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No studies have examined the prognostic value of the log odds of negative lymph nodes/T stage 
(LONT) in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy 
(nCRT). We aimed to assess the prognostic value of LONT and develop a machine learning model to 
predict overall survival (OS) and disease-free survival (DFS) in LARC patients treated with nCRT. The 
study included 820 LARC patients who received nCRT between September 2010 and October 2017. 
Univariate and multivariate Cox regression analyses identified prognostic factors, which were then 
used to develop risk assessment models with 9 machine learning algorithms. Model hyperparameters 
were optimized using random search and 10-fold cross-validation. The models were evaluated using 
metrics such as the area under the receiver operating characteristic curves (AUC), decision curve 
analysis, calibration curves, and precision and accuracy for predicting OS and DFS. Shapley’s additive 
explanations (SHAP) was also used for model interpretation. The study included 820 patients, 
identifying LONT as a significant independent prognostic factor for both OS and DFS. Nine machine 
learning algorithms were used to create predictive models based on these factors. The extreme 
gradient boosting (XGB) model showed the best performance, with a mean AUC of 0.89 for OS and 
0.83 for DFS in 10-fold cross-validation. Additionally, the predictions generated by the XGB model 
were analyzed using SHAP. Finally, we developed an online web-based calculator utilizing the XGB 
model to enhance the model’s generalizability and to provide improved support for physicians in their 
decision-making processes. The study developed an XGB model utilizing LONT to predict OS and DFS 
in patients with LARC undergoing nCRT. Furthermore, an online web calculator was constructed using 
the XGB model to facilitate the model’s generalization and to enhance physician decision-making.
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The prevalence of local advanced rectal cancer has exhibited a persistent increase in recent years, posing a 
significant menace to human health1. The utilization of neoadjuvant chemoradiotherapy (nCRT) followed by 
radical surgery has been advocated as the established therapeutic approach for individuals diagnosed with 
locally advanced rectal cancer (LARC), resulting in a reduction in local recurrence rates and mitigating the 
likelihood of distant metastasis2,3. Consequently, ensuring the precision of survival prognosis for patients with 
LARC assumes paramount importance in the context of postoperative therapy and follow-up arrangements.

In recent years, a substantial number of scholarly investigations have been dedicated to examining the 
influence of lymph node dissection on tumor prognosis4–8. The number of positive lymph nodes, examination 
of lymph nodes (ELN) and the number of negative lymph nodes (NLN) are classical evaluation indicators of 
lymph-node status, which are associated with survival in gastric9, breast cancer10, and colorectal11,12. In the study 
conducted by İmamoğlu Gİ, Oğuz A et al.12, positive lymph node ratio (PLNR) is an important prognostic factor 
for Stage III colorectal. In addition, Ogino S et al.13, found that the negative lymph node count is associated with 
improved survival of colorectal cancer patients, independent of lymphocytic reactions to tumor and tumoral 
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molecular features. However, a shared constraint among these studies was the dearth of data pertaining to 
personalized tumor characteristics.

Indeed, the T stage in LARC serves as a strong and reliable risk factor, as it is determined by the extent of tumor 
invasion and effectively captures the primary tumor characteristics. A growing body of research has indicated a 
strong correlation between T stage and both prognosis and tumor biological characteristics13–15. Both NLN and 
the T stage play crucial roles as independent prognostic factors in LARC, as they respectively indicate the extent 
of LND and the severity of the disease. Recently, a number of studies have employed the integration of negative 
lymph nodes (NLN) and T stage (log (NLN + 1)/T stage) as a novel prognostic factor, aiming to accurately 
assess the extent of individualized lymph node dissection (LND) in patients with cancer16–19. Nevertheless, the 
applicability and accuracy of these studies are constrained by their reliance on traditional linear models, which 
exhibit limited precision and uncertain generalizability.

Machine learning, a rapidly advancing predictive analytics technique, holds significant promise for surpassing 
traditional modeling approaches in the prediction of clinical outcomes. Unlike linear models, such as logistic 
regression, machine learning enhances modeling capabilities by effectively capturing nonlinear relationships 
among multiple variables. Classical statistical methodologies predominantly concentrate on inferential 
processes, encompassing the estimation of model parameters and the testing of hypotheses. These techniques 
yield relatively straightforward models, prioritizing interpretability over predictive accuracy, and are less adept 
at handling datasets characterized by numerous interacting factors. The advent of machine learning presents a 
promising avenue for addressing many of the limitations associated with traditional approaches. This approach 
demonstrates superior performance in various applications, including disease diagnosis, prognosis prediction, 
anti-tumor drug response, and treatment response assessment20–22. Machine learning has shown effectiveness in 
predicting prognostic outcomes utilizing clinical and radiological features23–25. However, to date, no study has 
employed machine learning methods based on LONT to predict the prognosis of patients with LARC following 
neoadjuvant therapy.

