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Traditional gene expression deconvolution methods assess a limited number of cell types, therefore 
do not capture the full complexity of the tumor microenvironment (TME). Here, we integrate nine 
deconvolution tools to assess 79 TME cell types in 10,592 tumors across 33 different cancer types, 
creating the most comprehensive analysis of the TME. In total, we found 41 patterns of immune 
infiltration and stroma profiles, identifying heterogeneous yet unique TME portraits for each cancer 
and several new findings. Our findings indicate that leukocytes play a major role in distinguishing 
various tumor types, and that a shared immune-rich TME cluster predicts better survival in bladder 
cancer for luminal and basal squamous subtypes, as well as in melanoma for RAS-hotspot subtypes. 
Our detailed deconvolution and mutational correlation analyses uncover 35 therapeutic target and 
candidate response biomarkers hypotheses (including CASP8 and RAS pathway genes).
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The tumor microenvironment (TME) is a dynamic ecosystem consisting of various cell types and processes that 
play a crucial role in tumor initiation, growth, progression, metastasis, and response to therapy1–4. A detailed 
characterization of the TME and its association with genomic and clinical features has yet to be described. Such 
an analysis can deepen our understanding of tumor biology and resistance mechanisms (e.g., immune escape 
and suppression), may guide biomarker discovery and help identify therapeutic strategies for cancer.

The gold-standard to study TME is single cell transcriptomics and spatial proteomics or transcriptomics5,6. 
These approaches currently have limitations ranging from low-resolution (spatial transcriptomics), limited 
number of markers (spatial proteomics) to potential loss of cell types during sample preparation (single cell 
RNAseq (scRNA-seq)), and high cost7. As an alternative, computational methods can be used to deconvolve a 
tumor sample from its bulk gene expression profile (which is a mixture of tumor and TME cells)8,9. The advantage 
of such methods is that they can be applied to thousands of existing gene expression profiles from tumor tissues 
and can provide a comprehensive assessment of the TME. Numerous TME studies have applied computational 
deconvolution to large expression datasets to assess immune and, to a lesser extent, stromal components of the 
TME10–17. These studies have identified broad patterns of immune infiltration across multiple cancer cohorts, 
and in some cases associated these patterns with prognostic significance10–17. These studies typically use one 
computational deconvolution technique, which limits the number of cell types estimated and may suffer from 
systematic biases. As a result, multiple constituents of the TME, how they correlate with each other, form patterns 
of infiltration and predict outcomes remain poorly understood. Additionally, there has been little study of how 
cancer genomics sculpt TME patterns, which requires analysis of thousands of tumors.

To address the limits of each individual deconvolution tool, we developed a strategy to combine results from 
nine different supervised deconvolution tools into one integrated score (iScore) per cell type. The concept of 
combining different deconvolution sources has been recently attempted18,19. One such approach focused on 
merging gene signatures from different tools, which were later used to deconvolve 15 immune cell-types using 
a single method called ssGSEA18. Instead, we aimed to integrate cell type compositions inferred from each 
tool. Our computationally inferred TME landscape consisted of 79 different cell types/biological processes, 
including immune and stroma cell types. Applied across 33 distinct TCGA cancer types, we identified numerous 
associations between TME and patient survival and genomic features. Globally, our deconstructed TME profiles 
segregated tumors into 41 distinct clusters, predominantly driven by cancer type and patterns of leukocyte 
infiltration (Fig. 1A). Unlike other reports, these results using more cell types emphasize how each cancer type, 
when viewed comprehensively, has a unique TME architecture.

Results
Integrated scores combine cell type estimates from different tools
We applied nine deconvolution tools to gene expression profiles (GEPs) of 10,592 tumor and normal tissues 
(Fig. 1A, Tables S1, S2). The deconvolved cell type estimates were standardized across all samples. Standardized 
estimates were averaged across all tools resulting in one integrated score (iScores) per cell type. This approach led 
to quantification of 79 cell types (immune, stromal, progenitor and stem cells) (Table S3). Since TME conditions 
such as hypoxia and angiogenesis may influence tumor growth and metastasis, we also quantified 24 processes 
related to TME function and sensitivity to immunotherapy (Table S3). We calculated two aggregated scores: one 
average score for all leukocytes (leukocyte iScores) and another for all stroma cell types (Stromal iScore).

We validated our approach against measures of total immune content from different sources. First, we 
compared the leukocyte iScores with leukocyte fractions obtained from DNA methylation profiles and found 
a significantly positive pan-cancer correlation between them (r = 0.77) (Figs.  1B, S1A). 28 of the 30 cancer 
types had a median correlation of 0.80 ± 0.13, with the exceptions of LUSC and UCS (Fig. S1B). This variation 
in correlations across cancer types can, in part, be explained by tissue-specific methylation probes, as DNA 
methylation patterns can vary by tissue type. When compared to tumor purities, leukocyte iScores had strong 
negative correlations with tumor purities inferred from both RNA-seq (ESTIMATE20 r = −  0.83) and DNA-
seq (ABSOLUTE21 r = − 0.60) (Table S4). Percentage of tumor infiltrating lymphocytes (TILs) quantified from 
H&E-stained slide images, and abundance of T-cell receptors quantified from bulk RNA-seq also had positive 
correlations with corresponding aggregated lymphocyte and T-cell iScores (r = 0.34 and 0.65, respectively) 
(Table S4). We found that iScores had more highest correlations than individual estimates from each tool (Fig. 
S1A, Table S4).

To compare iScores with previously published TME deconvolution, we selected two studies, each of which 
had clustered the TCGA tumors into six distinct immune subtypes14,17. The median leukocyte iScores increased 
from least cytotoxic to most cytotoxic immunephenotypes14 and were highest in interferon gamma (IFNg) and 
inflammatory clusters (C2,C3) and lowest in immune quiet cluster (C5)17 (Figs. 1C,  S1C), showing consistent 
patterns with published immune subtypes of cancer (Anova p < 2e−16).

