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This paper aims to model the bimodal and right-skewed aircraft windshield data using a novel 
compounded-Pareto distribution. The method of maximum likelihood is employed to estimate the 
unknown model parameters, and the performance of the estimators under finite samples is evaluated 
through a comprehensive simulation study. The practical applicability of the proposed model is 
demonstrated using two real-world reliability datasets. Reliability analysis based on Peaks Over a 
Random Threshold Value at Risk (PORT-VAR) is crucial for aircraft windshield manufacturers, as it 
provides a rigorous assessment of extreme failure events and service times-key factors in ensuring 
product safety and longevity. By identifying the frequency and severity of failures exceeding 
specific VAR thresholds, this analysis enables companies to understand the upper bounds of their 
products’ performance under stress, optimize designs for enhanced durability, and develop proactive 
maintenance strategies. In this paper, we present a comprehensive reliability PORT-VAR analysis to 
support these objectives and highlight the relevance of the proposed model in extreme value risk 
modeling and real-world reliability scenarios.
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The Pareto type II (PII) model is the most well-known of the five models that make up the Pareto family. In 
business, actuarial science, physical sciences, biological sciences, economics, engineering, income and wealth 
inequality research, theory of queuing, and size of cities data sets, the PII model, also known as the Lomax; see 
Lomax1, is a heavy-tail probability density. For more statistical papers that used the Lomax distribution, see 
Alsuhabi et al.2, Almetwally et al.3, Sapkota et al.4, Atchadé et al.5, Ahmad et al.6, Haj Ahmad et al.7, and Zaidi 
et al.8. The standard PII model, however, is regarded as a limiting model of residual lifetimes at great age and is 
part of the family of “monotonically decreasing” hazard/failure rate function (HRF) (see9 and10). In this work, 
however, we will present a new version whose HRF is part of the “upside down,” “monotonically decreasing” 
and “increasing-constant” families. The PII distribution was used by Harris11 and Atkinson and Harrison12 to 
describe and model wealth and income data. The PII distribution was utilised by Corbellini et al.13 to model the 
company size data. Sabry and Almetwally14 discussed estimation of the exponential Pareto distribution under 
ranked and double ranked set sampling designs. See Hassan Al-Ghamdi15 for real data applications in reliability 
testing and relaibility experiments. In addition to being seen as a hybrid of the standard gamma and exponential 
distributions, the PII model is a unique model form of the well-known Pearson type VI distribution. A heavy-
tailed alternative model to the standard exponential, standard Weibull, and standard gamma distributions is 
proposed for the PII distribution, per16. Mustafa et al.17 discussed order statistics of inverse Pareto distribution. 
For additional information regarding the connection between the PII model, see Tadikamalla18, Almetwally et 

1College of Business Administration, American University of the Middle East, Egaila, Kuwait. 2Basic and Applied 
Science Institute, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt. 
3Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt. 4Department of 
Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi 
Arabia. 5Department of Computing, Faculty of Science, Forestry and Technology, University of Eastern Finland, 
Kuopio, Finland. 6Department of Mathematics, Faculty of Science, Helwan university, Cairo, Egypt. 7Department 
of Statistics, Wachemo University, Hosaena, Ethiopia. 8Department of Statistics and Operations Research, College 
of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. email: getachewtekle@wcu.edu.et

OPEN

Scientific Reports |        (2025) 15:21068 1| https://doi.org/10.1038/s41598-025-07426-3

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-07426-3&domain=pdf&date_stamp=2025-6-20


al.3, Durbey19, Korkmaz et al.20 and Minkah et al.21. If a random variable (rv) X has the following cumulative 
function (PDF) and the PII distribution with one parameter, ξ3:

	 Gξ3 (x) = 1 − (1 + x)−ξ−1
3 |x > 0,� (1)

where ξ3 > 0 is the shape parameters, respectively. The primary goal of this work is to use the Poisson Topp-
Leone (PTL) family, as established by Merovci et al. (2020), to give a flexible extension of the PII distribution. 
The PTL-G family’s CDF can be expressed as follows:

	
Fξ1,ξ2,ω (x) = 1

Υ (ξ1)

(
1 − exp

{
−

Gω (x)ξ2

ξ1

[
2 − Gω (x)

]ξ2

})
|x ∈ R,� (2)

where ξ1 > 0, ξ2 > 0 and Υ (ξ1) = 1 − exp
(
−ξ−1

1
)

, the vector ω refers to the parameters vector of the base-
line model. The CDF of the novel PII model can then be derived as

	
FV (x) = 1

Υ (ξ1)

(
1 − exp

{
−ξ−1

1

[
1 − (1 + x)−2ξ−1

3

]ξ2
})

|x > 0,� (3)

The corresponding probability density function (PDF) of (3) can be written as

	

fV (x) = 2ξ−1
1 ξ2ξ−1

3
Υ (ξ1)

(1 + x)−2ξ−1
3 −1

[
1 − (1 + x)−2ξ−1

3

]ξ2−1

exp
{

ξ−1
1

[
1 − (1 + x)−2ξ−1

3

]ξ2
} |x > 0.� (4)

As x → 0, we have

	
fV (x) ≈ 2ξ−1

1 ξ2ξ−1
3

Υ (ξ1)
(
2ξ−1

3
)ξ2−1

xξ2−1.

As x → ∞, we have

	
fV (x) ≈ 2ξ−1

1 ξ2ξ−1
3

Υ (ξ1)
(1 + x)−2ξ−1

3 −1

exp
(
ξ−1

1
) .

The tail behavior of fV (x) for large x is dominated by

	
fV (x) ∼ C

(1 + x)2ξ−1
3 +1

,

where C = 2 ξ−1
1 ξ2ξ−1

3
exp(ξ−1

1 )Υ(ξ1)
is a constant. This indicates that the tail of the PDF decays polynomially with an 

exponent of 2ξ−1
3 + 1 as x → ∞. Hereafter, we will refer to the new model in (3) and (4) with the compound 

Pareto type II (CPII) model. Other PII extensions can be founded in Gupta et al.22, Lemonte and Cordeiro23, 
Cordeiro et al.24, Tahir et al.25, Alshanbari et al.26, Elbiely and Yousof27, Goual and Yousof28, Chesneau and 
Yousof29, Yadav et al.30, Hamed et al.31, Ibrahim and Yousof (2020), Abd El-Raheem et al.32, Haj Ahmad and 
Almetwally33, and Salem et al.34. The flexibility of the new PDF and its matching HRF are shown in Figures 1 
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Fig. 1.  Some plots of the new PDF.
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and 2. where the HRF of the CPII can be “upside down,” “monotonically decreasing,” and “increasing-constant,” 
and the CPII density can be “right skewed with unimodal shape,” “right skewed with no peak,” and “left skewed 
with no peak”. The CPII model effectively captures asymmetric hazard rates in real life data with bimodal, nearly 
symmetric distributions. It can model a variety of skewness and kurtosis shapes, including U-skewness and 
various forms of mesokurtic, leptokurtic, and platykurtic distributions. This flexibility makes it suitable for a 
wide range of physical, social, and actuarial phenomena.