In this study, we integrated the number of NLN and T stage to formulate and define the LONT index, with 
the aim of investigating its relationship with the survival outcomes of patients with LARC. Additionally, we 
developed ten distinct machine learning prediction models to evaluate the variables influencing OS and DFS 
in LARC patients. The performance of these models was rigorously assessed using a range of metrics, and their 
interpretability was analyzed in the context of various influencing factors.

Materials and methods
Patients
This retrospective analysis enrolled 820 LARC patients treated with nCRT between September 2010 and October 
2017. Eligibility criteria included: (1) histologically confirmed rectal adenocarcinoma; (2) age ≥ 18 years; (3) 
absence of secondary malignancies; (4) documented follow-up data, including survival duration and cause of 
death. Exclusion criteria comprised: (1) incomplete lymph node status records; (2) undetermined TNM staging; 
(3) insufficient surgical documentation; (4) concurrent malignancies; (5) missing clinicopathological data; 
(6) metastatic disease (Stage IV). Tumor staging was established through multimodal assessments, including 
digital/endoscopic examinations, cross-sectional imaging (chest/abdominal-pelvic CT), endorectal ultrasound, 
and pelvic MRI. Surgical resection followed nCRT after a 6–8-week interval, adhering to TME principles for 
mid/low rectal tumors and partial TME for high rectal lesions (> 5 cm distal margin). Adjuvant chemotherapy 
commenced 4–8 weeks postoperatively per NCCN26 guidelines. Institutional ethics approval was obtained, with 
all procedures conforming to ethical standards.

Treatment strategy
All patients were administered preoperative radiation therapy at a dose of 45 Gy/25, delivered to the pelvic over 
a period of 5 weeks. This was followed by a boost of 5.4 Gy/3 specifically targeting the primary tumor27. The 
preoperative concurrent chemoradiotherapy regimens employed were CapeOX (capecitabine plus oxaliplatin), 
Capecitabine and FOLFOX (5FU plus oxaliplatin). The surgical intervention is typically conducted within a 
timeframe of 6 to 8 weeks following the conclusion of radiation therapy. Middle and low rectal cancers were 
managed through TME, while high rectal cancers were addressed through partial TME, ensuring a distal margin 
of 5 cm, with routine dissection of lateral lymph nodes not being conducted28. The short axis diameter of lymph 
nodes is considered the most critical parameter for diagnosing lateral lymph node metastasis. In the clinical 
assessment of lateral lymph node metastasis at our center, there is no substantial reduction in the size of lateral 
lymph nodes following NCRT (including instances where NCRT cannot be administered for various reasons), 
and selective lateral lymph node dissection (LLND) is performed. After NCRT, there was a significant reduction 
in the size of the lateral lymph nodes, with internal iliac lymph nodes measuring less than 4 mm. It is generally 
accepted that LLND is not performed in patients whose obturator lymph nodes have a short diameter of less than 
6 mm or have completely regressed29–31. Subsequently, patients received postoperative adjuvant chemotherapy 
approximately 4–8 weeks after the surgical procedure, irrespective of the outcomes of the surgical pathology 
assessment.

Data collection and definitions
LONT was computed as log[(NLN + 1)/T], where NLN = examined lymph nodes (ELN) - metastatic nodes. 
T-stage ordinal mapping assigned T0–T4 as 1–5. Survival endpoints included overall survival (OS: diagnosis to 
all − cause-mortality)and disease free survival (DFS: recurrence − free interval).
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Model construction and evaluation
Machine learning algorithms (extreme gradient boosting (XGB)32, random forest (RF)33, decision tree (DT)34, 
light gradient boosting (LGBM)35, adaptive boosting (AB)36, K-nearest neighbor (KNN)37, support vector 
machine (SVM)38, naive Bayes (NBC)39, and multilayer perceptron (MLP)40.) were implemented for prognostic 
modeling. The dataset was split into a 70% training set and a 30% test set through random selection, using 
10-fold cross-validation. The training set was used to build the model, while the test set was for validation and 
evaluation. A 10-fold cross-validation and grid search within the training set helped find the best parameters. 
The model’s performance was initially evaluated using an internal test set, calculating the average AUC under 
ten-fold cross-validation. An AUC near 1 indicates strong predictive power, while 0.5 suggests limited capability. 
Decision and calibration curves assessed clinical utility and predictive accuracy, respectively. The best model was 
chosen based on multiple metrics. Nine models trained on the internal test set were used to assess generalization, 
with ROC and calibration curves plotted for analysis. SHAP, a model-agnostic tool based on cooperative game 
theory, was used to explain and evaluate variable importance in the best machine learning model. Additionally, 
a web-based calculator was created to facilitate clinical use of the model.