In addition to leukocyte iScores, we tested iScore accuracy for individual cell types. We created three sets 
of 1,000 pseudobulks each by mixing known proportions of labelled cell types from scRNA-seq (kidney n = 10, 
endometrial n = 6 and lung n = 5) (Fig. S1D). All pseudobulks were deconvolved using the iScore approach. 
The cell type iScores showed positive correlations to original mixing fractions, with highest immune cell 
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correlations found for macrophages, mast cells, monocytes, Natural Killer (NK) cells, plasma cells, CD8 + T 
cells and regulatory T cells (Tregs) (r ≥ 0.5) (Fig. S1E).  Compared to individual tools, iScores had the highest 
average correlations with original mixing fractions for all cell types deconvolved from pseudobulks (Fig. S1F). 
We also used pseudobulk data to compare iScores with two published deconvolution aggregation methods: 
ConsensusTM and Decosus18,19. In 70% of all comparisons, iScore correlations with ground truth were better 
than or identical to those achieved by either ConsensusTME or Decosus. In contrast, ConsensusTME showed 
better or equal correlations in only 26% of comparisons, and Decosus in 54% (Table S5). Altogether, these 
computational comparisons suggest that our integrative approach to cell type deconvolution can provide 
improved results across numerous cell types.

Leukocyte abundance is heterogenous and correlates with tumor progression
Leukocyte iScores distributions varied extensively across and within the 33 cancers; highest in hematologic 
cancers (e.g., DLBCL, THYM) and lowest in cancers at immune privileged sites22 (e.g., UVM, LGG) (Fig. 1D). 

Fig. 1.  Deconvolution of tumor microenvironment (TME). (A) Overview of the study workflow. Tumor 
expression profiles were deconvolved using nine tools (either reference matrix based, or gene set based) 
into various cell types of the TME. The individual scores from each tool were normalized and combined as 
iScores. The association of these iScores were studied with cancer type, patient survival and driver mutation 
profiles. (B) Pan-cancer correlation between leukocyte iScores from GEPs and leukocyte fractions from 
DNA methylation arrays. Samples are colored by cancer type. (C) Ordered leukocyte iScores compared to 
the immune subtypes identified in two previously published studies. C1-6 are immune subtype clusters from 
Thorsson et al., (C1: Wound healing, C2: IFNg dominant, C3: Inflammatory, C4: Lymphocyte depleted, C5: 
Immunologically quiet, C6: TGFb dominant) and IP1-6 are immune phenotype clusters from Tamborero et 
al., where 1 is least cytotoxic and 6 is most cytotoxic immunophenotype. (D) Distribution of leukocyte iScores 
in 33 cancers ordered by median iScores. Dark gray dashes indicate cancer specific medians, gray dotted line 
indicates pan-cancer median. (E) Distribution of leukocyte iScores across four BRCA subtypes. Significant 
p-values (< 0.05) are shown with asterisk (Mann–Whitney test). ns is non-significant, and REF is reference 
subtype used for comparison with other subtypes. (F) Pan-cancer Kaplan–Meier survival curves for PFS in 
patients stratified by leukocyte iScores. High is upper tertile and low is bottom tertile of the leukocyte iScores. 
Low iScores are reference group. HR is hazard ratio and p is log-rank p-value from multivariate Cox-ph 
regression models adjusted for cancer type, tumor localization, age at the time of diagnosis and gender. (G) 
Cancer specific forest plots for PFS in patients stratified by individual leukocyte iScores. Low iScores are 
reference group Threshold of significance for FDR corrected p-values from multivariate Cox-ph (q) is 0.1.
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We analyzed the leukocyte abundance by tumor localization in skin cutaneous melanoma (SKCM), the only 
TCGA cohort with more metastatic tumors (metastatic n = 367, primary n = 103). In SKCM, metastatic tumors 
localized to lymph nodes had higher leukocyte abundance compared to tumors at primary or other metastatic 
sites (Fig. S2A). Metastatic lymph node sites are known to develop an immunosuppressive TME to allow for 
tumor growth, and higher leukocyte iScores for these sites suggests a possibility of clinical benefit from immune 
checkpoint immunotherapies that circumvent immune evasion23,24. Cancer-dependent differences in leukocyte 
abundance also existed between tumor and adjacent normal tissues e.g., leukocytes were significantly higher in 
tumors relative to adjacent normal in renal cancer KIRC (p < 2.2e−16) (Fig. S2B).

Leukocyte abundance varied among cancer subtypes. Leukocytes were higher in seminomas compared to 
non-seminoma testicular cancer (TGCT)25; higher in stroma-rich and basal squamous bladder cancer compared 
to the luminal papillary subtype (LumP) in BLCA26 (Fig. S2C). Breast cancer (BRCA) luminal subtypes (LumA, 
LumB) had significantly lower levels of leukocytes compared to Basal-like and HER2-Enriched subtypes 
(Fig. 1E), and within HER2-Enriched subtypes, leukocytes were higher in triple negative breast cancer (TNBC) 
(Fig. S2D). These findings indicate substantial diversity in TME composition within the same cancer type and 
subtype.

We tested the prognostic relevance of leukocyte levels in the TME. Tumors with high leukocyte iScores showed 
lower risk of progression pan-cancer (hazard ratio HRadj = 0.73, p = 2.15e−06, n = 6406) (Fig.  1F). Except for 
brain cancers (GBM, LGG), cancer cohorts that showed survival associations with leukocyte abundance showed 
positive correlations, i.e., more leukocytes were associated with better outcome (Fig. 1G). One explanation for 
the brain cancer finding is that leukocyte infiltrates in the brain can promote the release of immunosuppressive 
cytokines that may disrupt the anti-tumor immune activity27.

Heterogeneity in immune cell composition and risk of progression
Like leukocytes, individual immune cells were usually most abundant in hematologic cancers, with some 
exceptions e.g., highest T helper 2 (Th2) in TGCT, Th17 in KICH, and dendritic cells in LUAD (Figs.  2A, 
S3A, Table S6). The distribution patterns differed within macrophage subclasses: uncommitted M0 and pro-
inflammatory M1 macrophages were highest in DLBC but polarized anti-inflammatory M2 macrophages were 
highest in GBM (Fig. 2A, Table S6). These differences are likely due to different signaling molecules in the TME 
that determine macrophage polarization, for example the CSF-1R signaling in gliomas promotes polarization of 
macrophages towards M2 subclass28.

