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The optimal control methods for managing Lorenz model are achieved using an innovative intelligent 
computing framework that integrates artificial neural networks with stochastic unsupervised learning-
based optimizers, specifically Firefly (FA) and Archimedes algorithm (AOA). The hyper parameters 
(weights & biases) of unsupervised neural networks are refined through Legendre polynomials Artificial 
Neural Networks (LENN) optimized with global search techniques, including FA-AOA collectively 
referred to as LENN-FA-AOA. This design approach is employed to Lorenz model across three (3) 
different scenarios using various step sizes and input intervals. The study’s findings reveal that to 
minimize the computational cost to find the solution of nonlinear chaotic systems by intelligence 
strategies. The absolute errors values from LENN-FA-AOA with reference solution are being ranged 
from 3.22 × 10−5 to 3.06 × 10−7, 4.56 × 10−5 to 7.27 × 10−8 and 5.17 × 10−5 to 2.11 v 10−7. Data validation 
through extensive graphical simulations confirms the effectiveness and robustness of the proposed 
intelligent solver. The LENN-FA-AOA solver is tested under different initial conditions of Lorenz 
model to assess its reliability, safety, and tolerance. Through this advanced LENN intelligent design 
framework, an objective/fitness optimization function is developed within a feedforward neural 
network. The hybrid FA-AOA optimization is also investigated to verify the LENN model accuracy and 
reliability. Mean square error (MSE) and TIC graphs are constructed to evaluate the proposed method 
integrity and efficiency.
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algorithm
5D, 6D and 7D  Five, six and seven dimensions

Chaos theory is a field of mathematics that analyze the effect of nonlinear dynamic systems, which are extremely 
sensitive to their initial conditions. This sensitivity results in dynamics that appear random, a phenomenon 
known as chaos. Chaotic systems have been studied in various domains such as mathematics, engineering’s 
(chemical, biological and mechanical), physics, and other sciences due to its non-linear nature. Scientists 
and engineers have formulated several approaches to understand and control the chaotic dynamics, such as 
bifurcation theory. These methodologies have been utilized to various systems, like electrical, biological and 
mechanical. Chaotic systems are a very significant area of research in various domains, with the potential to 
enhance our understanding of nature and its applications.

Nonlinear differential equations (NLDEs) have become a standard model for representing chaotic systems. 
Kudryashov1 explored analytical solutions to the Lorenz system that have been found and further classified 
all exact solutions. Algaba et al.2 used Poincare sections to study the global connections developed by the 
subcritical Hopf bifurcation in the Lorenz system. Barrio and Serrano3 conducted a theoretical and numerical 
investigation of the conventional Lorenz model, identifying the region where each positive semi-orbit converges 
to equilibrium and establishing constraints for the chaotic zone. Wu and Zhang4 characterized all rational 
integrals and Darboux polynomials for Lorenz systems. Algaba et al.5 conducted numerical analysis to find 
bifurcations in the Lorenz system. Eusebius Doedel et al. illustrated preturbulence in the three-dimensional 
space of the Lorenz system6. The Krishnan et al.7 utilized the laplace homotopy method (LHM) to determine 
the solution of Lorenz differential equations (LDEs). Klöwer et al.8 found that non-periodic simulations utilizing 
deterministic finite-precision result in periodic orbits.

The theory of nonlinear systems can be applied to solution of problems in various fields, including economics, 
astronomy, nerve physiology, chemistry, heartbeat control, cryptography, electronic circuits, and many 
others. Most systems in the modern world are by nature nonlinear9,10. Furthermore, many researchers have 
been interested in nonlinear oscillations because most vibration problems are nonlinear. Thus, the nonlinear 
differential equations (NLDEs) were very useful in understanding scientific and engineering problems, which 
often take the form of nonlinear types. The significance of mathematical computations was emphasized in 
numerous research studies and literature works that deal with NLDEs that arise in a variety of scientific and 
engineering fields11. While a large number of NLDEs can be numerically studied, very few of them can be solved 
directly. Several approximation schemes have been utilized in existing literature to investigate the correlation 
between the frequency and amplitude of the nonlinear oscillators (NOSs) such as Homotopy perturbation 
technique12,13, Variational iteration method14, energy balance approach and others15,16, Akbari Ganji method17, 
Adomain decomposition technique18 and many others.