Statistical analysis
Statistical analysis and model building were performed using R (v4.2.3) and Python (v3.8). T-tests analyzed 
continuous variables, while Chi-square or Fisher’s exact tests handled categorical ones. Odds ratios (OR) and 
confidence intervals (CI) were calculated. Univariate and multivariate Cox regression models identified variables 
related to OS and DFS, with significant risk factors (P < 0.05) used in machine-learning models.

Results
Patient characteristics
A retrospective analysis was performed on 937 patients diagnosed with LARC who underwent radical surgery 
after nCRT at the First Affiliated Hospital of Fujian Medical University from September 2010 and October 2017. 
After screening according to the inclusion and exclusion criteria, a total of 820 patients were included. Among all 
LARC patients receiving nCRT, the median follow-up time was 48 months. The median ELN, NLN and LONT 
count (Mean ± SD) were 12.71 ± 5.79, 12.00 ± 5.61 and 0.65 ± 0.32, respectively. The median distance from the 
anal verge and tumor size count (Mean ± SD) were 6.48 ± 2.44 and 2.70 ± 1.28. The majority of them were male 
(66.59%). Moreover, the most common ypTNM stage II (28.29%). Most of the LARC patients presented with 
T3 (43.41%) and N0 (74.63%). No statistically significant distinctions were observed among the two subgroups.
(Table 1).

The prognostic impact of LONT on OS and DFS
In order to investigate the prognostic significance of LONT on OS and DFS in patients with LARC, a COX 
regression analysis was conducted. In the univariate analysis, several factors including the tumor size (P < 0.001), 
pathological T stage (P < 0.001), pathological N stage (P < 0.001), pathological TNM stage (P < 0.001), TRG 
grade (P < 0.001), abdominoperineal resection (P = 0.047), neural invasion (P = 0.001), Lymphovascular 
invasion (P = 0.038), pre-CEA (P = 0.019), pre-CA199 (P = 0.009), post-CEA (P = 0.001), post-CA199 (P = 0.029) 
and LONT level (P < 0.001) were found to be independently associated with OS in patients with LARC who 
underwent nCRT and TME(Table 2). The Cox regression analysis revealed that the pathological TNM stage 
(P < 0.001), the tumor size (HR = 1.164, 95%CI: 1.015–1.335, P = 0.029), and LONT level (HR = 0.286, 95%CI: 
0.138–0.596, P = 0.001) were identified as significant independent predictors of OS following nCRT, as presented 
in Table 2.

In the analysis conducted, several factors were found to be independently associated with DFS in patients with 
LARC who underwent nCRT and TME. These factors included the tumor size (P < 0.001), pathological T stage 
(P < 0.001), pathological N stage (P < 0.001), pathological TNM stage (P < 0.001), neural invasion (P = 0.021), 
Lymphovascular invasion (P = 0.035), TRG grade (P < 0.001), distance from the anal verge (P = 0.003), post-CEA 
(P < 0.001) and LONT level (P < 0.001), as shown in Table 3. The results of the Cox regression analysis revealed 
that the pathological TNM stage (P < 0.001), the tumor size (HR = 1.202, 95%CI: 1.079–1.340, P = 0.001), LONT 
level (HR = 0.374, 95%CI: 0.206–0.680, P = 0.001), and distance from the anal verge (HR = 0.899, 95%CI: 0.843–
0.958, P = 0.001) were identified as independent predictors of DFS after nCRT according to Table 3.