Survival analysis highlighted cancer dependent relationships between progression free survival (PFS) and 
immune cell abundance (Figs. 2B,   S3B). Overall, 51 immune cell types had significant positive or negative 
associations with risk of survival in 22 cancer types (Fig. S3B, Table S7). Cytotoxic T lymphocytes, B cells, resting 
mast cells, NK cells, CD8 T effector memory cells, and Th17 cells had a predominantly positive association 
with PFS (Fig. 2B). Low grade gliomas (LGG) had positive PFS associations with more plasma cells (HR = 0.35, 
CI = 0.25–0.50, q = 4e−07) and resting dendritic cells (HR = 0.59, CI = 0.43–0.83, q = 0.03) (Fig. S3B), but 
high-grade glioblastomas (GBM) only had negative PFS associations with immune abundance. Macrophages 
(HR = 2.0, q = 0.02), including M0 and M2 macrophages (HR = 1.8, q < 0.1) were among the cell types most 
associated with increased risk of progression in GBM.

Tregs are commonly regarded as immune suppressors29. In our analysis, more Tregs associated with 
significantly worse prognosis only in renal clear cell carcinoma, (KIRC; HR = 2.5, CI = 1.7–3.8, q = 5e−04) (Fig.  
S3B, Table S7). Thus, KIRC patients may particularly benefit from inhibiting Tregs, e.g., by blocking immune 
checkpoint VISTA thereby reducing levels of Tregs30. We also found that Th2 cells had negative prognostic 
associations with most cancers (n = 8), except for in COAD (Fig. 2B). Previous studies suggest that Th2 can 
exhibit both anti-tumor activity (via cytokine IL-5 mediated recruitment of eosinophils), and pro-tumor activity 
(via cytokine e.g., IL-4 mediated suppression of pro-tumor Th1 cells)31,32.

Since BRCA is the largest cohort in the TCGA, we were able to conduct a subtype analysis of CD8 + cytotoxic 
T lymphocytes (CTLs) across different subtypes of this cancer. The HER2-Enriched and basal-like subtypes had 
significantly higher CTLs compared to LumA and LumB (Fig. S4). We identified a significantly lower risk of 
progression for BRCA tumors with more CTLs, especially for the HER2-Enriched subtype (reference: LumA; 
HR = 0.13, p = 0.02; nHer2 = 54, nLumA = 454) (Table 1).

CD8 + T cells are central to immune checkpoint immunotherapies33, so we tested combinations of other cell 
types with CD8 + T cells. Low CD8 + T cells combined with high macrophages, high Th2 cells, or high hypoxia 
levels associated with higher risks of progression (HR > 1, p < 0.05) (Table S8). Conversely, high CD8 + T cells 
combined with low Th2 associated with lower risks of progression (Table S8). In addition to revealing new 
hypotheses, these results suggest that risk models capturing cell type combinations can be valuable in predicting 
for patient outcomes.

Stromal composition and immune-stroma interactions in context of progression risk
Compared to immune infiltration, stromal composition of the TME (including fibroblasts, endothelial cells, 
pericytes) is less understood. In our analysis, highest stroma content was identified in renal clear cell carcinoma 
(KIRC), with a comparatively much lower content in the related renal papillary carcinoma (KIRP) (Fig. 3A). One 
explanation for this paradoxical difference between the two renal cancer types is that KIRP has a rich papillary 
architecture while KIRC is comparatively more vascular as shown by the higher expression of vascular marker 
genes (CD34 and CD31) in KIRC compared to KIRP (p-values < 2.2 e−16) (Fig. S5A). Pancreatic cancer (PAAD) 
had predictably high stroma34 (Fig. 3A). Stroma content also varied by tumor localization and subtype (Fig. 
S5B-C). Stroma associated negatively with cancer stemness35 for all cancer types, suggesting that high stroma is 
perhaps indicative of high mesenchymal differentiation (pan-cancer r = − 0.59) (Fig. 3B).
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Fig. 2.  Immune cell type specific iScores and their association with PFS. (A) Distribution of cell type iScores 
ordered by cancer specific medians. (B) Forest plots for PFS in patients stratified by individual cell type iScores 
(reference group: low). HR is hazard ratio and q is FDR corrected (for each cell type) log-rank p-value from 
multivariate Cox-ph regression models for each cell type across. Visualization is restricted to cancer types 
significant at q < 0.1.
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Globally, stromal iScores did not associate with survival (HR = 1.1) (Fig. S5D) but individual stromal cell types 
showed significant associations with PFS. For example, endothelial cells, highest in KIRC (Fig. 3C), associated 
with significantly lower risk of progression (Fig. 3D). Pericytes associated with lower risk of progression in ACC, 
KIRC, and the brain cancers (LGG, GBM) but higher risk of progression in BRCA (Fig. 3D). Cancer associated 
fibroblasts (CAFs) had negative associations with PFS for KIRC, KIRP and LGG (Fig. 3D).

We evaluated stroma in the context of immune cell types. The stroma iScores correlated positively with 
leukocyte content (r = 0.40) except for in THYM and TGCT (Fig. 3E). We then tested survival associations for 
concomitant variations in CD8 + T cells and stroma cell types. Low CD8 + T cells combined with low endothelial 
cells associated with higher risks of progression (HR > 1, p < 0.05) while high CD8 + T cells combined with low 
CAFs associated with lower risks of progression (Table S8). These results suggest a role of immune-stroma 
interactions in regulating tumor growth in the TME.

Global TME map identifies subtype dependent differences in bladder and skin cancers
We sought to leverage iScores to identify global patterns of microenvironment similarities among cancer types. 
We took a comprehensive approach to create a pan-cancer TME map from unsupervised clustering of all 79-cell 
type iScores. We found that the tumors segregated into 41 distinct clusters (Fig. S6A) in the TME map, primarily 
based on cancer type and patterns of overall immune infiltration (Fig. 4A, B).

To identify clinically relevant clusters for each cancer, we applied survival analysis to differently clustered 
tumors from the same cancer. We reviewed the ones with most significant associations with risks of progression. 
We identified two bladder cancer (BLCA) clusters—an immune rich c38 and immune depleted c37 (leukocyte 
iScore p-value = 10e−34) (Fig.  4C, Table S9). c38 was characterized by higher inflammation and adaptive 
immune response: IFNg, T-cells, Checkpoint, CD45 positive cells, and Major Histocompatibility Complex 
iScores compared to c37 (Table S9). The median mutation load was also significantly higher in c38 compared 
to c37 (p-value < 0.01) (Fig. S6B-C). The immune-rich c38 cluster mainly consisted of basal squamous subtype 
tumors (n = 50, 79%), with a small fraction of luminal subtype tumors (luminal-papillary LumP, n = 6, luminal 
unstable LumU, n = 7). Conversely, the immune depleted cluster c37 was predominantly LumP (n = 108, 45%), 
along with basal squamous (n = 57) and other subtypes (n = 68) (Fig. 4C).