The CPII model proved its wide applicability in modeling the real-physical data sets against many well-
known PII extensions. In modeling the times of failure of the aircraft windshields, the CPII model is statistically 
compared with many well-known PII versions. In statistical modeling of the times of service of the aircraft 
windshields, the CPII model is compared with many well-known PII extensions. Figure 1 gives some plots of the 
new PDF. It is clear from this figure that the new density function has a long tail on the right, and it may have 
one peak or no peak, and the tail may be down or up, and all of these properties qualify the distribution to deal 
with diverse data. Figure 2 gives some plots of the new HRF. Based on Figure 2, the HRF can be upside down, 
decreasing and increasing.

The importance and flexibility of the proposed reliability Peaks Above a Random Threshold Value at Risk 
(PORT-VAR) model are highlighted through its application to two distinct real data sets, demonstrating its 
robustness and adaptability in assessing extreme failure events and service times. For aircraft windscreen 
companies, PORT-VAR analysis is indispensable as it offers a rigorous and detailed examination of the product’s 
performance under rare but critical stress conditions. This analytical approach meticulously identifies the 
frequency and magnitude of failures that surpass predetermined VAR thresholds, allowing companies to gauge 
the upper limits of their windscreen products’ reliability under extreme circumstances. PORT-VAR analysis 
helps companies understand the upper bounds of product performance, guiding improvements in durability 
and safety. It enables optimization of design parameters to withstand high-stress conditions and informs material 
choices based on extreme performance data. Additionally, it supports the development of proactive maintenance 
strategies, preventing unexpected failures and extending the service life of windscreen products. Recently, Abiad 
et al.35 introduced a novel approach to reliability analysis by incorporating diverse copula structures into a new 
Fisk probability model. This advancement allows for a more flexible dependence structure between variables, 
improving the accuracy of reliability assessments in engineering and applied sciences. Ali et al.36 provided an 
in-depth exploration of statistical outliers, discussing their identification, impact on data interpretation, and 
potential methods for handling anomalies in many topics especially in risk analysis. Their work is crucial for 
ensuring robust statistical inference in various fields, including finance, healthcare, and quality control. Alizadeh 
et al.37 developed a new weighted Lindley distribution tailored for modeling extreme insurance claims. By 
refining the probability distribution to better fit heavy-tailed data, their model enhances risk assessment and 
decision-making in the insurance industry. Das et al.38 introduced a novel application of the Laplace distribution 
to analyze economic peaks and Value-at-Risk (VaR) in house price fluctuations. Their study provides a fresh 
perspective on risk modeling in real estate markets, offering insights for financial analysts and policymakers.

In the paper, we applied this comprehensive reliability PORT-VAR analysis to relaibility data sets, illustrating 
the model’s flexibility in adapting to various conditions and its effectiveness in delivering actionable insights. 
This approach not only reinforces the importance of the PORT-VAR model in ensuring the safety and longevity 
of aircraft windscreens but also underscores its role in guiding engineering decisions, enhancing product 
reliability, and supporting strategic maintenance planning. Through detailed analysis and application, the paper 
demonstrates how PORT-VAR can be leveraged to address critical challenges in windscreen reliability and 
contribute to the advancement of safety and performance standards in the aerospace industry. In this context, 
the mean-of-order-P (MOOP ) analysis under the mean squared error (MSE) and biases is presented due to 
P = 5. Moreover, a graphical assessment is presented for the MOOP , MSE and biases values.

Main characteristics
Useful expansions
Thanks to Merovci et al. (2020), the CPII model’s PDF in (3) can be expressed as follows
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Fig. 2.  Some plots of the new HRF.
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fV (x) =

∞∑
τ1,τ2=0

[
c[1]

τ1,τ2 hξ∗
2
(x) − c[2]

τ1,τ2 h1+ξ∗
2
(x)

]
,� (5)

where hγ(x) = γGω (x)γ−1 gω (x) refers to the exponentiated-PII (EPII) density,

	
c[1]

τ1,τ2 =
(1

2

)τ2−ξ2(τ1+1) ξ
−(τ1+1)
1 ξ2 (−1)τ1+τ2

τ1!Υ (ξ1) ξ∗
2

(
ξ2 (τ1 + 1) − 1

τ2

)
,

and

	
c[2]

τ1,τ2 =
(1

2

)τ2−ξ2(τ1+1) ξ
−(τ1+1)
1 ξ2 (−1)τ1+τ2

τ1!Υ (ξ1) (1 + ξ∗
2 )

(
ξ2 (τ1 + 1) − 1

τ2

)
.

Equation (5) allows for the expression of the density of X as a representation of EPII densities. Another way to 
rephrase the CDF of the CPII is as follows

	
FV (x) =

∞∑
τ1,τ2=0

[
c[1]

τ1,τ2 Hξ∗
2
(x) − c[2]

τ1,τ2 H1+ξ∗
2
(x)

]
,� (6)

where ξ∗
2 = ξ2 (τ1 + 1) + τ2 and Hξ∗

2
(x) refers to the CDF of the EPII model.

Ordinary moment
The rth ordinary moment of X is given by µ′

r,X = E(Xr) =
∫ ∞

−∞ xr fV (x) dx.Then we obtain

	
µ′

r,X =
∞∑

τ1,τ2=0

[
c[1]

τ1,τ2E(Zr
ξ∗

2
) − c[2]

τ1,τ2E(Zr
1+ξ∗

2
)
]

.� (7)

Henceforth, Z(ξ∗
2) denotes the EPII distribution with power parameter ξ∗

2 > 0.

