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bioinformatics analysis and
experimental validation
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Osteoarthritis (OA) is a degenerative bone disease characterized by the destruction of joint cartilage
and synovial inflammation, involving intricate immune regulation processes. Disulfidptosis, a novel
form of programmed cell death, has recently been identified; however, the effects and roles of
disulfidptosis-related genes (DR-DEGs) in OA remain unclear. We obtained six OA datasets from the
GEO database, using four as training sets and two as validation sets. Differential expression analysis
was employed to identify DR-DEGs, and unique molecular subtypes of OA were constructed based on
these DR-DEGs. Subsequently, the immune microenvironment of OA patients was comprehensively
analyzed using the “"CIBERSORT" algorithm for immune infiltration. Various machine learning
algorithms were utilized to screen characteristic DR-DEGs, and nomogram models and ROC curves
were built based on these genes. The scRNA dataset (GSE169454) was used to classify chondrocytes
in OA samples into distinct cell types, further exploring the gene distribution and correlation of
characteristic DR-DEGs with specific cell subpopulations. Moreover, the expression levels of four
characteristic DR-DEGs were validated through OA cell models and rat models. In our study, we
identified 10 DR-DEGs with significant differences in expression within OA samples. Based on these
DR-DEGs, two distinct molecular subtypes were recognized (cluster 1 and 2). ZNF484 and NDUFS1
were found to be significantly overexpressed in subtype 1, while the infiltration abundance of activated
mast cells was markedly elevated in subtype 2. Moreover, significant differences were observed in
the infiltration proportions of 11 immune cell types between OA and control samples, with 9 DR-
DEGs demonstrating substantial correlations with immune cell infiltration levels. Further analysis
of the scRNA dataset revealed that SLC3A2 and NDUFC1 were predominantly expressed in the
preHTC subpopulation. All 10 DR-DEGs exhibited notably higher expression in the EC subpopulation
across various cell types. The proportion of EC subgroups with high SLC3A2 expression increased,
mainly enriching pathways related to inflammation, such as the IL-17 signaling pathway and TGF-
beta signaling pathway. Using machine learning, we identified four characteristic DR-DEGs, which,
in combination with the nomogram and ROC models, demonstrated promising performance in

the diagnosis of OA. Additionally, in vivo validation confirmed a significant elevation of PPM1F
expression in OA models. This study identified DR-DEGs as potential biomarkers for the diagnosis
and classification of OA and provided a preliminary understanding of their role in the immune
microenvironment. However, further experimental and clinical studies are required to validate their
diagnostic value and therapeutic potential.
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Osteoarthritis (OA), a chronic degenerative bone disease, is characterized by the destruction of joint cartilage,
pain in surrounding tissues, and stiffness caused by proliferative changes!. OA is a key cause of chronic pain and
disability, with the prevalence of pain and disability rates expected to rise annually due to an aging population®>.
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However, there are currently no definitive methods to delay or reverse disease progression in OA patients, which
limits treatment options to early-stage drug interventions or late-stage surgical procedures®. Regrettably, early-
stage OA patients also struggle to receive accurate and timely diagnoses. The most commonly used method
for diagnosing OA is the Kellgren-Lawrence (KL) radiographic grading system, which differentiates OA levels
based on the progressive narrowing and sclerotic appearance of joint spaces’. Additionally, magnetic resonance
imaging (MRI) may be used to visualize microstructures in the joint to assist in OA diagnosis. However, not
all patients with radiologically defined OA exhibit significant clinical symptoms, and not all patients with joint
symptoms show radiographic specificity, making early diagnosis of OA extremely challenging®. At present, there
is a lack of a specific diagnostic biomarker capable of achieving the goal of early OA diagnosis.

Recently, Liu et al.” were the first to discover a novel form of cell death defined as “disulfidptosis” Specifically,
the actin cytoskeleton is susceptible to disulfide stress caused by the excessive accumulation of intracellular
disulfide bond molecules, which in turn induces actin network collapse and cell death®. This unique mode of cell
death presents interesting directions for targeted disease treatments. Previous studies have shown that disulfide
death-related genes have been reported for the diagnosis and prediction of various types of cancer®, including
lung adenocarcinoma!?, hepatocellular carcinoma'!, and endometrial cancer!2. Multiple forms of programmed
cell death, such as apoptosis'® and ferroptosis'4, have been found to hold promising diagnostic value for OA
patients. However, despite the growing interest in understanding the pathogenesis of OA, no study has reported
the potential link between disulfide death-related genes and OA. Consequently, the discovery of this connection
could further contribute to our understanding of OA progression and facilitate the development of more targeted
treatment approaches.

This study identified disulfidptosis-related genes (DR-DEGs) through the integration of bulk RNA-seq data
and machine learning algorithms, exploring their value in the diagnosis, and typing of OA patients. Additionally,
using single-cell datasets, the study examined their distribution, expression, and potential biological functions
across different cell types, and established an in vivo OA model to validate the expression of key DR-DEGs
(Fig. 1). The aim of this study is to investigate the role and function of DR-DEGs as potential biomarkers for OA.