Model performance
To evaluate the predictive efficacy of the nine models, a ten-fold cross-validation was performed on both OS and 
DFS (Fig. 1A, B). The average AUC values for the machine learning models in predicting OS ranged from 0.74 to 
0.89, demonstrating robust predictive capabilities. Notably, the XGB algorithm achieved the highest average AUC 
value of 0.89 (SD = 0.011). Similarly, the average AUC values for the models in predicting DFS ranged from 0.73 
to 0.82, also indicating strong predictive performance. The XGB algorithm again exhibited the highest average 
AUC value of 0.82 (SD = 0.014). The XGB model employed in the clinical decision curve analysis demonstrated 
robust predictive performance, as illustrated in Fig. 2C, F. Furthermore, Fig. 2B, E presents the calibration curve 
of the XGB model for OS and DFS, corroborating its predictive accuracy. Collectively, the XGB model exhibits a 
high degree of reliability. Figure 2 displays the receiver operating characteristic (ROC) curves, clinical decision 
curves, and calibration curves for both OS and DFS across nine different models. The XGB model outperformed 
the others in terms of OS and DFS, highlighting its superior discriminative capabilities. The utilization of heat 
map analysis, characterized by its comprehensive, lucid, intuitive, and easily interpretable nature, proved to be 
an effective method for conducting a thorough evaluation, enabling a more nuanced assessment of the models 
across multiple dimensions (refer to Fig. 3). After a comprehensive evaluation of model performance across 
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Characteristics Total (n = 820) Test (n = 246) Train (n = 574) P value

LONT (Mean ± SD) 0.65 ± 0.32 0.65 ± 0.35 0.64 ± 0.32 0.681

Tumor size (Mean ± SD), (cm) 2.70 ± 1.28 2.82 ± 1.31 2.65 ± 1.26 0.081

PLN count (Mean ± SD) 0.71 ± 2.34 0.74 ± 2.79 0.70 ± 2.12 0.840

ELN count (Mean ± SD) 12.71 ± 5.79 12.52 ± 6.20 12.79 ± 5.60 0.531

NLN count (Mean ± SD) 12.00 ± 5.61 11.78 ± 5.95 12.09 ± 5.46 0.465

Distance from the anal verge count (Mean ± SD), (cm) 6.48 ± 2.44 6.49 ± 2.54 6.48 ± 2.40 0.964

Postoperative hospital stay count (Mean ± SD), (day) 8.72 ± 5.30 9.07 ± 6.49 8.57 ± 4.69 0.217

Age count (Mean ± SD), (year) 55.98 ± 11.23 56.67 ± 10.59 55.68 ± 11.49 0.244

Sex (%) 0.401

Female 274 (33.41) 77 (31.30) 197 (34.32)

Male 546 (66.59) 169 (68.70) 377 (65.68)

ASA score, n(%) 0.311

I 619 (75.49) 178 (72.36) 441 (76.83)

II 189 (23.05) 65 (26.42) 124 (21.60)

III 12 (1.46) 3 (1.22) 9 (1.57)

cT stage, n(%) 0.367

cT1 1 (0.12) 1 (0.41) 0 (0.00)

cT2 12 (1.46) 5 (2.03) 7 (1.22)

cT3 302 (36.83) 91 (36.99) 211 (36.76)

cT4 505 (61.59) 149 (60.57) 356 (62.02)

cN stage, n(%) 0.393

cN0 71 (8.66) 19 (7.72) 52 (9.06)

cN1 8 (0.98) 4 (1.63) 4 (0.70)

cN2 741 (90.37) 223 (90.65) 518 (90.24)

ypTNM stage (8th AJCC), n(%) 0.345

pCR 171 (20.85) 60 (24.39) 111 (19.34)

I 208 (25.37) 57 (23.17) 151 (26.31)

II 232 (28.29) 71 (28.86) 161 (28.05)

III 209 (25.49) 58 (23.58) 151 (26.31)

pT stage 0.089

T0 181 (22.07) 64 (26.02) 117 (20.38)

T1 58 (7.07) 15 (6.10) 43 (7.49)

T2 197 (24.02) 52 (21.14) 145 (25.26)

T3 356 (43.41) 102 (41.46) 254 (44.25)

T4 28 (3.41) 13 (5.28) 15 (2.61)

pN stage 0.639

N0 612 (74.63) 189 (76.83) 423 (73.69)

N1 168 (20.49) 46 (18.70) 122 (21.25)

N2 40 (4.88) 11 (4.47) 29 (5.05)

APR, n(%) 0.736

No 721 (88.03) 218 (88.62) 503 (87.78)

Yes 98 (11.97) 28 (11.38) 70 (12.22)

Neural invasion 0.441

No 783 (95.49) 237 (96.34) 546 (95.12)

Yes 37 (4.51) 9 (3.66) 28 (4.88)

