀ ≈ 105 cells) or in biological 
models (small xenograft inoculation/culture seeding) ensure growth occurs primarily in the exponential phase 
of the logistic curve, where stochastic mutations accumulate without density-dependent constraints.

In our cellular lineage experiments, we observed a distinct correlation between the growth rates and the 
accumulation of mutations. As the 5% FBS culture expanded at an accelerated pace compared to the 1% FBS 
culture, the predictability of mutational accumulation diminished. This heightened mutation accumulation, 

Fig. 2.  Differential mutation aggregation in long term cell culture with HyperFlask. (A) The Corning® 
HYPERflask® is a cell culture vessel designed for high yield performance. It features a 10-layer system with 
a total growth area of 1720 cm2. The surface of the flask is made of gas-permeable polystyrene, allowing it 
to support the growth of approximately 150 to 200 million cells. Neuroblastoma cell line SK-N-BE2c was 
expanded with 1% or 5% FBS in long term cultures for 6 weeks. Cell pellets were collected at the beginning 
of the experiment, after 3 weeks and at conclusion.Extracted DNA were subject to whole genome sequencing. 
(B) Seed culture was expanded to approximately 30 million cells and a cell pellet from this culture was saved 
(S1). Six HyperFlasks were seeded with 5 million cells each at the same time point. Three were supplemented 
with 1% FBS growth media and three with 5%. At the 3 week from each flask. (S2, S3, S4: 1% culture, S5, S6, 
S7: 5% culture). After 6 weeks the experiment was concluded, and cells were harvested (S8, S9, S10: 1% culture, 
S11, S12, S13: 5% culture). (C) Total number of SNVs detected at week3 and week6 for each culture is shown. 
(C1-1: S2&S8; C1-2: S3&S9; C1-3: S4&S10, C5-1: S5&S11; C5-2: S6&S12; C5-3: S7&S13) (D) Bar plots of VAFs 
for detected mutations in each timepoint are shown clustered according to growth media i.e., 1% or 5% FBS. 
‘X’ signifies the mean. (E) Table depicting frequency of SNVs detected, aggregate and standard deviation per 
culture group.
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however, did not influence the clonal diversification of the culture, as evidenced by the unchanged VAF 
distribution. This allowed us to rule out alterations in the fitness landscape as the cause, suggesting that the 
observed effects on mutation predictability were emergent and were neutral from an evolutionary standpoint. 
Remarkably, this variation was discernible even at the chromosomal level, implying a potential genome-wide 
surge in stochasticity. Our observation underscores the intricate dynamics of cellular evolution and the profound 
impact of growth rates on mutation accumulation within a population. It also highlights the importance of 
considering factors such as growth rates and its impacts on mutational accumulation when interpreting 
experimental results in cellular biology and genomics.

The focus of this study was to investigate the possible relationship between growth rates of tumor model 
system and corresponding mutational changes leading to selective pressure and evolutionary adaptation. 
However, there are several other mechanisms that can modulate the expression and activity of genes and proteins 
notwithstanding point mutation such as structural variations and large-scale karyotype changes. Such effects may 
also arise without alteration in the DNA sequence such as epigenetic changes and in the form of transcriptional 
phenotypic cell states. Furthermore, the tumor microenvironment can provide signals that promote tumor 
growth, angiogenesis, invasion, metastasis, and modulate the immune environment. Consequently, it would be 
reductive to infer the behavior of a model system solely based on genetic point mutations. Muller’s ratchet is a 
phenomenon in evolutionary genetics where the accumulation of deleterious mutations in an asexual population 
leads to a gradual decline in fitness. While this is typically associated with deleterious mutations, our study 
explores how neutral mutations can also contribute to fitness decline through a process called accumulation. In 
the absence of direct deleterious effects, neutral mutations can accumulate over time, leading to a decrease in 
overall genetic fitness. Additionally, we acknowledge that the normalized time-scale employed in our analysis 
across model systems may not be evolutionarily identical, as doubling times vary among them. We cannot 
speculate whether this variation itself can drive differential evolution, similar to Peto’s paradox. Furthermore, we 
generalized the model system by fitting the logistic curve, whereas some literature suggests that the aggressiveness 
of certain cancers may render them suitable fits to accelerated time models. However, pediatric PDX tumors and 
in vitro systems would not be appropriate fits for such models.29. Notwithstanding the choice of the model, we 
also ignore environmental constraints of the growth that will certainly exert selective pressure such as necrosis, 
angiogenesis, induction of hypoxia, changes in micro environment and cellular phenotypes.

