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Traditional damage analysis of steel truss structures requires detailed finite element meshing, and 
there is a coupling between stress-strain and damage solving, resulting in complex damage analysis 
and massive computations. In this paper, the element bearing ratio (EBR) reflecting the bearing state 
of components was defined, and the concept of the element damage factor was introduced based on 
the principle of deformation energy conservation. A homogeneous generalized yield function (HGYF) 
for box-section components was constructed to establish adaptive damage factors and the criterion 
under multi-force combinations. Combined with linear elastic iterative analysis, an adaptive damage 
evolution method for simulating steel truss structures with box section was proposed. Through 
numerical examples, the damage criterion in the method was able to adaptively determine whether 
component stiffness degradation occurred, eliminating the requirement to consider the interaction 
between stress-strain fields and damage, thereby reducing the difficulty of coupled calculations and 
enhancing computational efficiency in structural damage analysis. Based on the linear elastic iterative 
analysis, the calculated ultimate bearing capacity showed good agreement with experimental results.
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Steel truss structures, characterized by their simplicity, high overall stiffness, and excellent compressive and 
torsional performance, are widely used in large-span and heavy-load bridge engineering. The analysis of their 
ultimate bearing capacity is fundamental for safety assessment and design, garnering significant academic 
attention. Box section is commonly used in steel truss structures, and this study mainly focuses on the adaptive 
damage analysis of box steel trusses.

Structural damage evolution analysis focuses on the initiation, propagation, and coalescence of material 
micro-defects, and the overall or local failure of structures, serving as a crucial method for determining the 
ultimate bearing capacity1,2. Current design and analysis of large-scale engineering structures predominantly 
employ the theory of continuum damage mechanics3–5, integrating material damage constitutive models to 
study the damage evolution process from microscopic material damage to macroscopic structural failure6–9. 
Various models for steel damage constitutive models have been proposed by scholars such as Lemaitre et al.10, 
Bonora et al.11, Celentano et al.12, Castiglioni et al.13, Vu et al.14, and Hosseini et al.15.

In the study of damage simulation in steel truss structures, Yang et al.16 calibrated damage model parameters 
through steel plate experiments and developed a hybrid multiscale damage simulation model combining local 
microscopic and overall mesoscopic approaches. Li et al.17 developed a finite element program for elastic 
damage analysis of steel trusses, establishing damage variables using Miner’s linear damage accumulation 
theory and incorporating Lemaitre’s10 plastic damage evolution equation as the microscopic damage model. 
They characterized macroscopic damage through elastic modulus reduction, constructing a multiscale damage 
analysis model for steel trusses. Driemeier et al.18 derived elastoplastic constitutive relations for damaged steel 
and an explicit tangent modulus, establishing a nonlinear analysis method for steel trusses capable of handling 
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large strains, damage, and plasticity. Li et al.19 established a prediction method for the structural damage state of 
steel frames under aftershocks by considering the fracture damage and failure of steel component welds. Gong et 
al.20 conducted a study on the bearing capacity and damage mode identification of large-span truss structures in 
ultra-high voltage substations under earthquake action from a large-scale perspective using numerical methods. 
Zhao et al.21 theoretically analyzed the mechanical properties and failure mechanisms of channel steel supports, 
and studied the fracture damage behavior of the structure under dynamic loads from a macroscopic perspective 
through experiments.

However, in the research on damage analysis of steel truss structures mentioned above, the damage evolution 
equation involves stress-strain relationships, and the damage field itself affects the outcomes of stress-strain. 
Therefore, precise structural damage evolution analysis must consider the coupling effects between stress-strain 
and damage. This theoretical complexity involves extensive nonlinear iterative analyses at the material level, 
leading to substantial computational demands. Moreover, stress-strain analysis requires finely divided finite 
element meshes and the results are highly sensitive to mesh refinement, which reduces computational efficiency 
and is challenging for the analysis of large-scale structures’ ultimate bearing capacity.