Lymphovascular invasion 0.164

No 794 (96.83) 235 (95.53) 559 (97.39)

Yes 26 (3.17) 11 (4.47) 15 (2.61)

Postoperative complication 0.607

No 698 (85.12) 207 (84.15) 491 (85.54)

Yes 122 (14.88) 39 (15.85) 83 (14.46)

Radiotherapy complication 0.767

No 564 (68.78) 171 (69.51) 393 (68.47)

Yes 256 (31.22) 75 (30.49) 181 (31.53)

TRG grade, n(%) 0.052

0 171 (20.85) 60 (24.39) 111(19.34)

Continued
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training and internal validation datasets, it was concluded that the XGB model demonstrated superior predictive 
accuracy for OS and DFS in patients with LARC, thereby justifying its designation as the optimal model.

The SHAP to model interpretation
To visually elucidate the selected variables, SHAP was utilized to illustrate their predictive capabilities for OS and 
DFS within the model. Figure 4A and D display the ranking of risk factors in predicting OS and DFS, respectively, 
based on their average absolute SHAP values. The x-axis represents the importance of each variable within the 
predictive model. Furthermore, two representative cases were presented to illustrate the interpretability of the 
model: one depicting LARC patients without OS/DFS (Fig. 4B, E), and the other showcasing LARC patients with 
OS/DFS (Fig. 4C, F). Figure 4 displays the most significant features within our model. Each feature is represented 
by a line indicating the attributions of all patients to the results, with red dots denoting high-risk values and blue 
dots denoting low-risk values. Figure 4B illustrates that elevated levels of LONT, lower clinical TNM stages, 
and smaller tumor sizes are correlated with enhanced survival outcomes in LARC patients. Conversely, Fig. 4C 
demonstrates that reduced LONT levels, higher clinical TNM stages, and larger tumor sizes are associated with 
poorer survival outcomes in LARC patients.

Web calculator
Although the XGB model exhibited the highest performance among the nine machine learning models assessed, 
its complexity and limited interpretability make it inappropriate for clinical generalization. To address this 
limitation, we have developed a web-based calculator that employs the XGB model, allowing users to input 
patient clinicopathological data on the left-hand side to estimate the probability of distant metastasis. Figure 5 
illustrates the web calculator.

Discussion
In the present study, LONT was utilized to evaluate the comparative extent of lymph node dissection (LND). 
Furthermore, a prognostic machine learning model was constructed based on LONT. Our findings revealed 
a positive correlation between elevated LONT levels and improved survival rates among patients with LARC, 
independent of clinicopathological variables. The developed machine learning model, which integrates LONT, 
not only encompasses tumor characteristics but also provides insights into the extent of LND and exhibits 
strong prognostic capabilities. This machine learning model has the potential to assist clinicians in customizing 
personalized treatment strategies for patients with LARC following nCRT. To the best of our knowledge, this is the 
inaugural study to quantify the relative degree of LND and to develop a machine learning model incorporating 
LONT and clinicopathological factors to predict the survival outcomes of LARC patients after nCRT.

Previous studies have established that both ELN and NLN hold independent prognostic value concerning 
colorectal cancer. Lei P et al.41 demonstrated that a higher count of ELN correlates with more precise nodal staging 
and improved prognosis in stage II colorectal cancer. Furthermore, Benli S et al.42 identified that the count of 
NLN is linked to enhanced survival outcomes in colorectal cancer patients, irrespective of lymphocytic reactions 
to the tumor and the molecular characteristics of the tumor. The lack of essential data regarding the biological 
characteristics of tumors necessitates further research to elucidate their clinical utility. Notably, the T stage in 
LARC serves as a significant and reliable risk factor, reflecting the extent of tumor invasion and encapsulating 
the primary tumor’s attributes. A growing body of scholarly literature has consistently demonstrated a strong 
correlation between the T stage and both prognosis and tumor biological characteristics. In our study, LONT 
was operationalized as the logarithm of the ratio between the sum of NLN counts plus one and the T stage. 
Here, NLN denote the extent of LND, while the T stage signifies the tumor’s characteristics and severity. Unlike 
the straightforward use of ELN and NLN to represent the degree of LND, LONT integrates individualized 
tumor characteristics. It can be understood as NLN adjusted by the T stage, thereby reflecting the proportionate 
quantity of negative lymph nodes extracted in postoperative patients with LARC. A higher LONT value indicates 
a greater proportion of negative lymph nodes, whereas a lower value denotes a smaller proportion. Importantly, 
the LONT value can consistently represent the level of risk, irrespective of variations in the patient’s T stage 
and the number of negative lymph nodes. This attribute enables the comparison of individualized LND degrees 
among patients with varying TNM stages.