	
µ′

r,X =
∞∑

τ1,τ2=0

r∑
τ3=0

[
c

[1]
τ1,τ2 δ

(ξ∗
2 ,r)

τ3 B (ξ∗
2 , 1 + (τ3 − r) ξ3)

−c
[2]
τ1,τ2 δ

(1+ξ∗
2 ,r)

τ3 B (1 + ξ∗
2 , 1 + (τ3 − r) ξ3)

]
|(ξ−1

3 >r).

where

	
δ(a,r)

τ3 = a (−1)τ3
(

r
τ3

)
,

and

	
B(ν1, ν2) =

∫ 1

0
ℏν1−1 (1 − ℏ)ν2−1 dℏ.

Incomplete moments
The ℏth incomplete moment, say Iℏ,x (t), of X can be expressed from (9) as Iℏ,x (t) =

∫ t

−∞ xℏfV (x) dx.Then

	
Iℏ,x (t) =

∞∑
τ1,τ2=0

ℏ∑
τ3=0

[
c

[1]
τ1,τ2 δ

(ξ∗
2 ,ℏ)

τ3 Bt (ξ∗
2 , 1 + (τ3 − ℏ) ξ3)

−c
[2]
τ1,τ2 δ

(1+ξ∗
2 ,ℏ)

τ3 Bt (1 + ξ∗
2 , 1 + (τ3 − ℏ) ξ3)

]
|(ξ−1

3 >ℏ),� (8)

where Ba3 (a1, a2) =
∫ a3

0 wa1−1 (1 − w)a2−1 dw.

Mean deviations
The mean deviations about the mean [dx,µ′

1
= E(|x − µ′

1|)] and about the median [mx,M = E (|x − M |)] 
of X are given by dx,µ′

1
= 2µ

′
1,xF (µ′

1,x) − 2I1,x(µ′
1,x) and mx,M = µ′

1,x − 2I1,x (M), respectively, where 

µ′
1,x = E (x), M = Med(x) = Q

(
1
2

)
 is the median and I1,x (t) is the first incomplete moment given by (8) 

with ℏ = 1. Ageneral equation for I1,x (t) can be derived from (8) as

	

I1,x (t) =
∞∑

τ1,τ2=0

1∑
τ3=0


 c

[1]
τ1,τ2 δ

(ξ∗
2 ,1)

τ3 Bt

(
ξ∗

2 , 1 + τ3−1
ξ−1

3

)

−c
[2]
τ1,τ2 δ

(1+ξ∗
2 ,1)

τ3 Bt

(
1 + ξ∗

2 , 1 + τ3−1
ξ−1

3

)

 |(ξ−1

3 >1),
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Moment generating function
The moment generating function (MGF) can be derived from equation (5) as

	
MX (t) =

∞∑
τ1,τ2,r=0

r∑
τ3=0

tr

r!

[
c

[1]
τ1,τ2 δ

(ξ∗
2 ,r)

τ3 B (ξ∗
2 , 1 + (τ3 − r) ξ3)

−c
[2]
τ1,τ2 δ

(1+ξ∗
2 ,r)

τ3 B (1 + ξ∗
2 , 1 + (τ3 − r) ξ3)

]
|(ξ−1

3 >r),

Numerical and graphical analysis
By analyzing the µ′

1, µ2, skewness (S X), kurtosis (KX) and dispersion index (DX) numerically in Table 1, it 
is noted that, the SX  can be > 0. The spread for the KX  is ranging from 9.4557 to 4088911. The DX  can be in 
(0, 1) and also > 1 so the CPII model may be used as an “under-dispersed” and “over-dispersed” model. Three-
dimensional skewness charts are shown in Figure 3. Three-dimensional kurtosis graphs are shown in Figure 4. 
Drawing from Figure 3, the CPII model’s skewness can assume several beneficial shapes. According to Figure 4, 
the CPII model’s kurtosis can take on a variety of useful shapes.

Probability weighted moments
The (ℏ, r)th probability weighted moments (PWM) of X following the CPII model, say ρℏ,r , is formally defined 
by

xi1
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Fig. 3.  Three-dimensional skewness plot.

 

ξ1 ξ2 ξ3 µ′
1 µ2 SX KX DX

−50 2 10 0.004764 37.48559 1344.273 1864093 7868.421

−25 5.636801 39309.82 38.56149 1572.877 6973.782

−1 994.9204 3716964 2.600992 9.455713 3735.941

1 762.8661 2727624 3.196985 13.56481 3575.495

25 4.489540 23.57864 258.258 287637.1 5.251905

50 0.004760 37.48559 1344.273 1864093 7868.421

1.5 0.5 0.5 0.17028 0.071300 10.22217 1186.038 0.4187302

1 0.31067 0.104290 10.27958 1089.722 0.3356969

10 1.16087 0.214373 23.38805 2377.482 0.1846658

50 2.08156 0.612631 16.63449 1372.791 0.2943142

250 3.44446 1.815988 10.70707 734.2976 0.5272200

1000 5.16569 4.199258 8.451276 518.031 0.8129131

5 5 1 1.384154 2.228696 1014.991 3409177 1.61015

10 1118.222 3136743 2.669669 10.22454 2805.117

50 84.34107 480592.8 9.89348 108.9342 5698.207

250 0.064669 384.8799 361.7902 142833.3 5951.487

500 0.002257 13.47620 1936.385 4088911 5971.676

Table 1.  µ′
1, µ2, SX ,KX  and DX  of the CPII model.
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ρℏ,r = E

{
xℏ FV (x)r

}
=

∫ ∞

−∞
xℏ FV (x)r fV (x) dx.

Using (5) and (6), we have

	
fV (x) FV(x)r =

∞∑
τ1,τ2=0

[
ν[1]

τ1,τ2 hξ∗
2
(x) − ν[2]

τ1,τ2 h1+ξ∗
2
(x)

]
,

where

	
ν[1]

τ1,τ2 =
∞∑

τ2=0

(1
2

)τ2−ξ2(τ1+1) ξ2ξτ1+1
1 (1 + τ2)τ1 (−1)τ1+τ2+τ2

τ1!ξ∗
2 [Υ (ξ1)]1+r

(
r
τ2

) (
ξ2 (τ1 + 1) − 1

τ2

)

and

	
ν[2]

τ1,τ2 =
∞∑

τ2=0

(1
2

)τ2−ξ2(τ1+1) ξ2ξτ1+1
1 (1 + τ2)τ1 (−1)τ1+τ2+τ2

τ1! [1 + ξ∗
2 ] [Υ (ξ1)]1+r

(
r
τ2

) (
ξ2 (τ1 + 1) − 1

τ2

)
.