Basal squamous tumors in c38 (immune-rich) associated with significantly lower risk of progression 
compared to those in c37 (immune-depleted) (HR = 0.42, p = 0.002) (Fig. 4D, Table S9). The same was noted for 
LumP tumors (Fig. 4E), but with limited interpretability because of the biased sample sizes (n = 6 vs. 108). These 
analyses show that even within the same BLCA subtype, we were able to identify a subset of tumors with high 
T cell recruitment and high mutation load (likely indicative of high neoantigen load 36), which also associated 
with lower risk of progression.

We found two major clusters in SKCM, immune-rich c26 and immune-depleted c25 (c26 n = 217 (198/217 
metastatic), c25 n = 183 (127/183 metastatic), leukocyte iScore p-value = 10e-72) (Figs. 4F,  S6D). We found that 
only the RAS-hotspot subtype tumors in c26 (immune-rich) associated with more than two-fold lower risk 
of progression compared to those in c25 (immune-depleted) (HR = 0.47, p = 0.001) (Fig. 4G, Table S9). There 
were no differences in median mutation load between the two clusters (Fig. S6E) but the RAS-hotspot tumors 
in c26 had significantly higher immune checkpoint gene iScores compared to c25 (p = 1.97e−29). Given the 
success of immune checkpoint inhibitors in KRAS mutated lung tumors with high PD-L1 expression37, it can be 
hypothesized that the immune rich RAS-hotspot melanomas (also characterized by high immune checkpoint 
iScores) may benefit from similar immunotherapies.

Somatic alterations in driver genes associate with immune-stromal contexture
The relationship between the TME and somatic mutations remains poorly defined. This is an important gap to 
address; a better understanding of such relationships could reveal opportunities to target tumor cell proteins to 
modulate TME for therapeutic advantage. Therefore, we studied relationships between 299 driver mutations15 
and patterns of TME composition using linear regression models.

We identified 35 driver genes that significantly associated with >  = 3 distinct cell types (q < 0.1) (Table   S10). 
Amongst the top associations were genes involved in the IFNg response (NUP93, CASP8, IRF2, B2M), TGF-
beta signaling (CDH1, CTNNB1), PDGFR-beta signaling pathway (NRAS, PPP2R1A, PIK3R2, BRAF, HRAS), 
and RAS signaling pathway (NRAS, HRAS) (Fig. 5A). While mutations in genes from the immunosuppressive 
TRAIL signaling pathways (CASP8, PIK3R2) associated positively with higher levels for most cell types (q < 0.05) 
(Fig. 5A), NRAS, KEAP1, and FGFR3 mutations associated negatively with a wide variety of cell types (q < 0.05) 
(Fig. 5A, Table S10). Roles of CASP8 and NRAS in immune infiltration have been reported earlier17,38. Here 
we show that CASP8 mutations positively associate with as many as 26 different immune cell types (Fig. 5A), 

Characteristic HR1,2 SE2 95% CI2 p-value

Cytotoxic Lymphocytes * BRCA Subtype3

 Cytotoxic Lymphocytes * Basal 0.65 0.48 0.25, 1.68 0.40

 Cytotoxic Lymphocytes * Her2 0.13* 0.90 0.02, 0.73 0.02

 Cytotoxic Lymphocytes * LumB 1.21 0.48 0.41, 3.10 0.70

Table 1.  PFS for BRCA subtypes and cytotoxic lymphocytes iScores. 1 *p < 0.05; **p < 0.01; ***p < 0.001. 2 
HR = Hazard Ratio, SE = Standard Error, CI = Confidence Interval. 3 Reference subtype LumA.
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Fig. 3.  Stroma specific iScores and their association with PFS. (A) Distribution of stromal iScores across 33 
cancer types ordered by their cancer specific medians. The gray dashes indicate cancer specific medians, gray 
dotted line indicates pan-cancer median. (B) Pan-cancer correlations between stromal iScores and cancer 
stemness scores for each cancer type plotted against the p values (y-axis) for significance of correlation 
estimate. Significant p-values are colored red. (C) Distribution of stromal cell type iScores ordered by cancer 
specific medians. (D) Forest plots for PFS in patients stratified by individual stromal cell type iScores (reference 
group: low). HR is hazard ratio and q is FDR corrected (for each cell type) log-rank p-value from multivariate 
Cox-ph regression models for each cell type across. Visualization is restricted to cancer types significant at 
q < 0.1. See also Fig. S5. (E) Pan-cancer correlations between leukocyte and stromal iScores for each cancer 
type. x-axis is correlation estimates and y-axis is p values from correlation test. Significant p-values are circled 
in yellow.
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suggesting a broader mechanism adopted by tumors to escape immune surveillance. In contrast, NRAS mutations 
that negatively associated with 25 distinct immune cell types may suggest its role in immune exclusion.

We tested the cell type-mutation relationships for individual cancers (Figs. 5B,   S7A, Table S11–S12). We 
identified prominent negative associations of FGFR3 mutations (especially p.S249, p.Y375) with 11 immune and 
three stromal cell types in bladder cancer, suggesting FGFR3 may have a role in establishing an immunosuppressive 
TME in bladder cancer (Figs. 5B,   S7A, Table S12). In contrast, in TGCT, the KIT p.D816 variant associated 
positively with higher T helper cells, but negatively with NK bright cells (FDR < 0.01) (Fig. 5B).

Fig. 4.  TME Map using cell type iScores. (A) Two-dimensional Tumor Map projection of samples using 
sample similarities in cell type iScores, clustered using HDBSCAN clustering method with a minimal cluster 
size of 20. Each sample is colored by its cancer type. (B) TME map colored by leukocyte iScores. (C) BLCA 
focused part of TME Map as indicated by a dashed box in panels A and B. Samples are colored by BLCA 
subtype. LumNS = luminal non specified, LumP = luminal papillary, LumU = luminal unstable. clusters c37 
and c38 are circled in red and blue, respectively. Kaplan–Meier survival curves for PFS between clusters c37 
and c38 for BLCA. (D) Basal Squamous subtype and (E) luminal papillary subtype. HR is hazard ratio and p 
is p-value from the Cox-ph regression models. (F) SKCM focused part of TME map as indicated by a dashed 
box in panels A and B. Samples are colored by SKCM mutational subtype (LoF = Loss of function; WT = wild 
type). clusters c25 and c26 are circled in red and blue, respectively. (G) Kaplan–Meier survival curves for PFS 
between clusters c25 and c26 for SKCM RAS hotspot subtype, corrected for tumor localization.