Materials and methods

920th Hospital of Joint Logistics Support Force Committee on Ethics approved this study and consented to
participate (2024-53-01), and all experiments were performed in accordance with ARRIVE guidelines (https://
arriveguidelines.org). All methods were performed in accordance with the relevant guidelines and regulations.

Data collection and procession

We obtained six transcriptome datasets of OA patients and healthy controls from the GEO database (https:/
/www.ncbi.nlm.nih.gov/geo/), including GSE51588, GSE55235, GSE55457, GSE117999, and GSE169077. The
GSE51588 dataset comprises 10 control samples and 40 OA patients; GSE55235 includes 10 control samples
and 20 OA patients; GSE55457 consists of 10 control samples and 23 OA patients; GSE117999 contains 12
control samples and 12 OA patients; and GSE169077 consists of 5 control samples and 6 OA patients. Four
datasets (GSE51588, GSE55235, GSE55457, and GSE77298) served as the training group, while the remaining
two datasets (GSE117999 and GSE169077) were used as the validation group. Subsequently, gene expression
data were extracted using Perl software, and gene names were converted into gene symbols. To reduce the errors
caused by data analysis, the batch effects were eliminated using the “combat” function of the “sva” package'® after
merging the files. Furthermore, the data consistency pre- and post-batch correction was demonstrated for the
training group and control group through principal component analysis (PCA) analysis'®.

Identification of disulfidptosis-related differentially expressed genes (DR-DEGs)

To extract DR-DEGs in OA patients, we utilized the “limma” package!” to perform differential expression
analysis of genes between the OA and control groups, which included upregulated and downregulated genes.
The DR-DEGs were visualized using heatmaps and box plots. The filtering criteria were set as p-value <0.05
and |log2FC|>0.585. Subsequently, a circos plot was used to display the chromosomal start and end positions
of the DR-DEGs. Expression correlations between each DR-DEG were presented through correlation analysis.
Lastly, the “ClusterProfiler” package!® was employed to conduct GO function and KEGG pathway enrichment
analyses'” on DR-DEGs, further exploring their potential molecular mechanisms. Additionally, we used the
GeneMANIA website (http://genemania.org) to predict interacting genes of DR-DEGs in OA patients.

Immune infiltration analysis

“CIBERSORT”? is a computational method commonly used for assessing immune cell abundance, which
functions based on the gene expression dataset of 22 immune cell types. To evaluate changes in immune
microenvironments in OA patients, immune scores were assigned to each OA and control sample. Subsequently,
the differences in infiltration proportions of the 22 immune cell types between OA patients and control samples
were comprehensively compared. Moreover, we further assessed the correlations between the expression of
DR-DEGs and the infiltration levels of 22 immune cells, where p<0.05 and |R|>0.30 were considered to have
significant correlations.

Identification of disulfidptosis-related subtyping patterns

As DR-DEGs have been demonstrated to be significantly associated with the immune microenvironment of OA
patients, further investigation of the subtyping value of these DR-DEGs may prove beneficial in guiding stratified
management and immunotherapy for OA. Initially, consensus clustering analysis was performed on OA samples
using the “ConsensusClusterPlus” package?!, and the stability of the clusters was assessed. Notably, an optimal K
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Fig. 1. Flowchart of this study.

value was determined through a combination of cluster heatmaps, consensus scores, and cumulative distribution
function plots, with the range of K values set from 1 to 9. Subsequently, the discriminative capacity of different
OA clusters was observed via principal component analysis, and the stability of disulfidptosis-related subtyping
patterns was evaluated through an independent validation dataset. The expression differences of DR-DEGs in
various OA subgroups were then assessed. Finally, the infiltration proportion differences of 22 immune cells
across different OA subgroups were further evaluated based on immune scores established by “CIBERSORT”.
Through this comprehensive analysis, insight into the potential subtyping value of DR-DEGs was provided,
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which could contribute to personalized therapeutic strategies for OA patients based on their specific immune
microenvironment and molecular characteristics.

Screening characteristic DR-DEGs based on multiple machine learning algorithms

To further screen for characteristic DR-DEGs, Random Forest (RF), Support Vector Machine (SVM), and
Generalized Linear Models (GLM) were constructed using “DALEX”??, “randomForest”® and “kernlab’
packages®*, and their performance was evaluated through ROC curves and residual values. Subsequently, the
Least Absolute Shrinkage and Selection Operator (LASSO) regression model was established using the “glmnet”
package?®, which resulted in a gene importance ranking. Additionally, a Venn diagram was utilized to display the
intersecting genes obtained from the four machine learning algorithms, ultimately determining the characteristic
DR-DEGs.