Several studies have modeled in-vivo tumor growth using nonlinear differential equations, which often exhibit 
chaotic behavior30. This infers that small changes in initial conditions can lead to vastly different outcomes, 
making the system highly sensitive and unpredictable. For example, these efforts have revealed some interesting 
things, like how tumors can double in size and become unpredictable, or how they can have different states at the 
same time highlighting complexity and unpredictability.31. Additionally nutrient driven models also show that 
slight changes in initial conditions may lead to chaotic expansion with embedded local attractors32. For instance, 
the fractal nature of tumor growth has been documented, indicating self-similarity and scale-invariance, which 
are hallmarks of complex systems31. Additionally, the presence of chaotic attractors in tumor growth models 
further supports the idea that tumors can exhibit unpredictable and complex behavior32. In mechanistic terms 
the often exhibition high levels of genetic instability is a derivative of accelerated local growth. This instability 
allows for rapid and unpredictable changes in the tumor genome, leading to a diverse population of tumor cells 
with varying characteristics33. Genetic instability relates to local-scale growth, while selective pressures maintain 
global stability, creating a dynamic and unpredictable system. The tumor microenvironment plays a crucial 
role, with interactions between tumor cells and their environment leading to nonlinear dynamics. Nutrient 
availability, immune response, and cellular signaling pathways contribute to complexity and unpredictability of 
tumor growth34.

Our study utilized the proportion of MRCA cells as a simplified measure of clonal heterogeneity, based on 
the assumption that genetic distance from ancestral populations reflects evolutionary divergence. However, this 
metric does not account for the spatial organization of clusters or the number of distinct subclonal populations. 
Tumors are spatially structured ecosystems where subclones may occupy distinct niches, influencing their access 
to resources, interactions with the microenvironment, and competitive dynamics. For instance, even a low 
proportion of MRCA cells could mask significant heterogeneity if spatially segregated clusters exhibit divergent 
evolutionary trajectories. Conversely, a high MRCA proportion might coexist with localized clusters of aggressive 
subclones poised for expansion. The number of clusters and their spatial distribution introduce additional layers 
of complexity. A tumor with many small, genetically distinct clusters may exhibit higher functional heterogeneity 
than one dominated by a few large clusters, even if their MRCA proportions are similar. Spatial separation 
could also buffer subclones from competitive exclusion, enabling coexistence and increasing the potential 
for unpredictable clonal sweeps. Our simulations, which abstracted spatial constraints into a logistic growth 
framework, did not explicitly model these effects. Thus, the MRCA proportion may underestimate heterogeneity 
in systems where spatial clustering promotes subclone persistence or accelerates adaptation.