In recent hot area of research, there has also been a lot of research on the use of artificial neural networks 
(ANNs) to solve nonlinear differential equations. Yang et al.19 proposed physics-informed generative 
adversarial networks as one data-driven method for handling stochastic differential equations (SDEs) using 
sparse observations. Raissi20 investigated the application of deep learning methods for solving coupled SDEs. 
Mattheakis et al.21 constructed neural networks based on physics phenomena to analyze the DEs that describe 
the dynamic behavior of systems. The NN integrates the Hamiltonian formulation utilizing a loss function, 
which ensures the energy efficiency of the solutions. The predictions made by the network are used to build 
this loss function in its entirety, no outside data is required. Piscopo et al.22 studied for determining fully 
differentiable solutions for ordinary, partial (PDEs/ODEs) equations for analytical results. They investigated 
various network architectures and found that even very small networks achieved remarkable outcomes. Hagge et 
al.23 introduced a system capable of estimating unknown functions or variable in iterated differential equations 
with suitable accuracy and sensitivity analysis for equations. This approach training the parameters of ANN for 
differential equation solvers at every time step, enabling faster backpropagation. Similarly, Mattheakis et al.24 
employed an artificial neural network (ANN) to solve nonlinear differential equations while ensuring energy 
conservation and velocity. They designed a symplectic neural network that adheres to energy conservation 
principles using the concept ANN. Raissi et al.25 proposed the concept of physics-informed neural networks 
(PINNs), which are ANN trained to perform supervised learning tasks while complying with the nonlinear 
partial differential equations (PDEs/ODEs) dictated by physical laws. However, the challenge of addressing the 
“curse of dimensionality” has posed difficulties in developing algorithms for high-dimensional PDEs/ODEs. 
To address this, Han and Jentzen26 presented a deep learning (DL) based method for solving high-dimensional 
PDEs/ODEs. Their approach involves transforming PDEs into stochastic differential equations (SDEs) and 
using neural networks to approximate the gradient of unknown solutions, a method comparable to deep 
reinforcement learning where the gradient acts as the policy function. In recent years, swarm intelligence (SI) 
has emerged as a popular method for solving optimization problems. Buhl et al.27 highlighted how agents in SI 
interact with one another and their environment. Additionally, research by Blum and Li28 demonstrated that 
many machine learning algorithms draw inspiration from the collective behavior of natural systems, such as 
ant colonies, animal herds, and bird flocks. The firefly algorithm (FA) is a global algorithm developed by Yang 
and Karamanoglu29 that was inspired by the bioluminescent communication and flickering motion of fireflies. 
Yang30 created the Firefly Algorithm based on these concepts, fireflies are unisexual, meaning that they become 
attracted to one another independent of sex, and the strength of this attraction is directly correlated with the 
brightness of each firefly’s lights. However, the attraction reduces as the two fireflies get farther apart. When two 
fireflies are equally bright, they will fly in opposing directions. Note that the firefly intensity should correspond 
to the objective function of the task. Because of their attraction, fireflies can divide into smaller groups, and each 
group eventually settles on a single optimum solution. This feature, according to Apostolopoulos and Vlachos31, 
makes the Firefly Algorithm especially helpful for optimization challenges. The mathematical and logical 
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processes that make up an algorithm must be as simple as feasible in the field of applied mathematics. Due to its 
natural simplicity, FA behavior is ideally suitable for the solution of continuous mathematical functions. Based 
on statistical analyses utilizing simple stochastic test functions32, FA outperforms other widely used algorithms, 
gaining plaudits for its effectiveness. To solve optimization problems in complicated systems33, researchers have 
employed the FA technique.

The traditional approach fails to find solutions for nonlinear systems. To address this issue, a more effective 
method is needed. In this research, we use the Legendre polynomial as an activation function to handle 
nonlinearity and achieve an optimal solution for the Lorenz model.The modelling and prediction of intricate 
patterns that would be challenging to investigate using traditional methods, is made possible by ANNs ability to 
capture the complicated relationships and nonlinearity found in these problems. The ability of artificial neural 
networks (ANNs) to capture complicated nonlinear interactions within a data set inspired them to tackle the 
challenges of nonlinear oscillator modelling. In this paper, we use LENN-FA-AOA to optimize parameters, 
improve accuracy and speed up simulations for nonlinear oscillators. This study aims to investigate how the 
accuracy of ANN models can be enhanced by combining the heuristic algorithms. The design methodology 
represents in Fig. 1.

Key features of this study include

• Application of the LENN-FA-AOA approach to analyze the chaotic Lorenz model.
• Reliable combined outcomes from FA-AOA and the Adams numerical method as a reference solution indi-

cate the proposed approach accuracy.
• Validation of the LENN-FA-AOA model statistical performance across multiple runs for nonlinear dynamics 

using various statistical metrics.
• Comparison with reference solutions for Lorenz model shows that the LENN-FA-AOA results are accurate, 

stable, precise, and convergent.
• Further validation of the LENN-FA-AOA model performance is provided by quantitative metrics, including 

mean square error (MSE) and Theil’s inequality coefficient (TIC). The use of LENN offers a logical sequence 
of solutions across the entire training and learning region, making the proposed stochastic intelligent compu-
tational solver efficient and stable.

Fig. 1. Design Methodology of the proposed LENN-FA-AOA.
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Problem formulation
The non-linear chaotic system consists of three nonlinear differential equations that characterize the behavior of 
a dynamical system. The system of nonlinear Lorenz equation expressed as follow34:

 

dx
dt

= ρ (y (t) − x (t))
dy
dt

= σx (t) − y (t) − x (t) z (t)
dz
dt

= x (t) y (t) − Rz (t)
t ∈ [0, T ]

 (1)

where t represents time and T denotes the final value of time and initial conditions are given as,

 x (0) = a1, y (0) = a2, z (0) = a3

In this given Lorenz model, the variables x(t), y(t) and z(t) are considered as three-dimensional coordinates. The 
dynamic of the chaotic system is analyze using these parameters, ρ, σ and R, which demonstrate the intensity of 
non-linear interactions across the variables.

Methodology: Legendre neural network
There are two stages to the suggested approach for resolving the governing mathematical model of Lorenz 
differential equation. The initial stage involves designing Legendre neural networks (LeNN) based on 
polynomials. The second phase demonstrate the optimizing unknown weights in the LeNN structure using the 
built network to determine the fitness value in an unsupervised manner.