Single-gene GSEA (ssGSEA)

To investigate the potential molecular mechanisms of the characteristic DR-DEGs, OA samples were divided
into groups based on the expression levels of each characteristic DR-DEG, resulting in high and low expression
groups with their respective logFC values. Further KEGG-GSEA analysis was conducted according to the given
KEGG gene set files. p-value of less than 0.05 indicated that the respective pathway was significantly enriched.

Processing of scRNA-seq data

The single-cell transcriptome data were obtained from the GSE169454 dataset, which included four knee OA
patients and three healthy samples. Three OA patient cartilage samples (GSM5203392, GSM5203393, and
GSM5203394) and three healthy cartilage samples (GSM5203389, GSM5203390, and GSM5203391) were
chosen for further analysis. The processing of single-cell data was performed using the “Seurat” package?®, with
the creation of six cartilage single-cell datasets as Seurat objects. Cells with fewer than 200 detected genes (min.
features =200) and genes covered by less than three cells (min.cells = 3) were filtered out. Additionally, cells with
nFeatureRNA <200 and > 10,000 were filtered to exclude situations involving cell death, empty droplets, or an
overly large number of genes.

Next, the data were normalized using the “LogNormalize” method. The “FindVariableFeatures” function was
employed to identify highly variable genes (HVGs) that exhibited substantial expression differences between
cells. Moreover, the “vst” method was utilized to retain the top 2,000 HVGs for subsequent cell type identification.
Prior to dimensionality reduction, the three OA samples and three control samples were integrated separately,
and batch effects were removed using the “CCA” method. Then, all genes were normalized, and the top 1,500
HVGs were selected as the gene set for dimensionality reduction.

Cell classification and annotation

By comprehensively determining the PC values of the data using the JackStraw and Elbow methods, a k-nearest
neighbors (KNN) graph based on Euclidean distance was constructed in the PCA space. The “FindNeighbors”
and “FindClusters” functions were used for optimal cell clustering. After selecting the optimized resolution, the
“UMAP” method was employed to visualize cell distribution in a low-dimensional space, which was divided
into different cell clusters. Subsequently, manual annotation for different clusters was conducted based on cell
type-specific expression markers?, retaining only upregulated differentially expressed genes. The distribution of
18 disulfidptosis-related genes within cells was further investigated, and differential analysis of the expression of
these genes across various cell types was performed.

Disulfidptosis gene set score and differential analysis

To investigate the role of disulfidptosis-related genes in OA patients and chondrocytes, the “AddModuleScore”
function?® of the “Seurat” package was used to calculate gene set scores based on 18 disulfidptosis regulators.
Specifically, the average expression of the 18 disulfidptosis genes needed to be calculated first, followed by the
calculation of the average expression of 100 randomly drawn control genes. The difference between the two
averaged values constituted the disulfidptosis gene set score. Subsequently, the differences in the disulfidptosis
scores between OA and control samples were examined, and the score differences between different cell types
were further explored.

Cell-cell communication analysis

After creating a CellChat object?, the ligand-receptor interaction database was set and imported. The expression
data were preprocessed for use in cell communication analysis. Subsequently, the communication probabilities
at the signaling pathway level were inferred by calculating the communication probabilities of all ligand-
receptor interactions associated with each signaling pathway. The communication among different cell types
was quantified through cell interaction counts and intensities.

Protein-protein and gene-miRNA interaction networks

We also investigated the interacting proteins and miRNAs with DR-DEGs to explore their potential molecular
connections. First, a protein-protein interaction (PPI) network among DR-DEGs was established based on the
“String” online database. In addition, a gene-miRNA network was constructed using the “NetworkAnalyst”
online website (https://www.networkanalyst.ca). These network analyses help elucidate the potential molecular
interactions and regulatory mechanisms involving DR-DEGs.
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Diagnostic signature in OA

To evaluate the discriminative ability of the identified characteristic DR-DEGs in distinguishing between
OA patients and normal samples, diagnostic and predictive models were established. First, a nomogram for
characteristic DR-DEGs was constructed based on the “rms” and “rmda” packages®’, while clinical decision
curves and calibration curves were employed to assess the value and fitting of the model. Next, ROC curves for
each characteristic DR-DEG were generated using “pROC” package®! and the area under the curve (AUC) was
calculated. Subsequently, a logistic regression model consisting of all characteristic DR-DEGs was built to assess
the diagnostic performance. Additionally, an independent validation dataset was compiled, and ROC curves
were created to evaluate diagnostic performance.

Expression analysis of characteristic DR-DEGs in the OA Validation Set

To validate the expression level differences of characteristic DR-DEGs identified in the bioinformatics results,
we analyzed the expression levels of these characteristic DR-DEGs in an independent OA validation dataset
(GSE117999 and GSE169077). The analysis allowed us to cross-check and confirm the relevance of these genes
in distinguishing OA patients in independent datasets, strengthening the credibility of our findings.