Going forward, evolutionary dynamics for tumors growing in a non-logistic fashion need also to be 
compared alongside logistically growing tumors/cell populations to evaluate if the unpredictability in genetic 
mutation accumulation is specific to all non-linear growth. According to the punctuated evolutionary model 
for cancer27, the maintenance phase acts as a self-regulatory mechanism to reorganize cells after a period of 
arbitrary mutation accumulation. It’s possible that the observed unpredictability stems from the dysregulation in 
these two phases of evolution, which disrupts the natural equilibrium of evolutionary homeostasis. There seems 
to be an intrinsic limit on how much of the genetic changes may be predicted using today’s approach of precision 
oncology. However, our findings indicate that observing the tumor growth rate could be a potential workaround 
to determine the degree of predictability by which a tumor is expected to evolve, in turn providing insights into 
how often the clonal landscape of a tumor needs to be resampled to evaluate options for targeted therapy based 
on the molecular profile.
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Methods
Assumptions underlying in silico modeling
Here, we simulated a synthetic model for tumorigenesis, incorporating some of the basic assumptions of the 
somatic mutation theory. It remains to be seen whether DNA damage-driven neutral or Darwinian evolution 
becomes apparent with this system, as the model does not assume a position on either dogma of continuous 
tumor evolution. The model focuses on simulating evolutionary pockets in a tumor soma that vary across its 
geography, similar to how it is explained by Waclaw and colleagues12. A scheme of the iterative model is sketched 
in Supplementary Fig. 33.

We begin the simulation with a predetermined number of cells, C, indicating a fixed carrying capacity 
(maximum number of cells in homeostasis, assumed to be 10 million) in a three-dimensional automaton where 
all but a few (randomly chosen, < 10) neighboring cells are considered to be non-neoplastic at the beginning 
(generation 0). Over the total span of each simulation, we modulated the following five properties and treated 
them as simulation parameters:

•	 Cell division rate/birth rate (b)
•	 Cell death rate (d)
•	 Mutation rate (m)
•	 Driver mutation probability (p)
•	 Selective advantage/fitness (s)

These parameters in tandem control the size of the tumor, how fast it grows, and how genetically diverse and 
evolved it is at the end of the simulation. As the automaton simulates cellular interaction and not the expansion 
magnitude, we iterated the evolutionary simulation over punctuated time points. The generalized continuous 
form is given as follows:

	 dN/dt = rNt(1 − Nt/C)� (1)

The population size is iterated over a discrete logistic growth solved analytically as a function of discrete time. 
Given fixed doubling time of the cells, resource abundance dependent negative feedback of the population 
frequency and C >  > N0, Eq. (1) can be simplified as following35 where C is carrying capacity of the system, Nt is 
the number of tumor cells at any given time t, and r is the growth rate.

	
Nt = CN0

N0 + (C − N0)e−rt � (2)

We estimated Nt iteratively for time t = 0,1, 2, . . .  proxied by the set of whole numbers and simulated the 
discretized evolutionary dynamic for a tumor expanding from N0 cells to Nt cells. The time scales were 
normalized to a scale of 0 to 1 with equipartition steps of growth for each model across all replicates (1,000). We 
implemented these dynamics in the simulation by assuming certain base hypotheses.

The ratio of tumor size at each step (Nt) to carrying capacity (C) significantly impacts simulated tumor 
growth. When N is small, the simulation models rapid growth due to abundant resources. As N approaches C, 
resource limitation slows growth. If N equals C, the tumor may outgrow resources, potentially experiencing a 
“boom and bust” cycle or accessing new resources. These growth phases affect mutation accumulation, clonal 
expansion, and evolutionary trajectories. In the accelerating phase, mutation accumulation may be faster due to 
less selective pressure. In the decelerating phase, dominant clones best suited for limited resources may emerge.

1. Mutational burden is predicted by the type of mutation and the mutation rate.
At each division any given daughter cell acquires a mutational burden quantified by Dn; n ∈ ℕ. The number 

of neoplastic cells, n, in the automata dictates when the simulation ends, that is, when n = N. Hence, we leverage 
it as a proportion of time. Since Dn changes depending on the mutation rate, and on the effect the accumulated 
mutations have on the cell, it follows that Dn is a function of both m and p as described above.

Dn = f (m, p); m ∈ R+ and p ∈ (0,1)

2. Cell birth and death rates depend on mutational burden.
Every kth cell in the population undergoes cell division after time T (kbirth, n) and apoptosis after time T 

(kdeath, n); n ∈ ℕ, k ∈ Z+. These are proxies for birth rate and death rate and, therefore, must functionally depend 
on the acquired mutational burden.