Design of Le-NN model
The architecture of a single-layer Legendre Neural Network (LeNN), which is made up of a functional expansion 
block based on Legendre polynomials as well as an input and one output layer. To eliminate the hidden layer, the 
input pattern is transformed to a higher dimension using Legendre polynomials35. They are orthogonal across 
[− 1, 1] and belong to the set of orthogonal polynomials. The first ten Legendre polynomials are listed in Table 1.

To construct high-order Legendre polynomials, use the recursive formula given Eq. (2):

 
Ln+1 (ξ) = 1

n + 1 [(2n + 1) ξLn (ξ) − nLn−1 (ξ)] . (2)

The problem’s mathematical model is represented by the series solution, which includes input, hidden, and 
output layers.

The solution f(ξ) and its higher derivatives can be expressed as Eqs. (3), (4), (5), (6), (7).

 
f̂ (t) =

q∑
p=1

ϕpL (ωpt + βp) , (3)

 
f̂ ′ (t) =

q∑
p=1

ϕpL′ (ωpt + βp) , (4)

 
f̂ ′′ (t) =

q∑
p=1

ϕpL′′ (ωpt + βp) , (5)

n Ln (t)
0 1

1 t

2 1
2 (3t2 − 1)

3 1
2 (5t3 − 3t)

4 1
8 (35t4 − 30t2 + 3)

5 1
8 (63t5 − 70t3 + 15t)

6 1
16 (231t6 − 315t4 + 105t2 − 5)

7 1
16 (429t7 − 693t5 + 315t3 − 35t)

8 1
128 (643t8 − 12,012t6 + 6930t3 − 1260t2 + 35)

9 1
128 (12155t9 − 25,740t7 + 18,018t5 − 4620t3 + 315t)

10 1
256 (46,189t10 − 109,395t8 + 90,090t6 − 30,030t4 + 3465t2)

Table 1. Legendre polynomials’.
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f̂ ′′′ (t) =

q∑
p=1

ϕpL′′′ (ωpt + βp) , (6)

 
f̂ iv (t) =

q∑
p=1

ϕpLiv (ωpt + βp) . (7)

ϕ = [ϕ1, ϕ2, ϕ3, . . . ϕn] , ω = [ω1, ω2, ω3, . . . ωn] and β = [β1, β2, β3, . . . βn] are represented the real-
valued vectors and bounded. Where L denotes the Legendre polynomials, n represents the order of polynomial 
and p demonstrates the number of neurons in the proposed structure. Table 1 presents the formulation of 
Legendre polynomials.

LENN based fitness function
The fitness function is designed for the proposed problem with initial conditions in term of mean square error 
(MSE) are given in Eq. (8).

 E = e1 + e2 + e3 + e4 (8)

The fitness functions for the non-linear Lorenz model are in Eqs. (9), (10), (11), (12),

 
e1 = 1

Q

Q∑
P =1

(dx̂

dt
− (ρŷ (t) + x̂ (t)))

2

 (9)

 
e2 = 1

Q

Q∑
p=1

(dŷ

dt
− σx̂ (t) + ŷ (t) + x̂ (t) ẑ (t))

2

 (10)

 
e3 = 1

Q

Q∑
p=1

(dẑ

dt
− x̂ (t) ŷ (t) + Rẑ(t)

2

 (11)

 
e4 = 1

3(x (u) − a)2 + y (v) − b)2 + z (w) − c)2 (12)

The purpose of developing fitness functions for Lorenz attractor analysis is to find weights in the LENN structure 
that minimize error. The proposed technique accurately approximates the exact solution for the given problem 
when the fitness function value approaches zero.

Meta-heuristic optimization algorithms
Heuristic schemes have played a crucial role in handling a broad variety of optimization problems, both 
unconstrained and constrained, across diverse engineering fields. These schemes were developed to provide 
approximate/optimal solutions to problems that typical optimization approaches cannot solve due to the 
difficulty or nonlinearity of the function involved. In the past years, researchers have designed various heuristics 
algorithms, with unique methodology. Several algorithms have made major contributions to engineering, 
including genetic algorithm GA, PSO, FA, WCA, GGO36,37, ABC, and many others.

Firefly algorithm
Fireflies (FA) are bioluminescent insects emitting light from their abdomen without ultraviolet frequencies. 
They use this light to attract mates, lure prey, and warn predators, aiding in protection. The attraction of firefly 
j to firefly i is determined by two factors: the firefly brightness i and the distance across firefly j and firefly i, as 
shown in Eq. (13).

 
I (r) = Is

r2  (13)

For n fireflies, xi represents each firefly’s solution, with brightness I determined by the objective function f(xi)
, reflecting its fitness value

 Ii = f(zi) (14)

Fireflies reduced brightness are attracted to brighter ones, each having a unique attraction rating β, which varies 
with distance, as defined by the Eq. (15).