OA animal model

To validate the expression of characteristic DR-DEGs in vivo, we established an OA rat model. A total of 12 male
SD rats, 6-8 weeks old, were purchased from Kunming Chushang Co., Ltd. (Kunming, China), and randomly
divided into 6 OA model rats and 6 control rats. The OA model was induced based on the anterior cruciate
ligament transection (ACLT) surgery. Specifically, after anesthetizing both groups of rats with intraperitoneal
injections of sodium pentobarbital, the left knee joint was fully exposed, followed by a small incision at the
joint’s skin along the patellar ligament. The control group’s joint was washed with saline and then sutured layer
by layer. In the OA model group, after exposing the cruciate ligament by peeling away muscle tissue, the cruciate
ligament was cut, then washed with saline and sutured layer by layer. Four weeks later, the rats were euthanized
using cervical dislocation, and the left knee joint cartilage tissue was collected for hematoxylin and eosin (HE)
staining to verify the successful establishment of the OA model.

Reverse transcription-PCR (RT-PCR)

After the establishment of OA model, total RNA was extracted. The SweScrip RT I First Strand cDNA Synthesis
Kit (Service Bio, Guangzhou, China) was used to reverse transcribe genes, completing the synthesis of the first
cDNA strand. After a brief centrifugation, the reaction proceeded for 40 cycles under the following thermal
cycling conditions using the CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA, USA): pre-denaturation at
95 °C for 1 min, denaturation at 95 °C for 20 s, annealing at 55 °C for 20 s, and extension at 72 °C for 30 s. The
primers were designed with the assistance of the NCBI Primer-BLAST Tool. The primer sequences can be found
in supplementary table S1.

Western blot

Cartilage tissue was placed in a pre-chilled mortar, and an appropriate amount of liquid nitrogen was added.
The tissue was ground into a fine powder. The powder was transferred to a centrifuge tube containing RIPA lysis
buffer (with phosphatase inhibitors) and lysed on ice for 30 min. The lysed samples were centrifuged at 4 °C and
16,000 rpm for 15 min to remove cell debris. The supernatant (total protein) was collected and aliquoted into
80 ul samples. Next, the protein concentration of the supernatant was determined using a BCA protein assay
kit. Following electrophoresis, the proteins were transferred from the gel to a PVDF membrane. The PVDF
membrane was blocked with 5% (w/v) skim milk in TBST and incubated at room temperature (37 °C) for
60 min. Subsequently, the PVDF membrane was incubated overnight at 4 °C with a primary antibody diluted in
1% (w/v) skim milk in TBST. The membrane was then incubated with an HRP-conjugated secondary antibody
at room temperature for 60 min. The antibody signal was detected using ECL chemiluminescent substrate. The
grayscale values were analyzed using Image] software.

Statistical analysis
All data were processed and analyzed using R software (version 4.3.1). The Kruskal-Walli’s test was used to
evaluate significant differences among two or more independent groups. The ¢-test or wilcoxon’s rank-sum test
was applied to examine significant differences between two independent groups. A p-value < 0.05 was considered
statistically significant.

Results

Identification of DR-DEGs in OA

After merging and eliminating the batch effects of four OA training set samples and two OA validation set
samples separately, we obtained 30 control samples and 83 OA samples in the training set, and 17 control samples
and 18 OA samples in the validation set (Fig. 2A and B). Differential expression analysis results suggested
that 10 DR-DEGs exhibited significant differences between OA and control samples (Fig. 2C and D). Next,
we determined the chromosomal positions of these DR-DEGs; apart from LRPPRC, NCKAP1, and NDUFS1
located on chromosome 2, the remaining DR-DEGs were situated on different chromosomes: NDUFS2, CCNC,
ZNF484, SLC3A2, CNOT1, GYS1, and PPM1F were on chromosomes 1, 6, 9, 11, 16, 19, and 22, respectively
(Fig. 2E). Correlation analysis results indicated significant correlations among 9 DR-DEGs, with the expression
levels of GYS1, NCKAPI, and LRPPRC presenting significant positive correlations (Fig. 2F). Subsequently,
the GO functional analysis results revealed that the 10 DR-DEGs were enriched in NADH dehydrogenase
activity in Biological Process (BP), mitochondrial respiratory chain complex in Cellular Component (CC), and
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Fig. 2. Identification of disulfidptosis-related differentially expressed genes (DR-DEGs) in OA patients. (A)
Principal component analysis (PCA) plots before and after batch correction in the training set. (B) PCA plots
before and after batch correction in the validation set. (C) Heatmap of the 10 DR-DEGs. Green represents low
expression genes in the samples, and orange represents high expression genes in the samples. (D) Differential
expression analysis of the 17 DRGs. Green represents control samples, and orange represents OA samples.