T (kbirth, n) = fbirth (Dn)
T (kdeath, n) = fdeath (Dn)
Acquiring certain mutations creates a positive feedback loop.
With this, we assume that the probability of any cell acquiring mutational burden is predicated by pre-

existing lesions in its DNA. At any ith  cell division, the probability of a cell acquiring additional mutational 
burden is dependent on its preexisting burden after the (i − 1)th cell division. Because the cumulative mutational 
load defines the selective advantage that a cell harbors at any given point,

si = f (si-1), where si and si-1 are the selective advantages of a cell at each stage and take the functional form of 
a Markov process, respectively. The selection coefficient is thus shaped indirectly by mutational burden.

Modeling acquisition of mutations
In this study, we considered only somatic point mutations extracted from publicly available datasets. This is in 
no way to indicate a lack of availability of data on structural chromosomal changes as well as longer variations, 
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but only due to the unsubstantiated mechanics of conferring selective advantage or disadvantage. We also did 
not consider inherited mutations, as all cells should harbor the same set of variations, which in turn should 
have scalable effects across the entire cell population. How these factors affect the evolutionary process is of 
course of interest, but we assume that the point mutations do not affect the relative fitness of the cells. Hence, 
we adapted a system of evolutionary dynamics that is only affected by point mutations, and to this end, we used 
their pathogenicity scores.

We extracted the COSMIC v90 dataset (https://cancer.sanger.ac.uk/cosmic/download) for all reported point 
mutations along with the estimated pathogenicity scores (FATHMM-MKLv2.3)36. Every mutation was given a 
score with a lower limit of 0 and an upper limit of 1 with respect to the corresponding cancer site and histology 
when applicable. COSMIC identifies strong drivers with score stratification which we use to stratify all possible 
mutations into two groups, neutral and pathogenic. A FATHMM score between 0.5 and 0.7 indicates a ‘driver’ 
and that above 0.7 indicates a ‘strong driver’. We assumed a mutation to be pathogenic if it had a score > 0.5 
and the rest were declared neutral. We extracted the pathogenicity scores of only the pathogenic mutations to 
compute the fitness advantage. By definition, fitness is indifferent to neutral mutations, yet these were detected 
in the genetic background. The overaccumulation of neutral mutations caused the cell division machinery to halt 
above a critical threshold (discussed below), although it did not directly impact cellular fitness.

The fitness landscape was shaped based on two fundamental principles. Firstly, all site-specific driver mutations 
reported to date have been identified in the literature, as well as those associated with individual hallmarks of 
cancer. These mutations are extracted for tumor simulation at those specific sites. We retained drivers reported 
in neuroblastoma as the number of driver mutations and their strength of adding to the fitness advantage would 
determine how the clonal geography takes shape. Once such a mutation is acquired by a cell, it confers a selective 
advantage to cell survival according to its pathogenicity score which got updated progressively. Second, neutral 
mutations confer mutational burden only via accumulation such that their cumulative accumulation over 
generations triggers apoptosis akin to Muller’s ratchet37.

How neutral mutations affect growth
We take that the number of neutral mutations will increase over generations. Hence, the carrying capacity of the 
population with a given number of mutations is affected, which is given by the equation

	 nk = Ne−θθk/k!� (3)

where θ = S/m. Here, nk is the carrying capacity of the cell population harboring neutral mutations, where N is 
the total population size, m is the mutation rate, and s is the corresponding selection coefficient/fitness. Hence, it 
can be concluded that the population size-scaled carrying capacity follows a Poisson distribution:

	
nk

N
= P oisson (θ)� (4)

over the random variable K assuming values k ∈ N+ and the carrying capacity of the fittest class of cells, that is, 
at the beginning of simulation is given by

	 n0 = Ne−θ� (5)

No technical replication was completed because the summaries were extracted over multiple runs of simulations. 
The simulations were performed with SITH12; prediction, fitting and evaluation of the models were performed 
in R version 4.1.