Then, the (ℏ, r)th PWM can then be written as

	
ρℏ,r =

∞∑
τ1,τ2=0

ℏ∑
τ3=0

[
ν

[1]
τ1,τ2 δ

(ξ∗
2 ,ℏ)

τ3 B (ξ∗
2 , 1 + (τ3 − ℏ) ξ3)

−ν
[2]
τ1,τ2 δ

(1+ξ∗
2 ,ℏ)

τ3 B (1 + ξ∗
2 , 1 + (τ3 − ℏ) ξ3)

]
|(ξ−1

3 >ℏ) .

Residual and reversed moment
The nth moment of the residual life of X is given by

	

mn,x(t) = 1
1 − FV(t)

∞∑
τ1,τ2=0

n∑
r=0

n∑
τ3=0

c[1]
r




c
[1]
τ1,τ2 δ

(ξ∗
2 ,n)

τ3

[
B (ξ∗

2 , 1 + (τ3 − n) ξ3)
−Bt (ξ∗

2 , 1 + (τ3 − n) ξ3)
]

−c
[2]
τ1,τ2 δ

(1+ξ∗
2 ,n)

τ3

[
B (1 + ξ∗

2 , 1 + (τ3 − n) ξ3)
−Bt (1 + ξ∗

2 , 1 + (τ3 − n) ξ3)
]


 |(ξ−1

3 >n),

where c[1]
r =

(
n
r

)
(−t)n−r . The nth moment of the reversed residual life of X becomes

	
Mn,x(t) = 1

FV(t)

∞∑
τ1,τ2=0

n∑
r=0

n∑
τ3=0

c[2]
r

[
c

[1]
τ1,τ2 δ

(ξ∗
2 ,n)

τ3 Bt (ξ∗
2 , 1 + (τ3 − n) ξ3)

−c
[2]
τ1,τ2 δ

(1+ξ∗
2 ,n)

τ3 Bt (1 + ξ∗
2 , 1 + (τ3 − n) ξ3)

]
|(ξ−1

3 >n),

where c[2]
r = (−1)r

(
n
r

)
tn−r.
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Fig. 4.  Three dimensional kurtosis plot.
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Simulation study
The purpose of this section is to evaluate the maximum likelihood (ML) method’s performance. The 
implementation of MLE has been widely discussed and applied in various domains. For example, see Rytgaard 
et al.39, Xu et al.40 and Yan et al.41. In general, evaluation of any estimation method’s performance can be done 
by numerical, graphical, or both methods. We can conduct the simulation experiments to evaluate the finite 
sample behaviour of the maximum likelihood estimations (MLEs) graphically and with the use of biases and 
mean squared errors (MSEs). Essentially, the hihjt biases of MLEs can be corrected by using the resampling 
bootstrapping method. The bootstrapping percentile approach can also be used to produce the estimations using 
intervals. The suggested version may also be subjected to likelihood ratio tests. The assessment was based on 
N =1000 replication for all n|(n=10,20,...,1500). The following algorithm is considered: 

	1.	 Generate N=1000 samples of size n|(n=50,100,...,500) from the CPII distribution using (4); 

	
xu =

({
1 − [−ξ1 ln (1 − u [Υ (ξ1)])]

1
ξ2

}− 1
2ξ

−1
3 − 1

)
.

	2.	 Compute the MLEs for the N=1000,
	3.	 Compute the standard errors (SEs) of the MLEs for the N=1000 samples.
	4.	 Compute the biases and mean squared errors (MSEs) given for V = ξ1, ξ2, ξ3. We repeated these steps for 

n|(n=10,20,...,1500) with ξ1 = 1, 2, .., 1000, ξ2 = 1, 2, .., 1000 and ξ3 = 1, 2, .., 1000, so computing bias-
es

(
BiasV(n)

)
, MSEs (MSEh(n)) for V = ξ1, ξ2, ξ3and n|(n=10,20,...,1500) where 

	
BiasV(n)|(V=ξ1,ξ2,ξ3) = 1

1500

1500∑
n=1

(
V̂n − V

)
,

	 and 

	
MSEV(n)|(V=ξ1,ξ2,ξ3) = 1

1500

1500∑
n=1

(
V̂n − V

)2
.

Figure 5, Figure 6 and Figure 7 give the biases (left panels) and MSEs (right panels) for the parameters ξ1, ξ2, ξ3 
andrespectively. The left panels from Figure 5, Figure 6 and Figure 7 show how the three biases vary with respect 
to n|(n=10,20,...,1500). The right panels from Figure 5, Figure 6 and Figure 7 show show how the three MSEs vary 
with respect to n|(n=10,20,...,1500). In Figure 6, the red broken line indicates that the biases are zero. As n goes 
to ∞, the biases for each parameter are often negative, as seen in Figure 5, Figure 6 and Figure 7 (left panels). 
The right panels of Figure 5, Figure 6 and Figure 7 show that as n approaches ∞, the MSEs for every parameter 
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Fig. 5.  biases and MSE for ξ1.
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approach zero. The ML approach is highly advised for estimating the unknown model parameters based on 
Figure 5, Figure 6 and Figure 7.

Applications
Two real-life examples are given in this section to highlight the significance and adaptability of the CPII paradigm. 
The standard PII model, exponentiated PII (EPII), four-paramete Kumaraswamy PII (KmPII), four-paramete 
Macdonald PII (McPII), four-paramete Beta PII (BPII), three-parameter gamma PII (GaPII), three-parameter 
transmuted the three-parameter Topp-Leone PII (TTLPII), Reduced TTLPII (RTTLPII), three-parameter odd 
log-logistic PII (OLLPII), reduced OLLPII (ROLLPII), two-parameterreduced Burr-Hatke PII (RBHPII), three-
parameter special generalised mixture PII (SGMPII), and three-parameter proportional reversed hazard rate PII 
(PRHRPII) are compared to the fits of the CPII.

The first dataset, which is provided by Murthy et al.42, shows the instances when the aircraft windscreen 
failed (84 observations). The second piece of data is the 63 aircraft windscreens’ service times, which are likewise 
provided by Murthy et al.42. The real-lifed data sets43 and Goual et al.44 have to offer are very helpful as well. 
Presented here are the kernel density estimations (KDEs) to investigate the initial density shape for the two real 
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Fig. 7.  biases and MSE for ξ3.
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datasets in a nonparametric manner (see Figures 8 (top left) and 9 (top left). “Bimodal and positive skewed” 
is how the nonparametric KDE for the first dataset is displayed in Figure 8 (top left). Nonparametric KDE is 
likewise “bimodal and positive skewed” for the second dataset, as Figure 9 (top left) illustrates. The box-plot is 
shown in Figures 8 (bottom left) and 9 (bottom left) to help identify the extremes. We can see from Figures 8 
(bottom left) and 9 (bottom left) that neither of the two real-life data sets contained any extreme values.