Previous research has demonstrated a strong correlation between LONT and both cancer progression and 
prognosis16–19. However, to date, there have been no studies investigating the prognostic significance of LONT 
in LARC patients undergoing nCRT utilizing machine learning models. Machine learning algorithms have been 
utilized to forecast treatment responses in patients with various types of cancer. A substantial body of research 
has validated the effectiveness of machine learning in accurately predicting treatment outcomes across multiple 

Characteristics Total (n = 820) Test (n = 246) Train (n = 574) P value

1 278 (33.90) 89 (36.18) 189 (32.93)

2 312 (38.05) 77 (31.30) 235 (40.94)

3 59 (7.20) 20 (8.13) 39 (6.79)

Table 1. Clinicopathologic characteristics of all the patients. ELNs examined lymph nodes, NLNs negative 
lymph nodes, PLNs positive lymph nodes, IQR interquartile range, LONT log odds of negative lymph nodes/T 
stage, ASA American Society of Anesthesiologists, TRG grade tumor regression grade, APR abdominoperineal 
resection.
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variable

Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value

Mean, age (year) 0.996(0.980–1.013) 0.634

Mean, LONT 0.132(0.075–0.234) < 0.001 0.286(0.138–0.596) 0.001

Mean, NLNs 0.960(0.927–0.995) 0.024 - -

Mean, interval time between NCRT and surgery (day) 1.002(0.977–1.027) 0.899

Mean, postoperative hospital stay(day) 0.999(0.966–1.033) 0.955

Mean, tumor size(cm) 1.362(1.212–1.531) < 0.001 1.164(1.015–1.335) 0.029

Mean, distance from the anal verge(cm) 0.954(0.883–1.030) 0.225

Sex 0.542

Female 1

Male 1.132(0.760–1.685)

ASA score, n(%) 0.387

I 1

II 1.165(0.763–1.779) 0.480

III 2.081(0.657–6.590) 0.213

ypTNM stage (8th AJCC), n(%) < 0.001 < 0.001

pCR 1 1

I 1.594(0.636–3.996) 0.320 0.160(0.003–7.647) 0.353

II 3.976(1.766–8.952) 0.001 0.275(0.006–12.970) 0.512

III 8.584(3.919–18.801) < 0.001 0.601(0.013–27.721) 0.794

pT stage < 0.001 -

T0 1

T1 1.051(0.285–3.883) 0.940 - -

T2 2.088(0.944–4.615) 0.069 - -

T3 5.011(2.513–9.992) < 0.001 - -

T4 3.730(1.250-11.131) 0.018 - -

pN stage < 0.001 -

N0 1 -

N1 3.286(2.203–4.901) < 0.001 - -

N2 6.002(3.436–10.484) < 0.001 - -

APR, n(%) 0.047 0.645

No 1 1

Yes 1.633(1.007–2.646) 0.879(0.509–1.520)

Radiotherapy complication 0.094

No 1

Yes 1.380(0.947–2.011)

Neural invasion 0.001 0.901

No 1 1

Yes 2.813(1.506–5.254) 0.951(0.430–2.104)

Postoperative complication 0.338

No 1

Yes 1.261(0.785–2.024)

Lymphovascular invasion 0.038 0.358

No 1 1

Yes 2.243(1.044–4.822) 0.639(0.247–1.659)

TRG grade(%) < 0.001 0.210

0 1 1

1 2.962(1.301–6.744) 0.010 4.466(0.097-205.272) 0.444

2 5.483(2.506–11.997) < 0.001 6.602(0.145-301.278) 0.333

3 8.837(3.664–21.314) < 0.001 7.694(0.164-360.075) 0.298

pre-CEA 0.019 0.439

≤ 5ug/L 1 1

>5ug/L 1.576(1.079–2.302) 0.841(0.543–1.304)

pre-CA199 0.009 0.086

≤ 37U/ml 1 1

>37U/ml 1.720(1.142–2.590) 1.527(0.941–2.478)

Continued
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cancer types43–46. SHAP values were employed to assess the significance of each variable within the machine 
learning model47. The importance of each variable was quantified and elucidated through a SHAP summary plot. 
SHAP values, grounded in game theory, provide a method for model interpretability by explaining the global 
structure of the model through the aggregation of local explanations for individual predictions.