To overcome the challenges posed by incorporating material damage constitutive models, one can consider 
establishing damage variables based on components or structures to simplify the complexity of material 
damage expressions. Li et al.22, Chen et al.23, Ma et al.24, and Diaz et al.25 have proposed using indicators such as 
strength, displacement, and energy dissipation of components or structures to define damage variables, which 
to some extent address the complexity of material damage expressions. However, these studies primarily focus 
on the consequences of structural damage for assessment purposes, lacking descriptions of damage initiation 
mechanisms, evolution processes, and calculations of ultimate load-bearing capacity17. Thus, there is room for 
improvement in the computational efficiency and stability of existing steel truss structure damage evolution 
analysis methods.

Material damage typically leads to a reduction in elastic stiffness and a corresponding decrease in the elastic 
modulus during the damage phase. Therefore, the damage state can be described by reducing the elastic modulus. 
Based on this, this paper establishes damage factors and the criterion for steel components by using their elastic 
modulus as a variable and simulates the damage evolution process through adaptive stiffness degradation. This 
approach does not involve interactions between stress-strain fields and damage during analysis, thereby reducing 
the difficulties of coupled calculations and avoiding the nonlinear iterative process of calculating strain energy 
through stress-strain, which enhances the efficiency of structural damage analysis. Additionally, a method for 
calculating the load-bearing capacity of steel components and steel truss structures post-damage is proposed in 
this paper, and the ultimate load-bearing capacity of the steel truss structure is determined through linear elastic 
iterative analysis. The accuracy and correctness of the method are verified by comparing it with experimental 
results.

Damage factor and damage criterion
Traditional damage factor based on stress-strain
Kachanov26 and Rabotnov et al.27 defined the damage factor D from the perspective of material degradation:

	
D = A − Ã

A
� (1)

Where: A is the cross-sectional area before damage, while Ã is the cross-sectional area after damage. D = 0 
indicates an undamaged state, and D = 1 indicates a fully damaged state.

According to Eq. (1), the relationship between effective stress σ̃ and nominal stress σ is given by:

	 σ̃ = σ/(1 − D)� (2)

Lemaitre28 proposed the strain equivalence hypothesis, stating that the equivalent relationship of strain ε under 
one-dimensional conditions is:

	 ε = σ̃/E = σ
/

Ẽ� (3)

Where: E is the initial elastic modulus of the material; Ẽ is the secant modulus of the damaged material.
Combining Eqs. (2) and (3):

	 Ẽ = (1 − D) E� (4)

Najar defined the damage factor D from the perspective of strain energy and its dissipative damage29.

	
∆wε = wperf − wε, D = ∆wε

wperf
= wperf − wε

wperf
� (5)

Where: wperf is the strain energy of the material in an undamaged state; wε and ∆wε are the strain energy and 
dissipated energy after damage occurs, respectively.

In summary, the damage factor D is typically defined through strain energy. However, the calculation of 
strain energy relies on the resolution of stress-strain relations, which often involves extensive nonlinear iterative 
analyses, leading to prolonged computation times for structural damage assessments. To address this issue, the 
element bearing ratio (EBR) is introduced in this paper, and the damage factor is defined at the component level, 
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allowing for a comprehensive representation of the damage state and improving the computational efficiency of 
structural damage analyses.

The EBR characterizing the bearing state of the component
From a material perspective, the bearing state at a specific point can be measured by the ratio of stress to material 
strength. Although this representation provides a detailed reflection of the bearing state at each force application 
point, it requires significant computational effort and time and may not comprehensively represent the overall 
bearing status of the component. To address this, the EBR30–35 is introduced to reflect the bearing state of the 
component. The EBR is defined as the ratio of sectional load effects to resistance. For example, in a hinged truss 
structure subjected to concentrated loads at the nodes, the axial force is the governing internal force, and the 
EBR re

k  can be defined as follows:

	 re
k= |N/Nu|� (6)

Where: N is the axial force acting on the cross-section, Nu is the compressive or tensile capacity of the cross-
section, the subscript k is the iteration step, and the superscript e is the element number. When considering the 
combined effects of multiple internal forces, the generalized yield function (GYF)36,37 can be used to calculate 
the EBR.