 β (r) = β0e−γr2  (15)
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where β0  indicates the initial attraction value of a firefly at r = 0, and γ is the coefficient of absorption of light 
in the medium that surrounds it. The following equation to analyze how a firefly (i) at position zi transitions to 
a brighter firefly (j)  at position zj .

 zi (t + 1) = zi (t) + β0e−γr2
(zi − zj) + αϵi (16)

where β0e−γr2
 denotes the attraction of firefly zj  and αϵi indicates the random parameters. When β0 = 0

, the movement becomes a random process. The algorithm relocates the firefly if the new position has higher 
attractiveness; otherwise, it stays put. The termination condition for the firefly algorithm can be based on 
iterations or fitness values. The equation for the randomized movement of the brightest firefly is in Eq. (17).

 zi (t + 1) = zi (t) + αϵi (17)

Archimedes optimization algorithm
Hashim et al.38 proposed the new Archimedes Optimization Algorithm (AOA) that, inspired by Archimedes’ 
principles of buoyancy and floating bodies. The heuristic algorithm combines local search and global exploration 
to refine potential solutions based on their fitness values39,40. By simulating buoyancy, it assigns higher weights to 
more effective solutions, enhancing optimization efficiency. The proposed optimization algorithm continuously 
improves potential solutions through the combination of local search techniques such as gradient descent 
or global exploration approach like crossover. This technique aims to find a balance across exploitation and 
exploration, utilizing both local and global knowledge to rapidly identify optimal or nearly perfect solutions. The 
Archimedes method has successfully solved optimization problems in various fields, particularly in engineering, 
data analysis, and logistics. This study aims to evaluate the effectiveness of the Archimedes optimization approach 
for a specific optimization problem. We aim to analyze its efficacy, advantages, and challenges, and compare it 
to other meta-heuristic methods. Our study aims to contribute to the understanding of optimization strategies 
and their applications. Suppose there are multiple objects, each attempting to reach a state of equilibrium. The 
acceleration of submerged things varies based on their density and volume. If the buoyant force Fb and weight 
W0 are equal, the object is in equilibrium.

 Fb = W0 (18)

 Pbνbab = P0ν0a0 (19)

In the equations above, subscripts b and o represent fluid and submerged items.  P  indicates the density, a 
denotes the gravity/acceleration, and v is the volume. If the item is influenced by another force, like a collision 
with a neighboring object r, the equilibrium state will change that represents in Eqs. (20), (21).

 Fb − Wr = W0 (20)

 Pbνbab − Prνrar = P0ν0a0 (21)

The AOA technique randomly populates the search space by random selected volumes, accelerations, and 
densities. After evaluating the initial population’s fitness, AOA iteratively updates each item’s density, volume, 
and speed until the termination condition is met, determining new locations based on these properties. Here is 
a mathematical description of the proposed algorithm phases.

 Oj = LBJ + rand∗ (UBJ − LBJ ) , j = 1,2, 3, . . . , . . . M  (22)

where Oj  denotes the jth object between N total items. LBJ  and UBJ  indicate the lower and upper limitation 
of the search space. Initializes volume and density for every jth  item using

 denj = rand, volj = rand (23)

rand is a D-dimensional vector that creates random numbers between 0 and 1. Initialize the acceleration of the 
jth item using Eq. (24).

 accj = LBJ + rand∗ (UBJ − LBJ ) , j = 1,2, 3, . . . , . . . M  (24)

Evaluate the initial population and select the item with the higher fitness value. Specify the order of 
xbest, denbest, volbest, andaccelbest. The density and volume of item J  are adjusted for iteration t + 1 using 
the following Eqs. (25), (26):

 dent+1
j = dent

j + rand∗(denbest − dent
j) (25)

 volt+1
j = volt

j + rand∗(volbest − volt
j) (26)

The terms volbest and denbest refer to the volume and density of the best item identified. The rand variable 
indicates a uniformly distributed random number. Objects collide at first, but eventually strive for equilibrium. 
The proposed AOA algorithm uses the transfer operator (TF) to move the search from exploration to exploitation. 
The transfer operator transforms search behaviour, enhancing convergence to optimal solutions.
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TF = exp

(
t − tmax

tmax

)
 (27)

In this case, the transfer TF  increases eventually unless it reaches 1. The variables t and tmax indicate the 
iteration and maximum number, respectively. Furthermore, the density decreasing parameter d helps balance 
across the global and local searches. Equation (11) shows a decrease over time.

 
dt+1 = exp

[(
t − tmax

tmax

)
− t

tmax

]
 (28)

The algorithm can converge to an already determined promising region when the value of dt+1 reduces over time. 
A collision across objects is indicated by a transfer operator TF of 0.5 or less. To update an object’s acceleration 
for iteration t + 1, a random material mr is selected and a specific technique in Eq. (29).

 
acct+1

j = denmr + volmraccmr

dent+1
j volt+1

j

 (29)

where denmr, volmr, andaccmr  indicate the density, volume and acceleration of the random material. The TF 
value greater than 0.5 implies no collision across items. In that case, the item’s acceleration is adjusted for the 
next iteration (t + 1) utilizing a specific technique or formula.

 
acct+1

j = denbest + volbestaccbest

dent+1
j volt+1

j

 (30)

To determine the percentage of change, divide the acceleration by a reference value.

 
acct+1

j−norm = u

(
acct+1

j − min(acc)
max (acc) − min(acc)

)
+ l (31)