In this study, we combined the number of NLN and the T stage to develop and define the LONT index. Our 
findings indicate that this novel indicator functions as an independent prognostic factor in patients with LARC. 
The results of the univariate Cox regression analysis reveal that the hazard ratio (HR) for NLN in OS and DFS 
is 0.960 and 0.968, respectively. Importantly, when the T stage is combined with NLN, the HR significantly 
decreases to 0.132 and 0.208. These findings are corroborated by the multivariate Cox regression analysis. 
Additionally, the prognostication of patients with LARC following nCRT can be distinctly stratified by the 
LONT in both OS and DFS cohorts. Subsequently, we developed a predictive model for OS and DFS in patients 
with LARC by integrating LONT with conventional clinical and pathological characteristics, employing nine 
widely recognized machine learning algorithms. The results indicate that the extreme gradient boosting (XGB) 
algorithm exhibited superior predictive performance for both OS and DFS in LARC. The XGB model, renowned 
for its efficiency, flexibility, and scalability, is a widely utilized machine learning algorithm classifier across 
various medical domains, including LARC48,49. A significant advantage of this method lies in its deployment of a 
large ensemble of decision trees that demonstrate minimal inverse correlation. The XGB model was meticulously 
chosen to reduce error rates and mitigate the risk of overfitting within the training model50,51.

This study assessed the distribution of SHAP values for a pertinent covariate, along with its significance and 
directionality. Notably, LONT demonstrated a high proportion of risk scores within the model, indicating a 
pronounced discriminatory capacity for risk assessment when considering identical pathological TNM stages 
and other clinicopathological factors. The SHAP dependence diagram demonstrated that the LONT is an 
effective predictor of OS and DFS in patients with LARC. Our model successfully integrated a range of risk 
factors influencing OS and DFS in LARC patients, achieving superior predictive performance. The substantial 
contribution of LONT to the model further validated the impact of the degree of LND on prognosis and 
highlighted the importance of utilizing LONT for prognostic prediction in LARC cases. Furthermore, this 
marker can be readily obtained from the postoperative pathological report without incurring additional costs. 
Considering the widespread use of this model in clinical practice, improving the accuracy of survival outcome 
estimation will benefit a substantial number of patients.

Some limitations were present in our study. Firstly, it may be deemed imprecise to solely depict the attributes 
of a tumor based on its T stage, as the significant biological characteristics of a tumor encompass additional 
factors such as pathological type, grade, genotyping, and so forth. Secondly, since this was a retrospective single-
center investigation, we require a prospective study design to evaluate our findings. Lastly, our sample size was 
limited. Thus, multicenter studies could provide a larger sample size for further investigation.

Conclusions
In conclusion, the application of LONT as an innovative prognostic marker facilitates the evaluation of the 
heterogeneity in LND across different patient populations. This marker has proven effective in reliably predicting 
OS and DFS in patients with LARC undergoing nCRT, independent of clinicopathological variables. The creation 
of a machine learning model based on LONT provides clinicians with a simple, accurate, and user-friendly 
scoring system to develop personalized treatment strategies.

variable

Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value

post-CEA 0.001 0.180

≤ 5ug/L 1 1

>5ug/L 2.093(1.357–3.227) 1.400(0.856–2.292)

post-CA199 0.029 0.524

≤ 37U/ml 1 1

>37U/ml 1.750(1.058–2.897) 1.206(0.678–2.145)

Table 2. Univariate and multivariable analysis of overall survival. Significant values are given in bold. ELNs 
examined lymph nodes, NLNs negative lymph nodes, PLNs positive lymph nodes, IQR interquartile range, 
LONT log odds of negative lymph nodes/T stage, ASA American Society of Anesthesiologists, TRG grade 
tumor regression grade, APR abdominoperineal resection.
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Variable

Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value

Mean, age (year) 0.991(0.978–1.005) 0.198

Mean, LONT 0.208(0.129–0.336) < 0.001 0.386(0.212–0.701) 0.002

Mean, NLNs 0.968(0.940–0.996) 0.024 - -

Mean, interval time between NCRT and surgery (day) 1.015(0.996–1.034) 0.124

Mean, postoperative hospital stay(day) 1.018(0.993–1.043) 0.157

Mean, tumor size(cm) 1.343(1.218–1.482) < 0.001 1.202(1.079–1.340) 0.001

Mean, distance from the anal verge(cm) 0.905(0.847–0.966) 0.003 0.899(0.843–0.958) 0.001