Damage criterion and damage factors for components based on the EBR
Material damage typically results in a reduction of the elastic stiffness, with the elastic modulus decreasing during 
the damage stage. Thus, damage states can be described by the reduction in elastic modulus38. For isotropic 
steel, assuming isotropic characteristics of the damage, the macroscopic variation in mechanical properties 
(i.e., stiffness) can be used to define the damage. Furthermore, stiffness can be repeatedly measured during the 
damage process without causing additional harm to the material10. Therefore, as shown in Eq. (4), the damage 
factor can be expressed as the ratio of the elastic modulus before and after damage:

	 D = 1 − Ẽ
/

E� (7)

During the iterative calculation process, the elastic modulus of the component continuously changes. The post-
damage elastic modulus Ẽ can be regarded as the elastic modulus Ee

k+1 of the (k + 1)th iteration. Thus, Eq. (7) 
can be expressed as:

	 De
k = 1 − Ee

k+1/Ee
0 � (8)

Where: De
k  is the damage factor of the kth iteration element; Ee

0  is the initial elastic modulus.
The elastic modulus of the damaged element is derived using the principle of strain energy conservation, 

which also facilitates the calculation of the element damage factor. This principle states that before any further 
damage, the total strain energy of the component is equal to the sum of the elastic strain energy after damage and 
the energy dissipated due to damage. As illustrated in Fig. 1, the vertical axis represents the generalized internal 
force on the characteristic cross-section of the component, while the horizontal axis denotes the corresponding 
deformation.

In Fig. 1, the area of triangle OAH represents the strain energy of the component before any further damage 
occurs, while the area of trapezoid LBCO denotes the sum of the elastic strain energy after damage and the 
energy dissipated due to damage (equivalent to the sum of triangle OLJ and rectangle LJCB). The internal force at 
point A corresponds to F e

k , with a deformation of χe
k ; similarly, the internal force at points B and L corresponds 

Fig. 1.  Conservation of strain energy.
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to F 0
k , with point L having a deformation of χ0

k , and point B having a deformation of χe
k+1. Thus, according to 

the principle of strain energy conservation:

	
1
2F e

k χe
k = 1

2F 0
k χ0

k + F 0
k

(
χe

k+1 − χ0
k

)
� (9)

Thus, the deformation of χe
k+1corresponding to point B after the damage is:

	
χe

k+1=
F e

k χe
k − F 0

k χ0
k

2F 0
k

+ χ0
k � (10)

Further combining Hooke Law with the relationship between internal forces and the element bearing ratio:

	 F e
k =Ee

kχe
k = re

kCs, F 0
k =Ee

kχ0
k = r0

kCs� (11)

Where: Cs represents the cross-sectional strength of the element. Taking a hinged truss structure as an example, 
F e

k  denotes the axial force on the cross-section, and Cs signifies the compressive or tensile strength of the 
section. r0

k  represents the reference bearing ratio (RBR), satisfying the following relationship:

	 r0
k = rmax

k − dk

(
rmax

k − rmin
k

)
� (12)

	
dk = r̄k + rmin

k

r̄k + rmax
k

, r̄k = 1
Ne

Ne∑
e=1

re
k� (13)

Where: rmin
k  and rmax

k  are the maximum and minimum EBRs of the elements at the kth iteration step, 
respectively; dk  is the uniformity of the EBRs; r̄ is the mean bearing ratio; Ne is the total number of discrete 
elements in the structure.

The EBR r0
k  serves as a damage criterion for the components. Elements satisfying re

k > r0
k  will incur damage, 

and r0
k  can adaptively change based on the load states of the structural elements without human intervention, 

demonstrating adaptive characteristics.
Substitute Eq. (11) into Eq. (10):

	
χe

k+1 = Cs

Ee
k

(re
k)2 +

(
r0

k

)2

2r0
k

� (14)

The element adjustment factor is defined as follows:

	

Me
0k =





2
(
r0

k

)2

(re
k)2 + (r0

k)2 , re
k > r0

k

1, re
k ⩽ r0

k

� (15)

Correspondingly, the element damage development factor is defined as:

	
De

0k = 1 − Me
0k =

(re
k)2 −

(
r0

k

)2

(re
k)2 + (r0

k)2 � (16)

The formula for calculating the element elastic modulus after stiffness degradation Ee
k+1 is:

	