Furthermore, a variety of graphical methods will be examined, including the skewness-kurtosis plot (also 
known as the Cullen and Frey plot) for examining the initial fit to various theoretical distributions, including the 
logistic, uniform, normal, exponential, beta, and Weibull models. Plotting is used to apply bootstrapping with 
greater accuracy. A summary of a distribution’s characteristics is provided by the Cullen and Frey plot, which 
compares distributions in the space of squared skewness and kurtosis. The Cullen and Frey plot for the aeroplane 
windscreen data failure times is shown in Figure 10. The Cullen and Frey plot for the second data set is shown 
in Figure 11. The fitting PDF (upper left panel) and estimated HRF (upper right panel) are displayed in Figure 
12. The fitted PDF (top left panel) and estimated HRF (top right panel) are displayed in Figure 13. The aircraft 
windscreen data’s failure times are fitted by the CPII model using Figure 12. The aeroplane windscreen data’s 
times of service are fitted by the CPII model based on Figure 13.

The competitive versions are compared using the Bayesian information criterion (BIC), Akaike IC (AIC), 
Hannan-Quinn IC (HQIC), and Consistent AIC (CAIC) goodness-of-fit statistic tests. Tables 3 and 4 present the 
findings for the times of failure data (initial data set). Regarding the times of service data (the second data set), 
Tables 5 and 6 present the findings. The MLEs and standard errors (SEs) for the failure data timings are listed 
in Table 3. The MLEs and matching SEs for the times of service data are listed in Table 5. The goodness-of-fits 
and −ℓ̂ statistics for the times of failure data are listed in Table 4. The goodness-of-fits and −ℓ̂ statistics for the 
times of service data are listed in Table 6. Tables 4 and 6 show that, out of all the fitted models, the CPII model 
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Fig. 9.  KDE and box plots for data set II.
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Fig. 12.  FPDF and FHRF plots for failure data.
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Fig. 11.  Cullen and Frey plot for times of service data.
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Fig. 10.  Cullen and Frey plot for times of failure data.
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has the lowest values for the CAIC=167.4124, AIC=v, BIC=174.4048, and HQIC=170.0439 values. Therefore, 
based on the CAIC=185.6753, AIC=185.2686, BIC=191.698, and HQIC=187.7973 criterion, the CPII model 
might be deemed the best model. Table 2 provides the summary statistics for the times of failure and times of 
service respectively.

Reliability PORT-VAR analysis and assessment
As highlighted in the research conducted by Aljadani et al.45, Alizadeh et al.46, and Yousof et al.47, varying the 
Mean of Order-P (MOOP ) allows for a more comprehensive analysis. This approach is frequently applied to 
multiple values of P (P ∈ I+ = 1, 2, 3, ...) to assess how different moments affect the dataset. Such multi-order 
analysis is particularly important in the field of finance, where understanding both central trends and extreme 
risks is essential for making informed decisions (see also Shehata et al.48 and Yousof et al.49). The MOOP  is 
mathematically defined as

	
MOOP =

(
1
n

n∑
i=1

xP
i

) 1
P

,

In this equation, xi denotes the individual data points, nn represents the total number of data points, and 
P indicates the order. For P = 1, the MOOP  simplifies to the arithmetic mean. When P = 2, it yields the 
quadratic mean, also known as the root mean square, which emphasizes larger values in the dataset. For P = 0, 
the MOOP  results in the geometric mean, though this is not strictly defined within the MOOP  framework 
and is applicable only when all xi> 0. As the value of P increases, the MOOP  becomes increasingly sensitive 
to extreme values. For instance, the quadratic mean (with P = 2) assigns greater weight to larger observations 
compared to the arithmetic mean. This characteristic makes the MOOP  a valuable tool for capturing the impact 
of outliers and understanding the distribution of reliability data more effectively. By utilizing varying orders of 
P, analysts can gain deeper insights into the behavior of datasets, particularly in contexts where extremes play 
a crucial role in risk assessment and decision-making processes. The field of risk analysis, particularly under 
insurance, reliability and claim-size data, has seen significant advancements through the introduction of novel 
statistical models. These models address complexities in real-world data, including asymmetry, bimodality, 
and heavy-tailed distributions. Shrahili et al.50 introduced an asymmetric density function for analyzing risk 
claim-size data, particularly in the context of bimodal distributions. This model addresses the challenge of 
bimodal data patterns, which often occur in insurance and financial datasets. In the context of bimodal and 
symmetric data modeling, Yousof et al.51 presented a novel model for quantitative risk assessment. Yousof et 
al.52 introduced the reciprocal Weibull extension, which provides a robust framework for modeling extreme 
values in insurance datasets. Similarly, Ibrahim et al.53 proposed the compound reciprocal Rayleigh model, a 
model designed for left-skewed insurance data. Yousof et al.54 explored the use of the bimodal heavy-tailed Burr 
XII model in insurance risk analysis. In another study, Alizadeh et al.55 introduced a novel XGamma extension 
for risk analysis under reinsurance data. Loubna et al.56 introduced the quasi-xgamma frailty model, which 
addresses the heterogeneity problem in emergency care data. In a related study, Teghri et al.57 proposed a two-

data set min max µ′
1 median µ2 skewness kurtosis

Times of failure 0.040 4.663 2.558 2.3545 1.251768 0.0994940 2.347684

Times of service 0.046 5.140 2.085 2.0650 1.550591 0.4395925 2.732589

Table 2.  Summary statistics.
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Fig. 13.  FPDF and FHRF plots for service data.
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parameter Lindley-frailty model. The integration of novel probability models (continuous and discrete) into 
economic and actuarial risk analysis is further demonstrated by Elbatal et al.58 Afify et al.59, Teamah et al.60, and 
Yousof et al.61. Furthermore, Alizadeh et al.46 extended the Gompertz model, focusing on extreme stress data. 
The authors employed this model in assessing risk under extreme conditions, which is essential for industries 
exposed to high-risk environments, such as insurance and finance. The study’s use of statistical threshold risk 
analysis highlights its practical relevance in risk-sensitive industries.