The normalization ranges (u and l) are set at 0.9 and 0.1. Where  acct+1
j−norm specifies the percentage of each 

agent’s step change. If an object is placed distant from the global optimum, it will receive a greater acceleration 
value, showing it is in the exploration phase. If the item is close to the global optimum, it will receive a smaller 
acceleration value, demonstrating it is in the exploitation phase. This change from exploration to exploitation 
illustrates the way the search process evolves. When TF is below or equal to 0.5, it represents the exploration 
phase. The location of the jth item for the next iteration (t + 1) is computed utilizing the following Eqs. (32), 
(33).

 xj
i+1 = xj

i + C1.rand.acct+1
j−norm.d.(xrand − xt

j) (32)

When TF exceeds 0.5, showing the exploitation phase, the items update their locations with a constant value of 
C1 is equal to zero.

 xj
i+1 = xt

best + F.C2rand.acct+1
j−norm.d.(T xbest − xj

i+1) (33)

where C1 is equal to 6, the variable T is increasing over time and is proportional to the transfer operator. 
Particularly, T can be expressed as T = C3TF T , where C1 indicates a constant value and T continuously 
increases with time over the range of [C3 × 0.3,1]. Initially, T selects a percentage from the best location. The 
parameter G is a flag utilized to change the direction of motion.

 
G =

{ 1, ifP ≤ 0.5
−1, if+ > 0.5  (34)

Here P = 2rand − C4. We apply the objective function f  to evaluate each object and track the optimal solution 
identified so far.

Performance indices
In this section, we presented the statistical technique for MSE and TIC to the nonlinear Lorenz model. The 
mathematical indices consist of MSE and TIC are demonstrated as given,

 

[
MSEx

MSEy

MSEz

]
=




∑q

p=1 (xp − x̂p)2

∑q

p=1 (yp − ŷp)2

∑q

p=1 (zp − ẑp)2


 (35)
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[
T ICx

T ICy

T ICz

]
=




√
1
q

∑q

p=1
(xp−x̂p)

2

√
1
q

∑q

p=1 (xp)2+

√
1
q

∑q

p=1

(
x̂p

)2

√
1
q

∑q

p=1
(yp−ŷp)

2

√
1
q

∑q

p=1 (xp)2+

√
1
q

∑q

p=1

(
x̂p

)2

√
1
q

∑q

p=1
(zp−ẑp)

2

√
1
q

∑q

p=1 (xp)2+

√
1
q

∑q

p=1

(
x̂p

)2




 (37)

Result and discussion
Traditional methods for solving the Lorenz differential equations, such as analytical and numerical often face 
several limitations. These approaches require small time steps to maintain stability and accuracy, making them 
computationally intensive and time-consuming, especially for highly sensitive chaotic systems like the Lorenz 
equations. Furthermore, traditional methods may struggle to capture long-term dynamics due to the nonlinear 
chaotic systems of these differential equations, which can lead to cumulative errors that grow over time, distorting 
predictions. Intelligent based approaches especially physics informed machine learning to handle these issues by 
learning the dynamics more efficiently and generalizing across different scenarios.

This section presents a detailed discussion of the Lorenz model results. Statistical metrics used the LENNs 
based results to validate the reliability and suitability of the proposed approach. The suggested findings for 
addressing the Lorenz model with LENNs-FA-AOA are displayed through relevant graphical and numerical 
representations to assess convergence and accuracy. The feed-forward LENN variables for 10 neurons are 
determined by applying FA and AOA coding across multiple runs in the Lorenz model. We are tested the 
proposed LENN-FA-AOA intelligent method for three (03) distinct scenarios. The fitness/ error function are 
evaluated through one hundred cycles to check the reliability convergence; the best values of each runs are 
presented in Fig. 2 for each scenario.

Figures  3, 4, 5 illustrates the optimal LENN parameters [wx, wy, wz, βx, βy, βz, ϕx, ϕy, ϕz] generated 
by FA-AOA within the range − 10 to 10. All of which are used in the fitness value to represent quantitative 
measurements for x (t) , y (t) andz (t) among ten neurons to generate the outcomes of the Lorenz model. 
Figures 6, 7, 8 present the graphical representations of reference solution that obtained from Adam numerical 
approach and best and mean results based on LENN-FA-AOA across 100 independent runs, incorporating 10 
neurons.

Tables 2, 3, 4 provide absolute error (AE) that compares reference results with LENN-FA-AOA for 
x (t) , y (t) andz(t). In scenario 1, 2 and 3 the initial condition and constant of the Lorenz model are 
[ρ = 0.1, σ = 0.2, R = −0.3, x (0) = 0.5, y (0) = 0.5, z (0) = 0.5] , [ρ = −0.4, σ = 0.2, R = 0.3, x (0) = 0.4, y (0) = 0.4, z (0) = 0.4] 
and [ρ = −0.4, σ = 0.2, R = 0.3, x (0) = 0.3, y (0) = 0.3, z (0) = 0.3]. In scenario 1, the AE values are 
suitable for all class of model (x (t) , y (t) andz(t)) range between 3.22 × 10−5 to 3.97 × 10−6,  2.47 × 10−5 
to 3.06 × 10−7 and 4.24 × 10−5 to 6.82 × 10−7. The AE values for scenario 2 are ranging between 1.26 × 10−5 
to 7.27 × 10−7,  1.26 × 10−5 to 7.27 × 10−8 and 4.56 × 10−5 to 1.04 × 10−6. The AE are ranging between 
1.75 × 10−5 to 2.11 × 10−7, 5.17 × 10−5 to 2.59 × 10−6 and 3.83 × 10−5 to 4.63 × 10−7 for Lorenz model 
scenario 3. The results obtained from LENN-FA-AOA that showed the proposed approach is convergence and 
efficient (Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26).