Ee
k+1 =

2
(
r0

k

)2

(re
k)2 + (r0

k)2 Ee
k = (1 − De

0k) Ee
k

= (1 − De
01) (1 − De

02) · · · (1 − De
0k) Ee

0 = Ee
0

k∏
i=1

Me
0k

� (17)

Where: De
0k  is used to determine whether further damage occurs in the component. When De

0k = 0, and re
k ⩽ r0

k

, indicating no further damage; when 0 < De
0k < 1, and re

k > r0
k , indicating continued damage. Thus, the 

range of De
0k  is [0, 1), and:

	
De

0k =
(re

k)2 −
(
r0

k

)2

(re
k)2 + (r0

k)2 ⩾ 0� (18)

By substituting Eq. (17) into Eq. (8), the damage factor can be expressed as:
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De

k = 1 − (1 − De
01) (1 − De

02) · · · (1 − De
0k) = 1 −

k∏
i=1

Me
0k � (19)

A larger De
0k  indicates more evident damage to element e. Thus, the damage criterion and factor defined based 

on the EBR do not directly involve material strain, effectively reducing the computational complexity. This 
approach eliminates the requirement for fine finite element meshing of the cross-section, resulting in higher 
computational efficiency and stability compared to existing damage analysis methods for trusses.

The EBR and damage factor of components
For box-shaped steel components subjected to multiple internal force combinations, Liu et al.39,40 assessed the 
damage and failure of the components using the axial force-bending moment relations provided in GB5001741. 
However, the related equations from this code are non-homogeneous functions, and the internal force 
components do not maintain proportional variations with the loads, which does not satisfy the proportionality 
loading conditions required for plastic limit analysis. This may compromise the stability and accuracy of 
structural ultimate load capacity calculations31. To address this, an equivalent homogeneous generalized yield 
function (HGYF) was established based on the relevant equations for box-shaped steel components under 
multiple internal forces, enabling the definition of the EBR and facilitating the determination of the damage 
factor for box components.

The correlation equation and HGYF of box-shaped steel components
The box section is a commonly used profile in steel trusses. The correlation equations for the in-plane stability 
ultimate bearing capacity of box-shaped steel components provided in GB5001741 are as follows:

	
N

φAfd
+ βm

1 − 0.88N/Ncr

M

γW fd
⩽ 1� (20)

Where: N and M represents the axial force and in-plane bending moment on the component, respectively; A is 
the cross-sectional area; φ is the overall stability coefficient for axially compressed members; fd is the design 
value of the yield strength of the steel; fy  is the yield strength of the steel and fy = 1.1fd; γ is the plastic 
development coefficient of the section; W is the section modulus; βm is the equivalent moment coefficient; and 
Ncr  is the buckling load for axially compressed members.

Based on the correlation equations presented in Eq.  (20), the GYF for the box-shaped steel components 
under various internal force combinations can be expressed as:

	 f (n, m) = 1� (21)

Where: f is the GYF. n and m are the dimensionless internal forces corresponding to axial force N and in-plane 
bending moment M, respectively, such that:

	
n = N

φAfd
, m = βmM

γW fd
, aE = φAfd

Ncr
� (22)

From Eqs. (20) and (22), the GYF for the box-shaped steel components can be expressed as:

	
f (n, m) = n + m

1 − 0.88aEn
� (23)

The HGYF of box-shaped steel components
Equation  (23) indicates that the mechanical behavior of the box-shaped steel components under axial force 
and bending moment differs, leading to inconsistent power terms for the corresponding dimensionless internal 
forces. This implies that the GYF exhibits non-homogeneous characteristics, violating the proportional loading 
conditions required for plastic limit analysis. To address this, a corresponding HGYF is established through 
regression analysis.

The expression for the HGYF
By treating aE as a variable for fitting, the expression for the HGYF equivalent to Eq. (23) is established, denoted 
as f̄S1 (n, m, aE):

	
f̄S1 (n, m, aE) =

S1∑
i=1

cqnimS1−i (q = 1, 2, · · ·S1 + 1,)� (24)

Where: S1 represents the highest degree of the homogeneous polynomial f̄S1 ; cq  is a higher-order expression in 
terms of aE. When i = 0, or i = S1, then cq = 1; otherwise:

	
cq =

S2∑
j=0

kqjaj
E = kq0a0

E + kq1a1
E + . . . kqS2 aS2

E � (25)
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Where: S2 denotes the highest order in the expression of cq ; kqj  represents the coefficients determined through 
regression analysis.