(E) Circos plot illustrating the chromosomal location distribution of the top 9 DR-DEGs. (F) Correlation
analysis of the top 9 DR-DEGs. Blue indicates negative correlation, and red indicates positive correlation. (G)
GO functional analysis of the 10 DR-DEGs, including BP, MF, and CC. (H) KEGG pathway analysis of the

10 DR-DEGs. (I) Gene-miRNAs interaction analysis of the 10 DR-DEGs. *P<0.05, **P<0.01, ***P<0.001,
P <0.0001.

mitochondrial ATP synthesis in Molecular Function (MF) (Fig. 2G). These DR-DEGs were also involved in
the regulation of pathways related to diabetic cardiomyopathy (Fig. 2H). Additionally, the 10 DR-DEGs had
potential molecular connections with 20 genes, including co-expression, coexistence, and physical interactions
(Fig. 21).

Immune infiltration analysis in OA

Previous research has indicated that both cartilage and synovial tissues of OA patients are closely related to
immune responses, and immune cells may be involved in the pathogenesis and progression of OA. Therefore,
we calculated the immune scores for each OA and control sample based on the “CIBERSORT” algorithm and
assessed the differences in the infiltration abundance of 22 immune cells between OA and control samples
(Fig. 3A and B). Among the 22 immune cells, 5 showed significantly increased infiltration in OA samples, while
6 immune cell types exhibited significantly elevated abundance in the control samples. The correlation analysis
of the 22 immune cells revealed that most immune cell types displayed negative associations with one another
(Fig. 3C). Next, we further assessed the correlations between the 10 DR-DEGs and the 22 immune cells (Fig. 3D).
The results demonstrated that 9 DR-DEGs, except for NDUFS2, were significantly correlated with immune cell
infiltration levels (Fig. 3E-N). Specifically, ZNF484 was significantly correlated with 5 immune cells, SLC3A2
with 7 immune cells, PPM1F with 3 immune cells, NDUFS1 with 2 immune cells, NCKAP1 with 4 immune
cells, LRPPRC with 5 immune cells, GYS1 with 8 immune cells, CNOT1 with 7 immune cells, and CCNC with 4
immune cells. GYS1, SLC3A2, and CNOT1 may play important roles in immune regulation in OA.
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Identification of DR clusters

The DR-DEGs demonstrated significant associations with the immune microenvironment of OA, prompting
further investigation into the subtyping value of these ten DR-DEGs for OA patients. This could hold significant
importance for personalized stratified management and immunotherapy in OA patients. First, through
unsupervised clustering, OA patients were divided into distinct subgroups, and the optimal clustering pattern
was determined with K=2 based on a combination of cluster heatmaps, consensus scores, CDF curves, and
Delta area (Fig. 4A-D). The PCA plot showed clear discriminative capacity between subgroup 1 and subgroup
2 (Fig. 4E). Additionally, the subtyping pattern in the validation set based on the ten DR-DEGs also indicated
that a clustering pattern with K=2 was optimal (Fig. 4F). Correlation analysis revealed significant differences for
ZNF484 and NDUFSI between the two OA subgroups, both of which exhibited significantly higher expression
in subgroup 1 (Fig. 4G and H). The immune microenvironment analysis results of the two subgroups indicated
that resting mast cells had significantly increased infiltration in OA subgroup 1, while activated mast cells
showed substantially elevated infiltration abundance in subgroup 2 (Fig. 41 and J). This may suggest that mast
cells are activated in OA subgroup 2, participating in immune regulation and immune responses.

Finally, we integrated the clinical features of 63 OA patients from two datasets, GSE51588 and GSE55457,
which included gender and age (Fig. 4K). ZNF484 and NDUFS1 showed upregulated expression in OA cluster
1, while the expression levels of the 10 DR-DEGs exhibited no significant correlation with OA cluster, gender,
or age.

Identification of characteristic DR-DEGs integrating machine learning algorithms
To further identify key DR-DEGs and analyze their potential roles, we screened for characteristic DR-DEGs
through the integration of multiple machine learning algorithms. First, the importance scores of the 10 DR-
DEGs were ranked using a random forest model (Fig. 5A and B). By integrating ROC curves, feature importance
ranking, and residual values, three machine learning algorithms (RE, SVM, and GLM) were compared, with the
top 5 importance-scored DR-DEGs being selected for each (Fig. 5C-F). Next, 8 DR-DEGs were screened using
LASSO regression and 10-fold cross-validation (Fig. 5G and H). By identifying the intersection of the DR-DEGs
selected by the four machine learning algorithms, four characteristic DR-DEGs (SLC3A2, GYS1, LRPPRC, and
PPMI1F) were ultimately obtained (Fig. 5I). GYS1 and LRPPRC showed a significant positive correlation (Fig. 5]).
Furthermore, we used ssGSEA to analyze the pathways that the four characteristic DR-DEGs might be
enriched (Fig. 5K-N). The results suggested that SLC3A2, LRPPRC, and PPMI1F were mainly enriched in
obesity-related signaling pathways, while GYS1 was primarily enriched in cytokine-related signaling pathways.