Model −ℓ̂ AIC CAIC BIC HQIC

CPII 80.55618 167.1124 167.4124 174.4048 170.0439

McPII 129.8023 269.6045 270.3640 281.8178 274.5170

RCPII 132.1993 270.3987 270.6987 277.6911 273.3302

OLLPII 134.4235 274.8470 275.1470 282.1394 277.7785

TTLPII 135.5700 279.1400 279.6464 288.8633 283.0487

GaPII 138.4042 282.8083 283.1046 290.1363 285.7559

BPII 138.7177 285.4354 285.9354 295.2060 289.3654

EPII 141.3997 288.7994 289.0957 296.1273 291.7469

ROLLPII 142.8452 289.6904 289.8385 294.5520 291.6447

SGMPII 143.0874 292.1747 292.4747 299.4672 295.1062

PRHRPII 162.8770 331.7540 332.0540 339.0464 334.6855

PII 164.9884 333.9767 334.1230 338.8620 335.9417

RBHPII 168.6040 341.2081 341.3562 346.0697 343.1624

Table 4.  Statistics for times of failure data.

 

Model Estimates

CPII(ξ1, ξ2, ξ3)
8.6×103 3.88956 3.86×10−2

(6.9×101) (0.03840) (1.21×10−2)

McPII(a, b, ξ1, ξ2, ξ3)
2.187521 119.1751 12.41714 19.92433 75.6606

(0.5211) (140.297) (20.845) (38.9601) (147.24)

TTLPII(a, ξ1, ξ2, ξ3)
−0.80751 2.47663 (15608.2) (38628.3)

(0.13962) (0.54176) (1602.37) (123.936)

KmPII(a, ξ1, ξ2, ξ3)
2.6150 100.2756 5.27710 78.6774

(0.3822) (120.486) (9.8116) (186.005)

BPII(a, ξ1, ξ2, ξ3)
3.60360 33.63870 4.830700 118.8374

(0.6187) (63.7145) (9.23820) (428.927)

PRHRPII(ξ2, ξ1, ξ2)
3.73×106 4.707×10−1 4.49×106

(1.01×106) (0.00051) (37.14684)

RTTLPII(ξ1, ξ2, ξ1)
−0.84732 5.52057 1.15678

(0.10010) (1.18479) (0.09588)

SGMPII(ξ1, ξ2, ξ3)
−1.04×10−1 9.83×106 1.18×107

(0.1223) (4843.3) (501.04)

OLLPII(ξ1, ξ2, ξ3)
2.32636 (7.17×105) 2.34×106)

(2.14×10−1) (1.19×104) (2.61×101)

GaPII(ξ1, ξ2, ξ3)
3.58760 52001.49 37029.66

(0.5133) (7955.00) (81.1644)

EPII(ξ1, ξ2, ξ3)
3.62610 20074.51 26257.68

(0.6236) (2041.83) (99.7417)

ROLLPII(ξ1, ξ2)
3.890564 0.573161

(0.36524) (0.01946)

RBHPII(ξ1, ξ2)
10801754 51367189

(983309) (232312)

PII(ξ1, ξ2)
51425.35 131789.8

(5933.49) (296.119)

Table 3.  Estimation results for times of failure data.
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Aircraft windscreen safety, dependability, and cost-effectiveness depend on the analysis and assessment 
of reliability PORT-VAR. These studies assist control hazards, facilitate maintenance scheduling, guarantee 
adherence to safety regulations, and offer insightful information on how components behave in harsh 
environments. Companies can improve the safety and dependability of crucial aviation components by 
concentrating on extreme values and the dangers that go along with them. Due to Aljadani et al.45 and Yousof 
et al.47, the goal of PORT-VAR analysis is to comprehend the behaviour of data points that surpass a given 
threshold. This may entail examining impact forces or stress levels that exceed typical operating circumstances 
in the case of aircraft windscreens.

A PORT-VAR method study of extreme failures is shown in Table 7. A PORT-VAR method study of times 
of service is shown in Table 8. The purpose of this analysis is to determine the frequency and magnitude of 

Model −ℓ̂ AIC CAIC BIC HQIC

CPII 89.63428 185.2686 185.6753 191.698 187.7973

KmPII 100.8676 209.7353 210.4249 218.3078 213.1069

TTLPII 102.4498 212.8996 213.5893 221.4722 216.2713

GaPII 102.8332 211.6663 212.0730 218.0958 214.1951

SGMPII 102.8940 211.7881 212.1949 218.2175 214.3168

BPII 102.9611 213.9223 214.6119 222.4948 217.2939

EPII 103.5498 213.0995 213.5063 219.5289 215.6282

OLLPII 104.9041 215.8082 216.2150 222.2376 218.3369

PRHRPII 109.2986 224.5973 225.004 231.0267 227.1264

PII 109.2988 222.5976 222.7976 226.8839 224.2834

ROLLPII 110.7287 225.4573 225.6573 229.7436 227.1431

RTTLPII 112.1855 230.3710 230.7778 236.8004 232.8997

RBHPII 112.6005 229.2011 229.4011 233.4873 230.8869

Table 6.  Statistics for the times of service data.

 

Model Estimates

CPII(ξ1, ξ2, ξ3)
−3.708664 1.333142 0.956064

(1.86869) (0.76907) (0.13454)

KmPII(a, ξ1, ξ2, ξ3)
1.66914 60.5673 2.56490 65.0640

(0.2570) (86.0131) (4.7589) (177.59)

BPII(a, ξ1, ξ2, ξ3)
1.92183 31.2594 4.9684 169.5719

(0.3184) (316.841) (50.528) (339.21)

TTLPII(a, ξ1, ξ2, ξ3)
(−0.6070) 1.785780 2123.391 4822.789

(0.21371) (0.41522) (163.915) (200.009)

PRHRPII(ξ2, ξ1, ξ2)
1.59×106 3.93×10−1 1.30×106

(2.01×103) (0.00004) (00.95×106)

RTTLPII(ξ1, ξ2, ξ1)
−0.67145 2.74496 1.01238

(0.18746) (0.6696) (0.11405)

SGMPII(ξ1, ξ2, ξ3)
−1.04×10−1 6.45×106 6.33×106

(4.1×10−10) (3.21×106) (3.8573)

OLLPII(ξ1, ξ2, ξ3)
1.66419 6.340×105 2.01×106

(1.79×10−1) (1.68×104) 7.22×106

GaPII(ξ1, ξ2, ξ3)
1.9073 35842.433 39197.57

(0.3213) (6945.074) (151.653)