 

Scientific Reports |        (2025) 15:23921 8| https://doi.org/10.1038/s41598-025-09075-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 5.  Associations of somatic alterations with cell types. (A) Pan-cancer regression coefficients (|coef|> 0.1) 
for selected driver genes that are associated with either 15 immune or 3 stromal cell types for more than 5 
tumors per cancer cohort. Thresholds: |coef|> 0.1, FDR < 0.1. (B) Circos plot for cancer-specific regression coef 
in immune cell types for driver genes mutated in more than 5 tumors per cancer type (|coef|> 0.1, FDR < 0.1). 
Histogram around the circos plot indicates the number of tumors mutated for the corresponding gene. Blue 
violin plots show genes mutated in > 5 tumors and associated with > 8 immune cell types per cancer. Boxplots 
show specific variants of significantly mutated genes within a cancer type (n > 5 tumors/cancer type). (C) 
Cancer-specific analyses to show differences in means of iScores for tumors segregated by high or low mutation 
loads bi-clustered using QUBIC (upper panel, black outline indicates FDR < 0.05), Cancer-specific regression 
coefficients (coef) for associations between MSI or POLE mutation status and cell type iScores (middle panel), 
and Leukocyte or stromal cell status (lower panel).
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Tumor mutation burden (TMB) and T-cell levels are considered important for predicting responses to 
immunotherapy39, hence we tested how these features correlated with each other. Previously, TMB was known 
to show little correlation with T-cells in melanomas and HNSC40. In our analyses, we found no pan-cancer 
correlations between TMB and leukocyte or stromal iScores (r = 0.12 and − 0.08 respectively), and correlations 
varied by cancer type (Fig. S7B-C). In a pan-cancer analysis focused only on high (top 25%) and low (top 25%) 
TMB tumors, high TMB group had higher median leukocyte iScores compared to low TMB group (Fig. S7D). 
Cancer specific patterns also emerged. For example, PAAD had low mean iScores in high TMB group for all 
significant comparisons (n = 39) (Fig. 5C). In thymoma, most cell types of lymphocytic lineage had negative 
associations with TMB, while cell types of monocytic lineage had positive associations (Fig. 5C).

Discussion
We developed a systematic approach to leverage existing deconvolution tools and present a comprehensive 
TME map using diverse algorithms, cell types and gene markers to achieve a consensus cell type estimate that 
was validated against direct and indirect measures immune content from other sources (leukocyte fractions 
from DNA methylation arrays and tumor purity estimates from high-throughput datasets). Our iScores showed 
strong concordance with scRNA-seq derived pseudobulks. While our results support previous findings showing 
our ability to accurately infer TME composition and biological relevance, we noted many new observations. This 
resource may help understand heterogeneity in responses to checkpoint-based immunotherapies; the higher 
immune infiltrates in tumors compared to its adjacent normal tissue in renal clear cell cancers (KIRC) may 
partially explain this cancer’s susceptibility to immunotherapy. We found inconsistent correlations between 
mutation loads and immune infiltration, suggesting that TMB is not always a driver of immune infiltration 
and may not be a perfect independent predictor for immunotherapy outcomes40–42. At individual mutation 
levels, we identified pan-cancer and cancer specific associations between specific driver mutations and cell type 
iScores, that may partially explain resistance mechanisms activated by tumors such as escape from immune 
surveillance (e.g., CASP8) or immune exclusion (e.g., NRAS). In summary, our results systematically characterize 
the immune and stroma landscape of the TME in the TCGA tumors, and associations with risk of progression.

Methods
Datasets
Datasets for deconvolution
The datasets used for deconvolution were downloaded from the Genomic Data Commons (GDC) Data Portal 
(https://portal.gdc.cancer.gov); these comprised of RNA-seq based gene expression profiles normalized as 
Fragments Per Kilobase of transcript per Million mapped reads (FPKMs). These datasets had been harmonized 
under the GDC guidelines: realigned to the GRCh38 genome build and reprocessed using their standardized 
pipelines (​h​t​t​p​s​:​​/​/​g​d​c​.​​c​a​n​c​e​r​​.​g​o​v​/​a​​b​o​u​t​-​​d​a​t​a​/​g​​d​c​-​d​a​t​​a​-​h​a​r​m​​o​n​i​z​a​t​i​o​n). Out of the 11,093 samples downloaded 
in total from the GDC, we selected a final list of samples based on the merged quality annotation file put together 
by the Pan Cancer Atlas Consortium (​h​t​t​p​:​/​​/​a​p​i​.​g​​d​c​.​c​a​n​​c​e​r​.​g​o​​v​/​d​a​t​​a​/​1​a​7​d​​7​b​e​8​-​6​​7​5​d​-​4​e​​6​0​-​a​1​0​5​-​1​9​d​4​1​2​1​b​d​e​b​
f). Briefly, we removed samples which either failed an expert pathology quality control review or whose aliquot 
barcodes were labeled as ‘do not use’. We also excluded samples for which a pathology report was unavailable. 
After these filtering steps, we retained a total of 10,592 samples that belong to 33 cancer types and included 9,892 
tumor and 700 tumor adjacent normal tissues.

Datasets for validation
The primary dataset used for validation of leukocyte estimates was leukocyte fractions quantified from the 
DNA methylation arrays17. The comparison was performed for 9,495 samples that had both RNAseq and 
DNA methylation-based leukocyte quantifications, and these samples were used for further validations. The 
tumor infiltrating lymphocytes (TIL) quantification from TCGA H&E slides imaging data, inferred using 
Convolutional Neural Networks, was obtained from a recent publication43. DNA based purities were obtained 
from ABSOLUTE21 and RNA-seq based transcript proportions were obtained from DeMixT16,44. The tumor 
purity was also inferred from RNA-seq FPKMs using ESTIMATE20. The analysis was done using ‘estimate’ 
package (v1.0.13) in R. The package was run with the platform type input parameter set to “Illumina” and all 
other parameters set to default.