In regression analysis, the arrangement of data points significantly impacts the fitting accuracy of the HGYF. 
This study employs a comprehensive experimental method to arrange data points 

(
ni, mi

)
, i = 1, 2, 3 · · · N  

on the GYF defined in Eq. (23), with increased density near the extremum points, totaling 441 data points to 
enhance the fitting accuracy of the HGYF. The coefficients of the HGYF are determined using the least squares 
method31,32, as shown in Table 1. The HGYF expression can be derived from kqj , Eqs. (24) and (25). Due to space 
constraints, only the HGYF for S1 = 2 ∼ 4 and S2 = 2 is presented, denoted as f̄2, f̄3, f̄4, as in Eqs. (26) to 
(28):

	 f̄2 = m2 +
(
2.01 + 1.50aE + 0.78a2

E

)
mn + n2� (26)

	 f̄3 = m3 +
(
2.96 + 3.27aE − 1.42a2

E

)
m2n +

(
3.10 + 1.22aE + 5.67a2

E

)
mn2 + n3� (27)

	

f̄4 = m4 +
(
4.09 + 2.52aE + 1.73a2

E

)
m3n +

(
5.62 + 11.62aE − 3.49a2

E

)
m2n2

+
(
4.34 − 1.09aE + 13.11a2

E

)
mn3 + n4 � (28)

Fitting error of the HGYF
This section compares the HGYF curve with the GYF curve at aE = 0.2, as shown in Fig. 2. In Fig. 2a, f̄S1  
represents the second to fourth-order HGYF (S2 = 2), fGB denotes the GYF from GB50017, and f2

GB(∗) ~ 
f4
GB(∗) represent the HGYFs with maximum orders S1 of 2, 3, and 4, respectively. For the same maximum order 

S2, the different-order HGYFs closely overlap with the original GYF. Specifically, when the maximum order of 
cq  is 2, the fitting accuracy of the different-order HGYFs is consistent and aligns well with the GYF. Figure 2b 

Fig. 2.  Comparison of GYF and HGYF (aE = 0.2).

 

S2 j
S1 = 2 S1 = 3 S1 = 4
q = 1 q = 1 q = 2 q = 1 q = 2 q = 3

2

0 2.01 2.96 3.10 4.09 5.62 4.34

1 1.50 3.27 1.22 2.52 11.62 -1.09

2 0.78 − 1.42 5.67 1.73 − 3.49 13.11

3

0 2.00 3.01 2.99 3.98 6.09 3.94

1 1.60 2.50 2.97 4.02 4.64 5.22

2 0.51 0.68 0.75 − 2.13 15.13 − 4.55

3 0.19 − 1.47 3.50 2.58 − 12.81 12.55

4

0 2.00 3.00 3.00 4.00 5.99 4.01

1 1.61 2.64 2.61 3.40 7.70 3.07

2 0.46 0.00 2.58 0.90 − 0.36 6.52

3 0.28 − 0.34 0.43 − 2.32 12.84 − 6.02

4 − 0.04 − 0.58 1.61 2.50 − 13.31 9.72

Table 1.  Undetermined parameters kqj  of HGYF with different S1 and S2
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presents the comparison curves of the fourth-order HGYF with the GYF for S2 = 2 ∼ 4. It shows that under 
the same S1, the yield curves for S2 = 2 ∼ 4 nearly coincide, indicating that S2 has a minimal impact on the 
fitting accuracy of the HGYF. The fitting errors between the GYF and the corresponding HGYFs for different S1 
and S2 are summarized in Table 2.

Table 2 indicates that the root mean square errors (RMSE) of different-order HGYFs with varying maximum 
orders S2 do not exceed 3%, demonstrating high fitting accuracy. When the order S1 of the HGYF remains 
constant, changes in the maximum order S2 of cq  have minimal impact on fitting accuracy. Conversely, for 
a fixed maximum order S2, a higher S1 results in improved fitting accuracy. Therefore, considering both the 
complexity of the expression and the fitting precision, this study selects the HGYF with S1 = 2 and S2 = 2 for 
structural analysis.