Growth modulated cell culture in HYPERflasks
We cultured the SK-N-BE(2)C neuroblastoma cell line (passage 14 onwards, obtained from DSMZ) 
supplemented with 1% or 5% FBS (Sigma-Aldrich) and 1% penicillin–streptomycin (Sigma-Aldrich). The 
culture was confirmed to be mycoplasma free (Eurofins). The cells were expanded in High Yield PERformance 
Flasks (HYPERflask®) cell culture vessel (Corning). Growth media was changed once every week. Cells were 
resuspended with TrypLE™ Express Enzyme (Thermo Fisher) and were harvested on stipulated experiment end 
points. Cell viability was measured at harvest with Trypan blue exclusion assay (Thermo Fisher) and counted 
with Countess™ platform (Thermo Fisher).

The in-vitro models had a maximum capacity of around 150 million cells due to the limitations of the 
HyperFlask systems used. Here the initial volumes were estimated to 5 million cells. For the mice models, the 
volume of the tumor growing peritoneally in the animals was capped by the ethical permit, allowing a range of 
1500 to 5000 cubic millimeters of total tissue volume across different studies.

DNA extraction and Bulk sequencing
DNA from frozen SKNBE2C cell pellets were extracted using the AllPrep DNA/RNA Mini Kit 127 (Qiagen) with 
standard methods. DNA concentration was measured using Qubit DS HS DNA 132 (Invitrogen).

Whole genome sequencing of thirteen samples were performed at the Center for Translational Genomics at 
Lund. Sequencing libraries of genomic DNA were prepared using the TruSeq DNA PCR-free Library Prep kit 
(Illumina) following the manufacturer’s instructions and quality controlled with TapeStation 4200 (Agilent). The 
libraries were pooled and subjected to (2 × 150 cycles) paired-end sequencing with the NovaSeq 6000 platform 
(Illumina).
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bcl2fastq 2.20 (Illumina) was used to convert files to fastq-formatted paired end files, the reads were quality 
controlled with fastqc, adapters were adjusted with cutadapt and the reads were mapped to the human reference 
genome (GRCh38 v3) using strobealign. Duplicate reads were marked with sambamba38(–overflow-list-size 
6,000,000 –hash-table-size 6,000,000 –sort-buffer-size 102,400) and the reads were sorted, indexed with the 
same. The mapped reads were further normalized with GATK BQSR (known site flags: 1000G_omni2 for hg38, 
HapMap_3 for hg38, hg38 known indels and Mills_and_1000G_gold_standard indels)39.

Somatic variant calling was performed using four separate variant callers with the same reference and target, 
Mutect2, Varscan2, Octopus and Strelka240–43. Structural variants were called with Manta and copy numbers 
were analyzed against a normal ancestrally distant human sample obtained from GiAB HG006 and the seeding 
cell pallet sequenced. Variants were first annotated with BCFTools and filtered with GATK (orientation bias, 
mapping quality and segmentation bias) and were subsequently excluded from downstream analysis if detected 
with 10 or less reads, with a variant allele frequency (VAF) below 0.1 in all samples or if found in more than 
1% of the reads in the seeding sample. The variants were then functionally annotated with Annovar merging 
annotations from ClinVar 20,221,232, COSMIC v97, dbSNP v42, ExAC v3, ICGC v28, ljb v26, GNOMAD, 
ENSEMBL and refGene.

We confirmed the identity of the SK-N-BE(2)C cells by comparing the copy number profiles against 
previously published profiles. When grown in 10-cm petri dishes these cells show an ecological threshold of how 
much they can expand which provides estimates of carrying capacity under each growth condition, this was used 
to estimate the growth rates.

Data availability
All PDX data are published or available from the respective corresponding authors and are detailed in Supple-
mentary Table 1. WGS data are available from EGA under the accession (EGAS00001007962).
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