T cell receptor beta variable (TRBV) region quantification
The TRBV regions were quantified using a previously described method45. Briefly, the RNA sequencing reads 
were submitted for a nucleotide BLAST-mapping against a custom database comprised of the TRBV genes 
downloaded from the IMGT (http://www.imgt.org). These reads that met the BLAST-expected value cutoffs for 
each β variable gene were counted and normalized to counts per million sequenced reads. This data set was also 
used for comparison with the leukocyte iScores and estimates from individual tools.

TCGA data on clinical information, molecular subtype, and somatic alterations
The clinical data including patient survival information was obtained from Liu et al., which provided progression 
free survival (PFS) for 32 cancer types (except for LAML)46. The molecular subtype assignments for the TCGA 
cohort were obtained from the Tumor Molecular Pathology (TMP) Analysis Working Group (Genomic Data 
Commons, manuscript submitted). Somatic mutations used in study were obtained from the previously reported 
mutation calling harmonization effort, performed by the Pan Cancer MC3 Consortium47. The 299 driver genes 
were obtained from a recent Genomic Data Analysis Network (GDAN) publication regarding the identification 
of cancer driver genes15. Cancer stemness scores were obtained from another pan cancer effort by the TCGA 
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consortium35. A curated resource for matched tumor and adjacent normal tissue was carefully compiled by 
manual inspection (Alexander Lazar, UT-MD Anderson Cancer Center, Texas, USA). Information regarding the 
estrogen (ER), progesterone (PR), and Her2 receptor status (positive or negative) for breast tumors was obtained 
as follows: ER and PR quantifications were strictly generated through Immunohistochemistry (IHC), while for 
the HER2 receptor status determination the preferred method for quantification was IHC, but fluorescence in 
situ hybridization (FISH) and copy numbers were used for cases where IHC was noninformative to determine 
the Her2 status.

Deconvolution methods
We selected nine different commonly used methods of deconvolution based on following three criteria: (1) 
ability to deconvolve using bulk RNA-seq gene expression data as input, (2) ability to report total cell type content 
(measures of abundance) in a tumor’s microenvironment, and (3) tools that only provide relative fractions of 
cell types were not considered. The latter was crucial to allow for integration of outputs from different methods 
because relative proportion from each method is a function of the number of cell types deconvolved by that 
method. Based on these criteria, we selected nine methods of deconvolution in total: eight published tools 
Cibersort48, Cibersortx 49, MCP Counter50, xCell51, EPIC52, TIMER 51, QuantiSeq53 and ssGSEA54,55, and one 
based on a new application of sparse group lasso56 (SGL) model to deconvolve the tumor microenvironment 
(https://github.com/drisso/deconsgl). All tools provided deconvolution estimates for 33 cancer types except for 
TIMER which doesn’t provide estimates for LAML.

Published tools
All tools were implemented using their respective R packages, using the accompanied marker gene signatures, 
and with the default parameters, as suggested by the authors of these packages48–51. Cibersort was run on 
an ‘absolute’ mode with quantile normalization disabled (as recommended by the developers for RNA-seq 
based inputs). The ‘absolute’ mode gives SVR regression coefficients scaled by median expression of genes in 
the signature divided by median expression of all genes in the input mixture. CibersortX was run using their 
web interface by first adjusting tumor expression profiles to LM22 signature using B-mode batch correction 
followed by deconvolution using an SVM model. Single Sample Gene Set Enrichment Analysis (ssGSEA) was 
implemented using the ‘gsva’ package (v1.30.0) in R using gene lists of immune and stromal cell types which were 
either previously published13,57–63 or publicly available64–66. All analysis was performed using R version 3.5.1.

Sparse Group Lasso (SGL)
A useful model for the deconvolution of RNA-seq tumor samples has the form of a linear regression model, in 
which the covariates are the expression signature of the “pure” cell types, and the regression coefficients are the 
estimated contributions of each cell type to the tumor expression ensemble48. One drawback of this model is 
that the relations between covariates (cell types) are not modeled, possibly leading to collinearity problems when 
multiple correlated cell types are included. To avoid this problem, we consider a sparse group lasso model56, a 
penalized regression model in which the coefficients are shrunk to zero according to two penalty terms, one 
that penalizes a group of covariates and one that penalizes each covariate in the group. This model can achieve 
sparsity both between groups and within each group. More formally, for each sample, our approach consists of 
minimizing the following quantity:

	
min

β

1
2n

∥∥∥∥∥y −
m∑

l=1

X(l)β(l)

∥∥∥∥∥
2

2
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m∑

l=1

√
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∥∥β(l)∥∥
2

+ αλ ∥β∥1 ,

where, the  represents the subset of covariates in group , and α is a weight in the convex combination of the 
regular lasso and the group lasso penalties, X( ) is the submatrix of X (feature matrix), β( ) is the coefficient 
vector of group , and pl is the length of β( ), λ is the tuning parameter. This model was implemented in R using 
the ‘lsgl’ package (v. 1.3.6) using the LM22 signature48. In particular, the covariates (X) are the columns of a 
validated leukocyte gene signature matrix made of 22 functionally defined human hematopoietic subsets [ref: 
https://doi.org/10.1007/978-1-4939-7493-1_12] divided into seven manually specified groups. The groups, and 
the corresponding cell types are B-cells (naïve, memory), T-cells (CD8+, CD4+ naïve, CD4+ memory resting, 
CD4+ memory activated, follicular helper, T-regs, gamma-delta), NK cells (resting, activated), Macrophages 
(M0, M1, M2), Dendritic cells (resting, activated), Mast cells (resting, activated), Eosinophilis/Neutrophilis 
(Eosinophilis, Neutrophilis). The LM22 signature matrix can be downloaded from ​h​t​t​p​s​:​/​/​c​i​b​e​r​s​o​r​t​x​.​s​t​a​n​f​o​r​d​.​e​
d​u​/​​​​​. Parameter α = 0.5 was used and λ was selected via cross-validation.