Identification of OA chondrocyte cell types and disulfidptosis gene set scores

Single-cell data were obtained for three OA samples and three control samples from the GSE169454 dataset.
After quality control and filtering, we obtained 68,282 chondrocytes from the cartilage samples of three OA
patients and 6,455 chondrocytes from the three healthy control samples. The violin plots and correlation
scatterplots for quality control demonstrated that the single-cell data filtering was reasonable. The top 2000
highly variable genes were identified for further analysis and visualization. After data normalization and PCA-
based dimensionality reduction, an appropriate resolution was chosen, and seven cell clusters were identified,
with UMAP visualization displaying the cellular distribution (Fig. 6A). Next, based on manual annotation, six
distinct cell types were identified (Fig. 6B), and they were defined as follows. The heatmap of cell types shows
the specifically expressed markers for each cell type, visualizing the significantly different marker genes in each
cluster (Fig. 6C and D).

Using the “AddModuleScore” function to calculate the disulfidptosis gene set scores, differential expression
analysis results revealed lower disulfidptosis scores in OA patients. In contrast, the EC subgroup had significantly
higher disulfidptosis scores than the other five cell types (Fig. 6E and F). In the cellular distribution of 18
DRGs, SLC3A2 and NDUFC1 were primarily expressed in the preHTC subgroup (Fig. 6G). Further, in the
differential expression analysis among different cell types, all 18 DRGs were significantly highly expressed in the
EC subgroup (Fig. 7A-D), and apart from SLC3A2, which was expressed at lower levels in the OA group, the
remaining 17 DRGs were expressed at significantly higher levels in the OA group (Fig. 7E).

Specific cell subgroup analysis and cell-cell communication patterns

Previous studies found that SLC3A2 might inhibit cartilage degeneration in OA patients, and it was significantly
highly expressed in EC cells in this study. Therefore, we conducted further analysis on EC subgroups expressing
SLC3A2. The proportion of EC subgroups with high SLC3A2 expression increased compared to control samples
(Fig. 8A and B). Meanwhile, the expression levels of SLC3A2 were higher in different cell types in the OA
group (Fig. 8C). KEGG enrichment analysis suggested that EC subgroups with high SLC3A2 expression were
primarily enriched in the IL-17 signaling pathway and the TGF-beta signaling pathway (Fig. 8D). GO functional
analysis indicated that EC subgroups with high SLC3A2 expression were significantly enriched in fibroblast
proliferation in BP, extracellular matrix in CC, and ribosome composition in MF (Fig. 8E). Consistent with
KEGG enrichment analysis results, GSEA enrichment analysis revealed that in the high SLC3SA expression EC
subgroup, inflammation-related pathways such as TGF-beta signaling pathway were significantly upregulated.
Interestingly, myogenesis and angiogenesis-related signaling pathways were also significantly upregulated
(Fig. 8F). These results suggest that SLC3A2 might regulate OA chondrocyte growth and development by
modulating inflammatory responses, myogenesis, and angiogenesis.

Furthermore, cellular communication and interactions may affect cell differentiation processes, implying
that communication between different cell types may influence the development and progression of OA. The
statistics on the cellular interaction counts and intensities among the six cell types indicated that preHTC and EC
have the highest cell numbers, with preHTC and proC demonstrating relatively strong communication intensity
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Fig. 6. Identification of chondrocyte subpopulations. (A) UMAP representation of the different 7 cell clusters
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(Fig. 8G). The enriched signaling pathways between different cell types were further analyzed, with apoptosis-
related signaling pathways being significantly upregulated in preHTC, HomC, and FC, but significantly
downregulated in EC and MetC. Inflammation-related signaling pathways such as TGF-beta-signaling pathway
and TNFa-signaling-via-NFkB were significantly upregulated in proC, preHTC, and HomC, while significantly
downregulated in EC and MetC. Additionally, the inflammatory-response pathway was significantly enriched in
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Fig. 7. Expression analysis of DR-DEGs in OA chondrocyte subpopulations. (A) Expression of the 18 DR-
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FC (Fig. 8H). These results suggest that cell apoptosis and inflammatory responses play essential roles in preHTC,
HomC, and FC, whereas EC and MetC may participate in OA pathogenesis by downregulating inflammatory
responses and inhibiting cell apoptosis.

PPl and gene-miRNA interaction networks
Based on the ten DR-DEGs, two protein interaction networks were obtained using the STRING online website
(Fig. 9A). Further, the DR-DEGs-miRNA interaction networks were acquired through the “NetworkAnalyst”
online website. Both CCNC and ZNF484 had interactions with two miRNAs, while the other eight DR-DEGs
formed an interaction network with 270 miRNAs, comprising a total of 286 edges (Fig. 9B-D).