Fig. 2. Convergence analysis of fitness function for three different scenarios with 10 neurons of LENN-FA-
AOA.
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Furthermore, to check the deep understanding of the convergence and efficiency for proposed LENN-FA-
AOA methodology to compute mean square error (MSE) and Theil’s inequality coefficient (TIC). Figures 9, 
15, 21 show the convergence results of MSE for all model dependent parameters using LENN-FA-AOA. For 
convergence, MSE values range approximately between 10−6 and 10−9 for x(t), 10−6 and 10−9 for y(t), 10−6 

Fig. 5. Optimized hyper parameters of LENN through FA-AOA for scenario 3.

 

Fig. 4. Optimized hyper parameters of LENN through FA-AOA for scenario 2.

 

Fig. 3. Optimized hyper parameters of LENN through FA-AOA for scenario 1.
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Fig. 8. Comparative analysis between the reference and LENN-FA-AOA solutions for scenario 3.

 

Fig. 7. Comparative analysis between the reference and LENN-FA-AOA solutions for scenario 2.

 

Fig. 6. Comparative analysis between the reference and LENN-FA-AOA solutions for scenario 1.
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and 10−9 for z(t), respectively. The MSE values across multiple cycles/runs are illustrated in Figs. 11, 17, 23 for 
different scenarios and the ranging of MSE normal distributions are from 10−6 to 10−7 approximately and are 
represented in Figs. 12, 18, 24 for all scenarios.

Figures  10, 16, 22 show the convergence results of TIC for all model classes using LENN-FA-AOA. For 
convergence, TIC values range approximately between 10−4 and 10−6 for x(t), 10−4 and 10−6 for y(t), 10−4 
and 10−6 for z(t), respectively. The TIC values across multiple cycles/runs are illustrated in Figs. 12, 18, 24 for 
different scenarios and the ranging of MSE normal distributions are from 10−3 to 10−4 approximately and are 

t x(t) y(t) z(t) x̂(t) ŷ(t) ẑ(t) AEx(t) AEy(t) AEz(t)

0 0.3 0.3 0.3 0.299994 0.299992 0.3 6.32E-06 8.31E-06 4.63E-07

0.1 0.299609 0.273955 0.324204 0.29961 0.273924 0.324208 1.3E-06 3.1E-05 3.25E-06

0.2 0.298486 0.249687 0.348856 0.298487 0.249635 0.348859 1.1E-06 5.17E-05 3.13E-06

0.3 0.296703 0.227014 0.374017 0.296694 0.226993 0.374003 9.17E-06 2.05E-05 1.32E-05

0.4 0.294325 0.205775 0.399751 0.294314 0.205781 0.399737 1.11E-05 6.19E-06 1.39E-05

0.5 0.291408 0.185829 0.426128 0.291407 0.185826 0.426134 1.8E-06 2.59E-06 6.48E-06

0.6 0.288006 0.167047 0.453219 0.288012 0.167021 0.453231 5.54E-06 2.66E-05 1.19E-05

0.7 0.284166 0.149318 0.481097 0.284166 0.149287 0.481081 2.11E-07 3.15E-05 1.63E-05

0.8 0.279929 0.132543 0.509841 0.279916 0.132529 0.509802 1.28E-05 1.36E-05 3.83E-05

0.9 0.275335 0.116633 0.539529 0.275317 0.116628 0.539526 1.75E-05 4.47E-06 3.25E-06

1 0.270418 0.101509 0.570244 0.270411 0.101495 0.570263 6.89E-06 1.39E-05 1.84E-05

Table 4. Comparative analysis with absolute error of x (t) , y (t) andz(t) between reference and LENN-FA-
AOA solution for scenario 3.

 

t x(t) y(t) z(t) x̂(t) ŷ(t) ẑ(t) AEx(t) AEy(t) AEz(t)

0 0.4 0.4 0.4 0.400001 0.399997 0.399992 1.23E-06 3.21E-06 7.73E-06

0.1 0.399573 0.357514 0.431772 0.399579 0.357509 0.431791 6.28E-06 4.62E-06 1.95E-05

0.2 0.398342 0.317882 0.463138 0.398361 0.317881 0.463137 1.94E-05 8.59E-07 1.04E-06

0.3 0.396377 0.280865 0.494175 0.396391 0.280858 0.494162 1.44E-05 6.76E-06 1.27E-05

0.4 0.393742 0.246248 0.524965 0.393741 0.246238 0.52498 7.23E-07 1.03E-05 1.49E-05

0.5 0.390496 0.213839 0.555592 0.390488 0.213834 0.555624 8.42E-06 4.6E-06 3.25E-05

0.6 0.386693 0.183464 0.586142 0.386692 0.183464 0.586152 7.04E-07 7.27E-08 1.03E-05

0.7 3.82E-01 1.55E-01 6.17E-01 3.82E-01 1.55E-01 6.17E-01 1.42E-05 5.36E-06 2.27E-05

0.8 0.377611 0.128206 0.647359 0.37763 0.128193 0.647341 1.86E-05 1.26E-05 1.76E-05

0.9 0.37242 0.103052 0.678202 0.372424 0.103044 0.678231 4.05E-06 7.25E-06 2.92E-05

1 0.366849 0.079388 0.70932 0.366847 0.079386 0.709349 2.14E-06 2.52E-06 2.89E-05

Table 3. Comparative analysis with absolute error of x (t) , y (t) andz(t) between reference and LENN-FA-
AOA solution for scenario 2.