EPII(ξ1, ξ2, ξ3)
1.9145 22971.154 32881.99

(0.3482) (3209.533) (162.230)

ROLLPII(ξ1, ξ2)
2.37233 0.69109

(0.26825) (0.04488)

RBHPII(ξ1, ξ2)
14055522 53203423

(422.005) (28.52323)

PII(ξ1, ξ2)
99269.78 207019.37

(11863.5) (301.2366)

Table 5.  Estimation results for times of service data.
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failure values exceeding specific VaR thresholds. This kind of examination is essential to comprehending the 
dependability of parts in harsh environments, like aeroplane windscreens. The minimum (Min.) and maximum 
(Max.) value among the peaks exceeding the threshold are given 1st Quartile (1st Qu.), the median, the mean and 
3rd Quartile (3rd Qu.) of peaks are calculated. The VAR-threshold under CL=50%, 60%, 70%, 75%, 80%, 85%, 
90%, 95% and 99% presented. the N. of peaks above VAR-threshold are calculated. As a defults, we considered 
P = 5 and therefore we calculated MOO 5.

Moreover, we presented Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19 for MOOP  analysis. 
Figure 14 shows the hisograms and the peaks above VAR-threshold for CL=50%, 60%, 70%, 75%, 80%, 85%, 
90%, 95% and 99% respectively for the extreme failures. Figure 15 illustrates the hisograms and the peaks above 
VAR-threshold for CL=50%, 60%, 70%, 75%, 80%, 85%, 90%, 95% and 99% respectively for the extreme times 
of service. Figure 16 presents a graphical description for the assessment of the MOOP  analysis for the extreme 
failures. Figure 17 provides a graphical description for the MOOP  values, MSE and biases for the extreme 
failures. Figure 18 gives a graphical description for the assessment of the MOOP  analysis for the extreme times 
of service. Figure 19 shows a graphical description for the MOOP  values, mean squared error and biases for the 
extreme times of service.

The evaluation of extreme failures is the main topic of Table 7. It describes how many peaks are above certain 
VaR thresholds, which range from 50% to 99%, and gives an overview of these peaks with the lowest, maximum, 
median, first quartile, mean, and third quartile values. Understanding the distribution and frequency of failure 
events at different risk categories is made easier by this study. Based on Table 7, we note that: 

	1.	 The VAR-threshold=2.35 |CL=50%. Then the VAR-threshold decreased to reach 0.26 |CL=59%. As the con-
fidence level rises, the VAR-threshold values gradually drop. As we go from higher to lower confidence lev-
els, this graph illustrates how criteria to identify extreme values become more stringent. Higher thresholds 
concentrate on the more uncommon and severe failures, while lower thresholds capture more frequent and 
less severe extreme readings. These thresholds can be analysed to determine the risk and reliability of severe 
events, which is important information for performance and safety assessments in areas such as aircraft 
windscreen reliability.

	2.	 The nubmer of peaks above VAR-threshold is 42 for VAR-threshold=2.35 at CL=50. Then, it inceased to 83 for 
VAR-threshold=0.26 at CL=99%. As the threshold gets smaller, there are more peaks over the VAR-thresh-
old, which indicates that a wider range of extreme values are being captured.

VAR-threshold N. of peaks

Summary of peaks

Min. 1stQu. Median Mean 3rdQu. Max. MOO5

CL↓ 0.1728

50% 2.06 31 2.117 2.450 2.820 3.086 3.561 5.140

60% 1.78 38 1.794 2.147 2.635 2.877 3.438 5.140

70% 1.25 44 1.249 2.034 2.503 2.684 3.152 5.140

75% 1.12 47 1.152 1.942 2.435 2.588 3.053 5.140

80% 1.01 50 1.010 1.824 2.291 2.497 2.990 5.140

85% 0.92 53 0.952 1.580 2.183 2.411 2.950 5.140

90% 0.41 56 0.487 1.393 2.152 2.318 2.896 5.140

95% 0.25 59 0.280 1.246 2.137 2.217 2.849 5.140

99% 0.10 62 0.140 1.160 2.091 2.118 2.820 5.140

Table 8.  PORT-VAR analysis and assessment for extreme times of service.

 

VAR-threshold N. of peaks

Summary of peaks

Min. 1stQu. Median Mean 3rdQu. Max. MOO5

CL↓ 0.43

50% 2.35 42 2.385 2.910 3.409 3.475 4.155 4.663

60% 2.14 50 2.154 2.635 3.115 3.275 4.007 4.663

70% 1.91 59 1.912 2.264 2.962 3.085 3.739 4.663

75% 1.84 63 1.866 2.208 2.902 3.009 3.647 4.663

80% 1.62 66 1.619 2.144 2.823 2.929 3.587 4.663

85% 1.49 71 1.505 2.087 2.661 2.852 3.528 4.663

90% 1.28 74 1.303 2.017 2.639 2.793 3.475 4.663

95% 0.96 79 1.070 1.911 2.610 2.692 3.455 4.663

99% 0.26 83 0.301 1.871 2.385 2.588 3.409 4.663

Table 7.  PORT-VAR analysis and assessment for extreme failures.
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This analysis is extended to severe service times in Table 8. Similar summary information are provided, and it 
assesses the frequency with which service times surpass designated VaR criteria. Determining the dependability 
of windscreens over extended periods of use and in adverse environments requires this evaluation. Based on 
Table 8, it is seen thatL 
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Fig. 14.  Hisograms and the peaks above VaR-threshold for the extreme failures.
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	1.	 The VAR-threshold is 2.06 at 50% confidence level, and there are 31 peaks (or extreme service times) above 
it. Because of its relatively high threshold, the more significant but less common extreme service times are 
captured. The thirty-one peaks show a modest degree of extreme values, indicating that although some ser-
vice periods are lengthy, they are not the longest. However, the criterion is 0.10 at the 99% confidence level, 
and 62 peaks are over this value. Nearly all data points fall below the incredibly low criterion of 0.10, leading 
to the classification of 62 peaks as severe. This emphasises how frequently and to what extent exceptional 
service times occur, showing that nearly all observations at this level are considered extreme.
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Fig. 15.  Hisograms and the peaks above VaR-threshold for the extreme times of services.
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	2.	 The findings show that the number of peaks (extreme service times) rises when the VAR-threshold falls. 
Since more data points are captured as extreme values at a lower threshold, this tendency is expected. The 
number of severe service times increases significantly as the criterion becomes less restrictive, as seen by the 
increase from 31 peaks at the 50% CL to 62 peaks at the 99% CL. This data is essential for determining the 
frequency and severity of extreme service times that may have an impact on performance and safety, as well 
as the component’s reliability and risk.