Sex 0.495

Female 1

Male 0.896(0.653–1.228)

ASA score, n(%) 0.943

I 1

II 0.975(0.678-1.400) 0.889

III 1.193(0.380–3.749) 0.762

ypTNM stage (8th AJCC), n(%) < 0.001 < 0.001

pCR 1 1

I 1.272(0.647–2.501) 0.486 2.744(0.583–12.906) 0.201

II 3.121(1.734–5.619) < 0.001 4.809(1.062–21.770) 0.042

III 5.788(3.277–10.223) < 0.001 8.101(1.860-32.295) 0.005

pT stage < 0.001 -

T0 1 -

T1 0.695(0.235–2.053) 0.510 - -

T2 1.711(0.960–3.047) 0.068 - -

T3 3.536(2.147–5.824) < 0.001 - -

T4 1.958(0.727–5.274) 0.184 - -

pN stage < 0.001 -

N0 1 -

N1 2.965(2.139–4.109) < 0.001 - -

N2 3.832(2.308–6.363) < 0.001 - -

APR, n(%) 0.278

No 1

Yes 1.245(0.838–1.851)

Radiotherapy complication 0.018

No 1

Yes 1.450(1.065–1.976)

Neural invasion 0.021 0.587

No 1 1

Yes 2.004(1.113–3.609) 0.835(0.436-1.600)

Postoperative complication 0.269

No 1

Yes 1.249(0.842–1.854)

Lymphovascular invasion 0.035 0.689

No 1 1

Yes 2.059(1.052–4.031) 1.155(0.570–2.342)

TRG grade(%) < 0.001 0.056

0 1 1

1 1.866(1.053–3.306) 0.033 0.244(0.056–1.067) 0.061

2 3.629(2.133–6.175) < 0.001 0.382(0.089–1.646) 0.197

3 3.875(1.957–7.670) < 0.001 0.327(0.069–1.541) 0.158

pre-CEA 0.237

≤ 5ug/L 1

>5ug/L 1.218(0.878–1.690)

pre-CA199 0.143

≤ 37U/ml 1

>37U/ml 1.314(0.912–1.893)
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Fig. 1. Ten-fold cross-validation results of nine machine models in OS and DFS (A,B).

 

Variable

Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value

post-CEA < 0.001 0.060

≤ 5ug/L 1 1

>5ug/L 2.056(1.422–2.974) 1.707(1.167–2.479)

post-CA199 0.831

≤ 37U/ml 1

>37U/ml 0.944(0.555–1.604)

Table 3. Univariate and multivariable analysis of disease-free survival. Significant values are given in bold. 
ELNs examined lymph nodes, NLNs negative lymph nodes, PLNs positive lymph nodes, IQR interquartile 
range, LONT log odds of negative lymph nodes/T stage, ASA American Society of Anesthesiologists, TRG 
grade tumor regression grade, APR abdominoperineal resection.
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Fig. 3. (A) Prediction performance of nine models in OS. (B) Prediction performance of nine models in DFS. 
AUC area under the curve, XGB extreme gradient boosting, RF random forest, DT decision tree, LGBM light 
gradient boosting, AB adaptive boosting, KNN K-nearest neighbor, SVM support vector machine, NBC naive 
Bayes, MLP multilayer perceptron.

 

Fig. 2. (A) ROC curves of nine machine learning models in OS. (B) Calibration curves of nine machine 
learning models in the OS. (C) DCA curves of nine machine learning models in OS. (D) ROC curves of nine 
machine learning models in the DFS. (E) Calibration curves of nine machine learning models in DFS. (F) 
DCA curves of nine machine learning models in DFS. Extreme gradient boosting (XGB), random forest (RF), 
decision tree (DT), light gradient boosting (LGBM), adaptive boosting (AB), K-nearest neighbor (KNN), 
support vector machine (SVM), naive Bayes (NBC), and multilayer perceptron (MLP); DCA, Decision curve 
analysis.
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Data availability
Some or all data used during the study are available from the corresponding author by request.
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Fig. 5. A web calculator for predicting OS from LARC.

 

Fig. 4. Relative importance of variables based on SHAP for XGB prediction model in OS and DFS (A,B); 
Relative importance of variables based on SHAP for XGB prediction model depicting LARC patients without 
OS/DFS (B,E), and the other showcasing LARC patients with OS/DFS (C,F). SHAP Shapley’s additive 
explanations, XGB extreme gradient boosting;
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