 

t x(t) y(t) z(t) x̂(t) ŷ(t) ẑ(t) AEx(t) AEy(t) AEz(t)

0 0.5 0.5 0.5 0.499992 0.499983 0.500002 7.71E-06 1.68E-05 1.95E-06

0.1 0.499683 0.437197 0.538997 0.49969 0.437194 0.539015 6.24E-06 2.68E-06 1.76E-05

0.2 0.498766 0.378583 0.576076 0.498773 0.378577 0.576093 6.43E-06 5.91E-06 1.7E-05

0.3 0.497295 0.323875 0.611371 0.497316 0.323852 0.611368 2.09E-05 2.25E-05 2.84E-06

0.4 0.495312 0.272811 0.645015 0.495303 0.272791 0.645019 8.57E-06 1.99E-05 4.37E-06

0.5 0.492858 0.225152 0.677141 0.492847 0.22515 0.677172 1.02E-05 1.22E-06 3.04E-05

0.6 0.48997 0.180677 0.70788 0.489993 0.180683 0.707912 2.31E-05 6.52E-06 3.15E-05

0.7 0.486683 0.139181 0.737362 0.486711 0.139173 0.737361 2.78E-05 8.78E-06 6.82E-07

0.8 0.48303 0.100474 0.765711 0.483022 0.10045 0.765692 8.4E-06 2.47E-05 1.87E-05

0.9 0.479042 0.064378 0.793051 0.479031 0.064368 0.79307 1.04E-05 1.02E-05 1.88E-05

1 0.474746 0.030726 0.819501 0.474768 0.030728 0.819537 2.16E-05 2.49E-06 3.59E-05

Table 2. Comparative analysis with absolute error of x (t) , y (t) andz(t) between reference and LENN-FA-
AOA solution for scenario 1.
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represented in Figs. 13, 19, 25 for all scenarios. The intelligent unsupervised learning approach LENN-FA-AOA 
is used to train the weights of LENN through a FA-AOA hybrid scheme, assessing time of execution, generations/
iterations, and function counts in the Lorenz model solution using 10 neurons. Figures 14, 20, 26 present the 
convergence value of TIC using histograms for x(t),y(t) and z(t) with 10 neurons of LENN-FA-AOA for all 

Fig. 11. Convergence value of MSE for x(t), y(t)andz(t) with 10 neurons of LENN-FA-AOA of scenario 1.

 

Fig. 10. Convergence analysis of TIC for scenarios 1 with 10 neurons of LENN-FA-AOA.

 

Fig. 9. Convergence analysis of MSE for scenarios 1 with 10 neurons of LENN-FA-AOA.
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three scenarios. The statistical analysis was conducted across multiple runs to evaluate the maximum, average, 
minimum, and standard deviation values, as tabulated in Tables 5, 6, 7, for x(t), y(t)andz(t) for scenario 1. 
This analysis provides a comprehensive assessment of the variability and performance trends across different 
conditions. Furthermore, the optimization of LeNN hyperparameters, specifically the weights and biases, was 

Fig. 14. Convergence value of TIC through histogram across multiple runs for x(t), y(t)andz(t) with 10 
neurons of LENN-FA-AOA of scenario 1.

 

Fig. 13. Convergence value of MSE through histogram across multiple runs for x(t), y(t)andz(t) with 10 
neurons of LENN-FA-AOA of scenario 1.

 

Fig. 12. Convergence value of TIC for x(t), y(t)andz(t)  with 10 neurons of LENN-FA-AOA of scenario 1.
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Fig. 17. Convergence value of MSE for x(t), y(t)andz(t) with 10 neurons of LENN-FA-AOA of scenario 2.

 

Fig. 16. Convergence analysis of TIC for scenarios 2 with 10 neurons of LENN-FA-AOA.

 

Fig. 15. Convergence analysis of MSE for scenarios 2 with 10 neurons of LENN-FA-AOA.
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Fig. 20. Convergence value of TIC through histogram across multiple runs for x(t), y(t)andz(t) with 10 
neurons of LENN-FA-AOA of scenario 2.

 

Fig. 19. Convergence value of MSE through histogram across multiple runs for x(t), y(t)andz(t) with 10 
neurons of LENN-FA-AOA of scenario 2.

 

Fig. 18. Convergence value of TIC for x(t), y(t)andz(t) with 10 neurons of LENN-FA-AOA of scenario 2.
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Fig. 23. Convergence value of MSE for x(t), y(t)andz(t) with 10 neurons of LENN-FA-AOA of scenario 3.

 

Fig. 22. Convergence analysis of TIC for scenarios 3 with 10 neurons of LENN-FA-AOA.

 

Fig. 21. Convergence analysis of MSE for scenarios 3 with 10 neurons of LENN-FA-AOA.
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Fig. 26. Convergence value of TIC through histogram across multiple runs for x(t), y(t)andz(t) with 10 
neurons of LENN-FA-AOA of scenario 3.