Generally, a considerable number of peaks over certain Value-at-Risk (VaR) thresholds for extreme failures are 
shown in the data. As the VAR-threshold drops, more peaks appear, indicating that extreme failure occurrences 
occur more frequently at lower threshold values. There is also a significant frequency of peaks exceeding the 
VaR standards during excessive periods of service. Similar to Table 7, the frequency of peaks increases as the 
threshold drops, but the overall service time values fluctuate noticeably, indicating the variability of extreme 
service circumstances.

There are fewer peaks at higher VaR thresholds (such as 50% and 60%), which suggests that there are fewer 
extreme failure events at these levels. Lower criteria, such as 95% and 99%, on the other hand, exhibit more 
peaks, indicating that dramatic failures occur more frequently. Comparable patterns are seen, where lower 
thresholds denote a greater frequency of severe service times and higher thresholds suggest fewer peaks. When 
compared to other thresholds, the excessive service times at the 99% VAR-threshold are comparatively shorter, 
but they happen more frequently. As the bar for classifying an event as extreme decreases, both tables show that 
extreme events (failures or service times) become more common. This implies that, under some situations, there 
is a considerable risk of extreme occurrences for the windscreens of aircraft. The fact that both tables’ maximum 
values are noticeably high suggests that extreme events occasionally have the potential to be extremely severe. 
This highlights the necessity of sound design and quality control procedures.

Several suggestions can be made to enhance the product’s dependability and safety based on the PORT-VAR 
study for extreme failures of aircraft windscreens. The study results, which display the summary statistics for 
extreme service periods and the number of peaks above different VaR criteria, offer important information about 
how frequently and to what extent the windscreens are subjected to harsh conditions. These observations can be 
connected to engineering and reliability procedures in the following ways: 
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Fig. 16.  Graphical description for the assessment of the MOOP analysis for the extreme failures.
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	1.	 The examination reveals a broad range of peaks exceeding VaR thresholds, and as the threshold drops, the 
number of excessive service times rises. This suggests that extreme values are not uncommon, especially 
when thresholds are smaller. Adopt stricter testing procedures that more accurately replicate harsh envi-
ronments. This could involve testing windscreens in a wider range of climatic circumstances (such as strong 
winds and harsh temperatures) to better understand performance limits, as well as subjecting them to accel-
erated conditions to replicate long-term usage and discover vulnerabilities.

	2.	 Improved maintenance procedures can be required if there are a lot of severe service times. Create and put 
into action thorough maintenance procedures. Plan to get windscreens inspected more frequently, particu-
larly if they are in use for longer than usual. Make use of predictive analytics to project future failures by 
analysing past performance data.

Analogously, for extreme times of service data, we have the following recommendations: 

	1.	 Improve the testing procedures to guarantee that the windscreens can tolerate harsh circumstances. Make 
sure the windscreens are capable of withstanding harsh and extended circumstances by simulating them 
using accelerated testing techniques. Conduct tests that surpass the existing operational and environmental 
parameters in order to detect any vulnerabilities.

	2.	 Frequent extreme service times indicate that the current maintenance practices might need to be adjusted. 
Establishing a program for routine maintenance and inspections is advised, particularly for parts that have 
been in use for extended periods of time. Predictive analytics can be used to identify possible problems and 
take action before they become serious.

Conclusions
This work deduces and examines the compound PII distribution (CPII), a novel three-parameter lifespan 
distribution. Three possible densities for the CPII’s density function are “left skewed with no peak,” “right skewed 
with unimodal shape,” and “right skewed with no peak.” Three possible failure rate functions for the CPII are 
“increasing-constant,” “upside down,” and monotonically declining. It is possible to express the new CPII density 
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as a straightforward combination of the exponentiated PII densities. It is observed that the skewness can be 
more than zero through numerical analysis of the skewness, kurtosis, and dispersion index. The kurtosis ranges 
in spread from 9.4557 to 4088911. The CPII model can be employed as a “under-dispersed” or “over-dispersed” 
model depending on whether the dispersion index is in the range of (0, 1) or greater. The three-dimensional U 
skewness form, the three-dimensional decreasing skewness shape, and the three-dimensional growing skewness 
shape are only a few of the many useful shapes that the skewness of the new density might take. The three-
dimensional U kurtosis form, the three-dimensional falling kurtosis shape, and the three-dimensional growing 
kurtosis shape are only a few of the many interesting shapes that the new model’s kurtosis can take. Due to these 
features, the new model may describe and model a wide range of observable physical, social, geophysical, and 
actuarial events. The unknown CPII parameters are estimated using the highest likelihood technique. The finite 
sample behaviour of the estimate approach is evaluated using simulation trials, which are graphically represented 
and quantified by “biases” and “mean squared errors”. It can be observed that as n approaches ∞, all parameter 
biases tend to be negative and fall to zero, and all parameter MSEs also decline to zero. Among the several well-
known PII extensions, the new model deserves to be selected as the best model.

For manufacturers of aviation windscreens, the dependability Peaks Above a Random Threshold Value at 
Risk (PORT-VAR) analysis is essential because it offers a thorough evaluation of extreme failure occurrences and 
service times, both of which are vital for guaranteeing the durability and safety of their products. Through this 
study, organisations may determine the frequency and severity of failures that surpass particular Value-at-Risk 
thresholds. This information helps them to understand the limits of their products’ performance under stress, 
optimise their designs for increased durability, and create proactive maintenance plans. This understanding 
is crucial for reducing hazards, enhancing dependability, and upholding strict adherence to aviation safety 
regulations. Ensuring the dependability and safety of vital parts, like aeroplane windscreens, is crucial for 
the aviation sector. The overall safety and operational effectiveness of aircraft are directly impacted by these 
components’ performance in harsh environments, both in terms of failure rates and service times. Advanced 
analytical tools are used to evaluate and comprehend the behaviour of these components in such settings. The 
results of the PORT-VAR analysis for severe service times and failures, as shown in this paper. By comparing 
different Value-at-Risk (VaR) thresholds to the frequency and features of extreme events, these tables offer a 
thorough evaluation of the dependability of aeroplane windscreens.
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Fig. 18.  of the MOOP analysis for the extreme times of service.
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