Diagnostic value of characteristic DR-DEGs in OA
OA patients lack specific early detection indicators, which significantly impacts their quality of life and
prognosis. Therefore, we investigated the diagnostic and prognostic value of the four characteristic DR-DEGs
for OA patients. Specifically, we first constructed a nomogram model, which displayed good fitting properties
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Fig. 9. Potential molecular mechanisms of key DR-DEGs. (A) Protein-protein interaction network. (B) Gene-
TF-miRNA network based on key DR-DEGs. (C) ZNF484 and CCNC-miRNA interaction network.

and provided benefits for clinical patients (Fig. 10A-C). In the training set ROC curves, the AUC values of the
four characteristic DR-DEGs were all greater than 0.700, and the AUC value for the logistic regression model
was 0.820 (Fig. 10D and E). In the validation set ROC curves, the AUC values for SLC3A2 and LRPPRC were
both greater than 0.700, and the AUC value for the logistics regression model was 0.873 (Fig. 10F and G).

Validation of expression of characteristic DR-DEGs in validation set and OA animal models
Considering the significant value of four characteristic DR-DEGs in the diagnosis and molecular typing of OA,
we utilized a validation cohort from the GEO database to explore the expression differences of these DR-DEGs
between OA and healthy controls. Consistent with the training set results, SLC3A2 was highly expressed in the
control group, while PPM1F was highly expressed in OA. Although there were no significant differences in
the expression of GYS1 and LRPPRC between the two groups, both tended to be higher in the control group
(Fig. 10H). Further validation of the expression of the four characteristic DR-DEGs in OA tissues through RT-
qPCR revealed that except for GYS1, whose mRNA levels showed no significant difference between groups, the
other three DR-DEGs exhibited significant expression differences. SLC3A2 and LRPPRC were downregulated,
while PPM1F was overexpressed in the OA model (Fig. 11A), confirming the bioinformatics analysis results.

To verify the consistency of characteristic DR-DEGs expression in vivo, the protein expression levels in the
OA model group and the control group were compared (Fig. 11B). The results of Western Blot analysis indicated
that the protein level of SLC3A2 was significantly downregulated in the OA model group. Although the protein
expression level of GYS1, LRPPRC and PPMIF showed no significant difference between the two groups, it was
consistent with the RT-qPCR results. These results suggest that the trends of mRNA and protein expression
levels of GYS1, SLC3A2 and PPMIF in vivo are consistent, indicating their potential as therapeutic targets for
OA.

Discussion

OA is a common degenerative bone disease characterized by joint cartilage destruction, synovitis, and
subchondral bone sclerosis®™. With the acceleration of population aging and increasing life expectancy, the
prevalence of OA is expected to rise annually. A previous study suggested that by 2030, OA could become the
most significant cause of disability worldwide®’. However, most early-stage OA patients exhibit subtle clinical
symptoms, making traditional X-ray diagnosis rather challenging. MRI can provide detailed joint structure
images, but its high cost limits its initial application®*. The diagnostic delay in early-stage OA patients leads
to poor drug treatment outcomes or even the need for end-stage joint replacement surgery®. Therefore, early
diagnosis of OA is crucial for patient treatment and prognosis. Identifying reliable biomarkers for the early and
rapid diagnosis of OA is of great significance, as it may help delay OA progression and improve quality of life.
With the rapid development of bioinformatics and high-throughput sequencing technologies®”, elucidating
the mechanisms of OA pathogenesis and progression from a molecular perspective holds significant potential
for OA diagnosis and treatment.

This study is the first to investigate the regulatory role of the novel cell death mode-disulfidptosis in OA, and
further explore its value in OA subtyping and diagnostic efficacy. We identified 10 DR-DEGs with significant
differences from 18 DRGs and used unsupervised clustering analysis to construct an OA subtyping model,
revealing two distinct DR patterns. The expression levels of ZNF484 and NDUFS1 showed significant differences
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Fig. 11. RT-qPCR validation of key DR-DEGs. (A) The expression levels of SLC3A2, GYS1, LRPPRC, and
PPMIF in the OA models. (B) The protein expression levels of SLC3A2, GYS1, LRPPRC, and PPMIF in the
OA model group and the control group were compared.

between the two OA subgroups, with both being significantly overexpressed in subgroup (1) Immune-related
analysis revealed that resting mast cells had significant infiltration in OA subgroup 1, while activated mast
cells demonstrated substantially elevated infiltration abundance in subgroup (2) This may suggest mast cells
were activated in OA subgroup 2, participating in immune regulation and immune responses. Previous studies
have shown that synovium and cartilage of OA patients involve complex immune regulations and immune
responses®®’. Consistent with our results, we comprehensively analyzed the immune microenvironment of OA
patients and found that the infiltration proportions of 11 immune cells changed in OA, with five immune cells
significantly upregulated. Interestingly, we also found that the expression of ZNF484 was significantly positively
correlated with macrophages M2 and resting mast cells, and significantly negatively correlated with activated
mast cells. These results suggest that the abnormal expression of ZNF484 and NDUFS1 may be partly responsible
for the disordered immune function in OA cartilage, and the low expression of ZNF484 in OA subgroup 2 may
lead to the activation of mast cells. However, further mechanistic experiments are required for validation.