The EBR and damage factor of box-shaped steel components
The EBR of box-shaped steel components under axial force and moment interaction is defined using the 2nd-
order HGYF, as shown in Eq. (26).

	 re
k = 2

√
f2 � (29)

Different ends of the same element often have varying values of re
k , requiring the maximum value to be used. 

Substitute re
k  into Eq. (19), and yield the damage factor of the box-shaped steel components.

	
De

k = 1 −
k∏

i=1

g
(
re

i , r0
i

)
, g

(
re

i , r0
i

)
=

2
(
r0

i

)2

(re
i )2 + (r0

i )2 ⩽ 1� (30)

Based on the determined internal forces, the EBR re
k  can be calculated using Eq. (29). Subsequently, the damage 

criterion r0
k  is computed using Eq. (12). Components with re

k > r0
k  will experience damage, and the damage 

factor is assessed using Eq. (30). Finally, Eq. (8) is used to reduce the elastic modulus of the component, allowing 
simulation of structural damage evolution through linear elastic iterative analysis.

Linear elastic iterative analysis of the structure
The 2nd order HGYF in Eq. (26) is used to define re

k  for the each members. At each iterative step k, the linear 
elastic finite element analysis is used to obtain the stability ultimate capacity of the structure, where the maximum 
element bearing ratio of all members, rmax

k , can measure the bearing and damage states of the structure. The 
stability ultimate capacity of the iterative step can be determined as:

	 P L
k = P0/rmax

k � (31)

Repeat the above iterative process until the stability ultimate capacity of the two adjacent steps meets the 
convergence criterion:

	

∣∣∣∣
P L

k − P L
k-1

P L
k-1

∣∣∣∣ ⩽ ε, k ⩾ 2� (32)

Where ε is the convergence tolerance, generally taken as 0.001 ~ 0.01.

Analysis and verification
Based on box-section HGYF, the damage evolution of the steel truss structure in reference39] and [40 is analyzed 
using the method presented in this paper. The ultimate bearing capacity of the structure is also solved through 
the linear elastic iterative method30–35 and compared with experimental results to demonstrate the correctness 
and accuracy of the method. A finite element model is established using the ANSYS software, with beam189 
elements selected for discretization. Rigid connections are applied at all component intersection points. The PC 
configuration used includes a CPU@2.50 GHz and 8GB of memory.

Warren steel truss structure (triangular web system)
As shown in Fig.  3, the steel truss structure consisting of 19 members in reference40 has a yield strength of 
300 MPa and an elastic modulus of 206 GPa. Referring to the full-size test model40, a finite element model is 
established through the centerline of the member, as shown in Fig. 3a. The length of the left and right side spans 
is 456 mm, the length of the middle span is 420 mm, and the height of the truss is 525 mm. The structure is 

S2 = 2 S2 = 3 S2 = 4
0.028 0.028 0.028

0.018 0.018 0.018

0.013 0.011 0.011

Table 2.  Residual mean square error of HGYFs.
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subjected to a vertical concentrated load at mid-span. All members use a box section, with geometric dimensions 
provided in Fig. 3a and Table 3.

Stiffness damage and evolution of elements
The method presented in this paper is used to analyze the damage evolution of the steel truss structure shown in 
Fig. 3a. Each member is divided into 2 elements, as illustrated in Fig. 3b. Due to symmetry, only the left half-span 
structure is analyzed. Iterative changes in the elastic modulus, damage factors, and EBRs for some elements are 
shown in Fig. 4a–c.

According to the relationship between the bearing ratio of each element and the reference bearing ratio, 
elements can be divided into three categories: low-bearing units, Class 1 high-stressed elements, and Class 2 
high-stressed elements. The EBR of low-bearing elements is always lower than the reference bearing ratio, the 
EBR of Class 1 high-stressed elements is always higher than the reference bearing ratio, and the EBR of Class 
2 high-stressed elements is initially lower than the reference bearing ratio, and then gradually higher than the 
reference bearing ratio.