 

Fig. 25. Convergence value of MSE through histogram across multiple runs for x(t), y(t)andz(t) with 10 
neurons of LENN-FA-AOA of scenario 3.

 

Fig. 24. Convergence value of TIC for x(t), y(t)andz(t)  with 10 neurons of LENN-FA-AOA of scenario 3.
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carried out using various optimizers and comparative evaluation of these optimizers, highlighting their tuning 
effectiveness, is presented in Table 8.

Conclusion
LENN-FA-AOA is an innovative stochastic numerical solution based on a Legendre polynomials artificial 
neural network, enhanced by heuristic optimization algorithms. This proposed LENN-FA-AOA approach 
converges quickly and is capable of addressing a wide range of chaotic systems, including linear/nonlinear, 
singular/nonsingular, and stiff systems. The quantitative effectiveness of LENN-FA-AOA is validated through 

t min max average S.D

0 5.68E-10 8.98E-04 4.49E-04 2.07E-04

0.1 8.91E-08 5.96E-04 2.98E-04 6.93E-05

0.2 3.99E-08 5.71E-04 2.86E-04 5.57E-04

0.3 4.76E-08 8.85E-04 4.43E-04 8.00E-04

0.4 4.25E-08 5.39E-04 2.69E-04 1.84E-04

0.5 9.90E-08 6.99E-04 3.50E-04 4.03E-04

0.6 8.59E-09 3.79E-04 1.90E-04 2.23E-04

0.7 4.57E-08 7.85E-04 3.93E-04 9.25E-04

0.8 3.15E-09 8.44E-04 4.22E-05 9.59E-04

0.9 5.68E-08 8.64E-04 4.32E-04 2.82E-04

1 4.85E-08 9.38E-04 4.69E-04 8.85E-04

Table 7. Statistical analysis of absolute error of z (t) between reference and LENN-FA-AOA solution for 
scenario 1 across multiple runs.

 

t min max average S.D

0 2.36E-08 8.96E-04 4.48E-04 9.50E-04

0.1 3.97E-08 3.92E-04 1.96E-04 3.59E-04

0.2 5.35E-08 7.55E-04 3.78E-04 7.45E-04

0.3 5.17E-08 3.08E-04 1.54E-04 3.08E-04

0.4 8.88E-08 7.81E-04 3.91E-04 9.93E-04

0.5 8.96E-08 9.10E-04 4.55E-04 2.11E-04

0.6 2.47E-09 6.34E-04 3.17E-04 9.43E-04

0.7 4.06E-08 2.94E-04 1.47E-04 1.62E-04

0.8 3.56E-08 7.23E-04 3.61E-05 1.08E-05

0.9 5.95E-08 9.30E-04 4.65E-04 3.47E-04

1 4.48E-08 8.14E-04 4.29E-07 8.51E-04

Table 6. Statistical analysis of absolute error of y (t) between reference and LENN-FA-AOA solution for 
scenario 1 across multiple runs.

 

t min max average S.D

0 1.69E-08 1.53E-04 7.67E-05 1.67E-04

0.1 2.93E-08 6.08E-04 3.04E-04 8.31E-04

0.2 8.04E-08 3.03E-04 1.51E-04 2.76E-04

0.3 3.86E-08 1.61E-04 8.05E-05 6.86E-04

0.4 6.17E-08 7.88E-04 3.94E-04 2.07E-04

0.5 5.58E-08 8.26E-04 4.13E-04 8.08E-04

0.6 3.41E-08 4.22E-04 2.11E-04 3.72E-04

0.7 2.93E-08 6.55E-04 3.28E-04 4.69E-04

0.8 2.79E-08 1.41E-04 7.07E-05 5.65E-04

0.9 4.57E-08 2.26E-04 1.13E-04 9.18E-04

1 9.45E-08 5.35E-04 2.68E-04 4.48E-05

Table 5. Statistical analysis of absolute error of x (t) between reference and LENN-FA-AOA solution for 
scenario 1 across multiple runs.
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numerical testing, achieving a high level of precision that confirms the robustness of the proposed mathematical 
framework. By combining FA optimization hybrid with AOA used for the model predictive accuracy is enhanced, 
providing an effective tool for analysing the Lorenz model. Utilized neural networks with ten neurons, the 
proposed LENN-FA-AOA statistical approach efficiently examined the performance of the proposed method. 
The absolute errors values obtained from LENN-FA-AOA with reference solution ranging from 3.22 × 10−5 
to 3.06 × 10−7, 4.56 × 10−5 to 7.27 × 10−8 and 5.17 × 10−5 to 2.11 × 10−7 In one hundred independent 
trials/runs, statistical measures including the absolute error, mean square mean and TIC values further validate 
the reliability of the LENN-FA-AOA method. The limitation of the proposed approach is reduced prediction 
accuracy when the chaotic model has a high dimensionality like 5D, 6D and 7D.

Future work
In figure the proposed hybrid algorithm will be used for cyber security analysis based on differential equations. 
Also, various neuro-evolutionary intelligent computing paradigms will be developed to analyze fractional 
differential order based Lorenz system. Additionally to be used the quantum algorithms to enhance the accuracy 
of the Lorenz model.

Data availability
All data generated or analysed during this study are included in this published article.
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