Additionally, we utilized scRNA data to explore the chondrocyte cell types in OA patients from a microscopic
perspective. After comprehensive analysis of expressed markers, we identified six cell types: EC, preHTC, FC,
HomC, ProC, and MetC. We further found that SLC3A2 was more widely distributed in EC and preHTC cells,
prompting us to explore the cell cycle and biological function of SLC3A2. The proportion of EC subgroups
with high SLC3A2 expression increased, primarily enriched in inflammation-related pathways such as the IL-17
signaling pathway and TGF-beta signaling pathway. Previous studies have shown that TGF- plays a critical role
in chondrocyte proliferation and the synthesis and release of extracellular matrix proteins*!. Downregulation
of TGF-P receptor expression in mice promotes the progression of OA*2. Additionally, IL-17 exacerbates joint
damage by promoting inflammatory responses in OA patients®’. This suggests that high SLC3A2 expression
might influence EC pathophysiological processes by regulating inflammatory responses. Liu et al.** integrated
bioinformatics and clinical results, founding that SLC3A2 was downregulated in OA patients, further in vitro
experiments showed that SLC3A2 knockdown could promote cartilage degeneration, making it a potential OA
treatment target. In this study, we also found that SLC3A2 was significantly downregulated in OA samples, a
result consistent in subsequent OA animal models. Interestingly, Karouzakis et al.*® found that the expression
of SLC3A2 is significantly higher in rheumatoid arthritis (RA) synovial fibroblasts compared to osteoarthritis
(OA) synovial fibroblasts. Jiao et al.*® further experimentally validated the significantly elevated expression of
SLC3A2 in RA tissues, demonstrating that knocking down SLC3A2 inhibits the migration and proliferation of
human fibroblast-like synoviocytes-RA (FLS-RA). These results suggest that SLC3A2 exhibits heterogeneity and
different functions in various diseases such as OA and RA, highlighting its potential as a valuable therapeutic
target. The specific mechanisms related to the function of SLC3A2 need to be further explored in disease models
of OA and RA.

It is worth noting that the diagnostic value of immune and cell death-related genes in OA has been widely
studied. Ren et al.* constructed a diagnostic model for OA patients based on four immunogenic cell death-
related genes, with AUC values all greater than 0.700. We identified four characteristic DR-DEGs through
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machine learning, and ROC results indicated that the four DR-DEGs (SLC3A2, GYS1, LRPPRC, and PPM1F)
have good diagnostic efficacy for OA in the training set (AUC>0.700), with an AUC value of 0.820 for the
logistics regression model of the four DR-DEGs. In the validation cohort, the AUC value was as high as 0.873.
This suggests that the four DR-DEGs can effectively differentiate OA from healthy samples, providing new
molecular targets and insights for early diagnosis of OA patients. While the models exhibit strong predictive
performance in both the training and validation cohorts, the lack of large-scale, independent clinical datasets
limits their translational potential. Future studies should validate these models in diverse patient populations,
ideally using prospective clinical cohorts and additional tissue samples such as synovium or serum.

Despite these findings, there are some limitations to this study. Firstly, the limited number of OA datasets in
the GEO database constrains the reliability of the diagnostic model, and this should be interpreted cautiously.
Future studies should aim to include diverse patient cohorts and integrate prospective clinical data to assess
the robustness of the identified diagnostic markers. Secondly, we conducted a preliminary exploration of the
immunological relevance and subtyping value of SLC3A2, but the underlying molecular mechanisms still
require further experimental validation. Future studies should focus on functional validation of DR-DEGs, such
as using gene knockdown or overexpression models to explore their effects on inflammatory signaling pathways
and immune cell interactions in OA. Finally, in terms of immune heterogeneity in synovium and cartilage, a
larger single-cell dataset is needed for support.

Conclusion

This study systematically explored the diagnostic and classification value of disulfidptosis-related genes in OA
cartilage samples and identified four key genes (SLC3A2, GYS1, LRPPRC, and PPM1F) as diagnostic markers for
OA patients. However, the connection between disulfidptosis-related genes and OA immune and inflammatory
responses still requires further mechanistic experimental validation.

Data availability

The microarray data used to support the findings of this study can be downloaded from the GSE51588,
GSE55235, GSE55457, GSE117999, GSE167077 and GSE169454 datasets (https://www.ncbi.nlm.nih.gov/geo).
The processed data are available from the corresponding author upon request.
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