For low-stressed Element 20, the EBR remains below the reference bearing ratio throughout the iteration 
process, as shown in Table 4. According to Eqs. (15) to (19), the damage parameters for each iteration step are 
as follows:

	
Me

0k = 1, De
0k = 0,

k∏
i=1

Me
0k =1, De

k = 0� (33)

Fig. 4.  Damage evolution of elements.

 

Member category Member Number l  (mm) b × h × t (mm)

Top and bottom chords

DF, FH, CE, EG, GI 840 80 × 100 × 3.0

BD, HJ 876 80 × 100 × 3.0

AC, IK 456 80 × 100 × 3.0

Support vertical members AB, KJ 525 80 × 80 × 4.0

Web members
BC, IJ 659.39 60 × 40 × 3.0

CD, DE, EF, FG, GH, HI 672.33 60 × 40 × 3.0

Table 3.  Section sizes40.

 

Fig. 3.  Idealization model of Warren Steel Truss.
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For Class 1 high-stressed Element 7, the EBR remains above the reference value throughout the iteration process, 
as shown in Table 5. Similarly, the damage parameters for iteration steps 2 and 3 are as follows:

	

Me
02 =

2
(
r0

2
)2

(re
2)2 + (r0

2)2 =
2 ×

(
49.56 × 10−4)2

(62.01 × 10−4)2 + (49.56 × 10−4)2 = 0.779,

De
02 = 1 − Me

02 = 0.221,

2∏
i=2

Me
0k = 0.779, De

2 = 1 −
2∏

i=2

Me
0k = 0.221

� (34)

	

Me
03 =

2
(
r0

3
)2

(re
3)2 + (r0

3)2 =
2 ×

(
38.57 × 10−4)2

(61.00 × 10−4)2 + (38.57 × 10−4)2 = 0.571,

De
02 = 1 − Me

02 = 0.429,

3∏
i=2

Me
0k = 0.779 × 0.571 = 0.445, De

3 = 0.555
� (35)

The damage parameters for other iteration steps of Element 7 are calculated similarly. For Class 2 high-stressed 
Element 16, the EBR initially falls below the reference value, with damage parameters calculated as for Element 
20. As internal force redistribution occurs, it later exceeds the reference value, at which point the damage 
parameters are calculated as for Element 7. The variation trends of damage parameters for all three types of 
elements are detailed in Tables 4, 5 and 6.

From Fig. 4, Tables 4, 5 and 6, it can be observed that Element 2 and Element 20 maintain EBRs below the 
reference throughout the iteration, experiencing no damage with a damage factor consistently at 0 and unaltered 
elastic modulus. Element 7 and Element 11 have EBRs above the reference, consistently undergoing damage 
where the damage factor increases and elastic modulus decreases, reaching a plastic limit state with a damage 

Steps J r0
k(10− 4) re

k(10− 4) Me
0k De

0k

k∏
i=1

Me
0k

De
k

2 49.56 0 1 0 1 0

3 38.57 15.88 1 0 1 0

4 38.03 15.95 1 0 1 0

5 37.39 16.04 1 0 1 0

6 36.72 16.16 1 0 1 0

7 36.08 16.35 1 0 1 0

8 35.42 16.61 1 0 1 0

9 34.76 16.96 1 0 1 0

10 34.12 17.45 1 0 1 0

11 33.52 18.09 1 0 1 0

12 33.02 18.86 1 0 1 0

13 32.72 19.84 1 0 1 0

14 32.67 21.04 1 0 1 0

15 33.05 22.09 1 0 1 0

16 33.72 22.57 1 0 1 0

17 33.53 22.66 1 0 1 0

18 33.33 22.54 1 0 1 0

19 33.18 22.44 1 0 1 0

20 33.07 22.38 1 0 1 0

21 32.99 22.34 1 0 1 0

22 32.93 22.31 1 0 1 0

23 32.88 22.29 1 0 1 0

24 32.84 22.26 1 0 1 0

25 32.80 22.23 1 0 1 0

26 32.76 22.19 1 0 1 0

27 32.72 22.15 1 0 1 0

28 32.69 22.11 1 0 1 0

29 32.65 22.07 1 0 1 0

30 32.62 22.03 1 0 1 0

Table 4.  Damage parameters for element 20 (low-stressed element). Low-stressed elements are those where 
the EBR remains below the reference value throughout the entire iteration process.
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factor near 1.0, indicating significant stiffness degradation. Element 6 and Element 16 initially have EBRs below 
the reference with no damage, but as internal force redistributes, their ratio exceeds the reference, and damage 
begins after steps 10 and 15, respectively, with a reduction in elastic modulus.