Integrative Scores (iScores) for deconvolved cell types
The individual cell type estimates obtained from different methods were first converted into standardized scores 
across all samples in the cohort (n = 10,592) as follows: standardized score for each cell type (i) is defined as 
i = xi − µ (xn) /σ (xn), where xi is the cell type estimate for the given sample, μ (xn) is the mean and σ(xn) is 
the standard deviation of all estimates of the given cell type across all samples (n). To get one score per each cell 
type, standardized scores corresponding to identical cell types (coming from different methods) were averaged. 
This averaged score was termed as integrated score (iScore), and one iScore was calculated for each distinct 
cell type (cell type specific iScores). The iScores for different cell types had a near-Gaussian distribution with 
mostly a right skew, with means close to zero, the range varied widely across cell types. We also calculated two 
broader aggregated scores that could capture the overall immune and stromal infiltration in each tumor. These 
scores were leukocyte iScore and Stromal iScore. Leukocyte iScore is defined as the mean of standardized scores 
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of all deconvolved immune cell types that belonged to either the myeloid or lymphoid lineage. Stromal iScore 
is defined as the mean of standardized scores of the cell types that were stromal: Fibroblasts, Endothelial cells, 
Pericytes and Adipocytes. iScores were validated by comparing leukocyte iScores to measures of Leukocyte 
fractions from DNA methylation arrays and tumor purity using Pearson correlation coefficients. Similarly, the 
aggregated lymphocyte iScores were calculated and compared to the %TILs and aggregated T-cell iScores were 
calculated and compared to the TRBV dataset for appropriate comparisons. It is important to note that the 
standardization strategy used for integration makes iScores ideal for comparisons of individual cell types across 
samples and cancer types, but not necessarily ideal to study relative percentage of different cell types within 
individual samples. All correlation coefficients reported in this study use the Pearson method.

Pseudobulks to validate integrated deconvolution approach
To verify the accuracy of the deconvolution methods, we created pseudobulks from the scRNA-seq profiles 
obtained from the kidney (n = 10), endometrial (n = 6), and lung (n = 5) tumors. Cell types were labeled using 
the known gene markers (Table  S13) or were predicted using Support Vector Machine (SVM) classification. 
The validity of selected cell type-specific markers was assessed through cluster visualization (Seurat UMAP) 
and comparison of marker expression levels in our data to those of the respective immunologic cell types 
documented in the Blood Atlas67. We computationally generated a series of 1000 pseudobulks from the raw 
expression data, separately and in an identical fashion, for each cohort. Prior to pseudobulk generation, any cell 
type failing to exhibit expression of its biomarkers consistent with the expected signature was removed from 
the dataset. For each of the 1000 pseudobulks, 10% of the total available cells were randomly selected. This 
dataset was then input to ComBat along with corresponding cell types of the LM22 reference dataset for batch 
correction48,68. This step was implemented to coerce the pseudobulk batch expression values into the bulk-like 
space of the reference batch, which is the expected input for the deconvolution tools. ComBat was run in the 
non-parametric mode, correcting only the mean of the batch effect with no scale adjustment. To confirm if 
the marker expression is consistent amongst cell types shared by all three cohorts, we used Seurat69 v3. We set 
dimensionality reduction to dims = 30 on the 5000 most variable features followed by anchor integration and 
principal component analysis is carried out as described earlier69, with all other arguments set to default. Shared 
cell types are well-correlated amongst cohorts when viewed in a UMAP. Briefly, the 5000 most variable features 
for each dataset are identified independently, and those features which are repeatedly variable across datasets 
are employed as anchors for dataset integration. Color-labeling of single cells by cohort depicts satisfactory co-
localization amongst most of the clusters (Fig. S1D). Similarly, color-labeling the same cells by cell type (right 
panel) confirms cells of the same type tend to cluster together. Using this approach, three sets of pseudobulk 
cohorts were generated, one for each available cancer type. The iScore deconvolution approach was applied to 
the pseudobulks to deconvolve and obtain estimates of individual cell types in each mixture. The iScores for each 
cell type were then correlated (using Pearson correlation) with the ground truth for each pseudobulk (i.e., the 
known proportion of cells in each pseudobulk sample) and the results were reported as correlation heatmaps 
(restricted to positive correlations) (Fig. S1E). For comparison, deconvolution estimates for pseudobulks were 
also obtained from previously published methods ConsensusTME18 (v 0.0.1.9000) and Decosus19 (v 0.1.3), 
implemented in R as per the tool specifications.

Linear Support Vector Machine Classification to label cell types in scRNA-seq
Marker genes were primarily used to label the distinct cell populations in the scRNA-seq samples. However, 
this strategy resulted in numerous cells without an assigned label. For example, in endometrial tumors, 21% of 
cells (1,127 out of 5,222 cells) were without an assigned cell type label. To address this gap in labelling, a Linear 
SVM Classification (SciKitLearn) based approach was applied where the labeled cells were used as a training 
set for the predictive model. A label balancing strategy was also implemented which limited the training set cell 
count to the median of cell counts across all cell type—this allowed us to restrict over representation of the more 
prominent cell types in the model. Multiple models were trained using cross fold validation and the models were 
then applied to the unlabeled cells to predict their cell type. Ambiguous cell type assignments for each unlabeled 
cell were identified by calculating the entropy of predicted classifications from the different models.

Survival analysis
The survival analysis was performed using Cox proportional-hazard regression model (Cox-ph) using the 
‘survival’ (version 2.44.1.1) and ‘survminer’ (version 0.4.3) packages in R. The results of survival analysis were 
visualized as Kaplan–Meier curves using ‘ggsurvplot’ function of the ‘survminer’ package in R. The analysis 
was conducted to assess differences in progression free survival (PFS) between cases with high versus low cell 
type iScores; high and low were defined as values being in the top 1/3rd or bottom 1/3rd of the global iScores 
respectively. All pan cancer Cox-ph models were adjusted for cancer types, sample localization, age, and gender. 
Tumor stage was also used as a covariate, where available. The p-values from cancer specific Cox-ph models 
(when reported in context of all 32 cancer types) were also multiple hypothesis corrected using the FDR method, 
these corrected p-values were reported as q values for those analyses. The combined effects of the levels of 
different immune cells on PFS were tested in additive Cox-ph models. The survival analysis for BRCA subtypes 
was conducted using BRCA subtypes and leukocyte levels as interaction terms in multivariate Cox-ph models. 
The low iScores for cell types were consistently used as reference groups for all survival analyses, For BRCA 
subtype analysis low iScores in LumA subtype were used as reference group for all survival analyses. Forest plots 
were made using the ‘forestplot’ (version 1.7.2) package in R.
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TME map clustering
All cell type iScores were used to create a two-dimensional projection of samples using Tumor Map70. We call 
this projection the Tumor Microenvironment (TME) Map. The spatial coordinates of the TME Map were used 
to assign the samples into clusters. We used HDBSCAN71 clustering method with a minimum cluster size of 
20 samples. Survival separation was analyzed between TME Map clusters for each cancer type and each cancer 
subtype for clusters with at least five samples. Each smaller cluster was compared to the largest cluster for the 
cancer type or cancer subtype, respectively. Survival was measured in progression free interval, except for Acute 
Myeloid Leukemia (LAML), which does not have PFI data available and therefore overall survival (OS) data was 
used for LAML survival analysis. A multivariate Cox proportional hazard (PH) model was used, and the cancer 
subtype was supplied as a covariate. The p-value for survival separation is measured with a log rank test. For each 
cancer type and cancer subtype, the difference in each iScore was measured between the largest cluster and each 
smaller cluster using a t-test. We report the results for the leukocyte iScore as well as the top five most differential 
iScores ranked by t-test p-value. The deconvolution results for the 9892 TCGA samples are publicly available for 
interactive visualization and exploration at TME map -(​h​t​t​p​s​:​​/​/​t​u​m​o​​r​m​a​p​.​u​​c​s​c​.​e​d​​u​/​?​b​o​​o​k​m​a​r​k​​=​b​e​7​4​0​​4​d​3​3​f​2​​c​1​
0​b​d​​6​d​9​6​e​e​​a​d​c​1​c​d​​5​8​1​4​3​d​​a​e​f​e​c​3​2​0​b​e​f​d​3​9​6​b​2​6​d​e​8​3​3​5​c​4​0​c​3​3).

Effect of somatic alterations on infiltration analysis
Effect of mutation counts on cell type iScores
To study the cancer-specific effects of total mutation load (synonymous and non-synonymous) on different 
infiltrating cell types, cell type specific iScores were compared between patients of high-mutation group (upper 
25%) and low-mutation group (bottom 25%) using either Mann–Whitney test or Welch’s t-test. Bi-clustering was 
performed using the QUBIC method72. The effect of MSI score and POLE mutations status on iScores was tested 
in a linear regression model as represented below.

Linear regression model developed for each infiltrating cell type

	
iScorek ∼ β0 + βmM + βpP +

∑
βnCn

where:
K represents the infiltrating cell type. M represents the MSI status of the patient (0 if not MSI-H, 1 if MSI-H). βm 
represents the linear coefficient of M. P represents the POLE mutation status of the patient (0 if not mutated, 1 
if mutated). βp represents the linear coefficient of P. Cn represents the cancer type (C is 1 for the relevant cancer 
type and 0 for others, n = 1 to 33). βn represents the linear coefficient of cancer type Cn. MSI score is obtained 
from MSIsensor73 . All associations were deemed significant at q (FDR) < 0.1.

Effect of individual driver gene mutations on iScores
To identify associations between infiltrating cell types and somatic mutations in 299 driver genes15, linear 
models were fit for each cancer. A cumulative pan-cancer linear model was fit to identify associations that exist 
across cancer types. For all linear models, marginal regression coefficients were obtained. Multiple hypothesis 
test corrections were performed cancer-wise. The association of iScores with specific variants of each significant 
mutation was tested using a Welch’s t-test that compared the iScores of patients with that specific variant to iScores 
of patients with no mutation in the gene of interest. All associations were deemed significant at q (FDR) < 0.1.

Linear regression model for each combination of driver gene and infiltrating cell type

	
iScorek ∼ β0 + βdD +

∑
βnCn

where:
K represents the infiltrating cell type. D represents the mutation status of the driver gene (0 if not mutated, 

1 if mutated). βd represents the linear coefficient of M. Cn represents cancer type (C is 1 for the relevant cancer 
type and 0 for others, n = 1 to 33). βn represents the linear coefficient of cancer type Cn.

Linear regression model developed for each combination of cancer type, driver gene, and infiltrating cell type

	
iScorek ∼ β0 + βdD +

∑
βjSj

where:
K represents the infiltrating cell type. D represents the mutation status of the driver gene (0 if not mutated, 1 if 
mutated). βd represents the linear coefficient of M. Sj represents cancer subtypes (j = 1 to J, where J is the number 
of subtypes available for a given cancer type, S is 1 for the relevant subtype and 0 for others). βj represents the 
linear coefficient of subtype Sj.

Data availability
RNASeq expression data (FPKMs) is publicly available on the Genomic Data Commons (GDC) Data Portal 
(https://portal.gdc.cancer.gov) and was downloaded using the GDC Data Transfer Tool. Mutation calls (​h​t​t​p​s​:​​/​/​
g​d​c​.​​c​a​n​c​e​r​​.​g​o​v​/​a​​b​o​u​t​-​​d​a​t​a​/​p​​u​b​l​i​c​a​​t​i​o​n​s​/​​m​c​3​-​2​0​1​7) and Survival data (​h​t​t​p​s​:​​/​/​g​d​c​.​​c​a​n​c​e​r​​.​g​o​v​/​a​​b​o​u​t​-​​d​a​t​a​/​p​​u​b​l​i​c​
a​​t​i​o​n​s​/​​P​a​n​C​a​n​-​C​l​i​n​i​c​a​l​-​2​0​1​8) are also available for download from the GDC. The iScore calculated for this work 
were deposited to and can be viewed as a tumor map on: ​h​t​t​p​s​:​​/​/​t​u​m​o​​r​m​a​p​.​u​​c​s​c​.​e​d​​u​/​?​b​o​​o​k​m​a​r​k​​=​b​e​7​4​0​​4​d​3​3​f​2​​
c​1​0​b​d​​6​d​9​6​e​e​​a​d​c​1​c​d​​5​8​1​4​3​d​​a​e​f​e​c​3​2​0​b​e​f​d​3​9​6​b​2​6​d​e​8​3​3​5​c​4​0​c​3​3.
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Code availability
The code to estimate cell types using sparse group lasso method is available on GitHub: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​d​r​i​
s​s​o​/​d​e​c​o​n​s​g​l​​​​​. The code to generate random pseudobulks and to deconvolve using iScore method is made avail-
able at: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​N​C​I​C​​C​G​​P​O​/​​T​u​m​​o​r​​-​D​e​c​o​n​​v​o​l​u​t​​​i​o​n​-​​a​​n​d​-​I​m​m​​u​n​o​g​e​n​​i​​c​i​t​y​​-​M​a​n​u​s​c​r​i​p​t. All other 
custom R code used for statistical analysis reported in the paper using already available R packages can also be 
made available upon request from authors.
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