At the final iteration step, reaching the plastic limit state, Element 2 and Element 20, distant from concentrated 
loads, remain undamaged with 0 stiffness degradation, depicted as low-stress blue areas in Fig. 5. Upper chord 
Element 11 near concentrated loads suffer the most damage with 100% stiffness degradation, appearing as 
yellow-orange-red on the map.

Compared with experimental results, when the steel truss reaches its ultimate load, noticeable plastic 
deformation occurs in upper chord Element 16, Element 11, and Element 12, as shown in Fig. 5. This indicates a 
good agreement between the damage evolution analysis and experimental outcomes.

Structural ultimate bearing capacity analysis
The impact of finite element mesh discretization on ultimate bearing capacity results is first analyzed, as shown 
in Table 7, where NE represents the number of elements per member. It is evident that when each member 
is divided into two elements, the calculation of ultimate load capacity achieves stable convergence. Further 
increasing the mesh density has minimal impact on the results, indicating that the method used in this paper 
can achieve high accuracy without the need for a fine mesh and has low dependency on the mesh discretization 
scheme.

Modified Warren truss structure (warren with vertical members)
As shown in Fig. 6, the modified Warren steel truss structure in reference39, subjected to a vertical concentrated 
load at mid-span, has upper and lower chords, diagonal members, and vertical members with yield strengths of 
297 MPa, 298 MPa, and 302 MPa, respectively, and an elastic modulus of 206 GPa. Referring to the full-size test 
model39, a finite element model is established through the centerline of the member, as shown in Fig. 6 (a). The 
span length is 800 mm and the height of the truss is 1000 mm. All members have box-shaped cross-sections, 
with geometric dimensions detailed in Fig. 7; Table 8.

Steps J r0
k(10− 4) re

k(10− 4) Me
0k De

0k

k∏
i=1

Me
0k

De
k

2 49.56 62.01 0.779 0.221 0.779 0.221

3 38.57 61.00 0.571 0.429 0.445 0.555

4 38.03 60.39 0.568 0.432 0.253 0.747

5 37.39 59.67 0.564 0.436 0.143 0.857

6 36.72 58.97 0.559 0.441 0.080 0.920

7 36.08 58.34 0.553 0.447 0.044 0.956

8 35.42 57.79 0.546 0.454 0.024 0.976

9 34.76 57.31 0.538 0.462 0.013 0.987

10 34.12 56.90 0.529 0.471 0.007 0.993

11 33.52 56.54 0.520 0.480 0.004 0.996

12 33.02 56.22 0.513 0.487 0.002 0.998

13 32.72 55.92 0.510 0.490 0.001 0.999

14 32.67 55.65 0.513 0.487 0 1

15 33.05 55.41 0.525 0.475 0 1

16 33.72 55.20 0.543 0.457 0 1

17 33.53 55.01 0.542 0.458 0 1

18 33.33 54.85 0.539 0.461 0 1

19 33.18 54.72 0.538 0.462 0 1

20 33.07 54.61 0.537 0.463 0 1

21 32.99 54.51 0.536 0.464 0 1

22 32.93 54.44 0.536 0.464 0 1

23 32.88 54.37 0.536 0.464 0 1

24 32.84 54.31 0.535 0.465 0 1

25 32.80 54.27 0.535 0.465 0 1

26 32.76 54.22 0.535 0.465 0 1

27 32.72 54.18 0.534 0.466 0 1

28 32.69 54.15 0.534 0.466 0 1

29 32.65 54.12 0.534 0.466 0 1

30 32.62 54.09 0.533 0.467 0 1

Table 5.  Damage parameters for element 7 (Class 1 of high-stressed element).
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Experimental results40 NE = 2 NE = 3 NE = 4 NE = 5

180 184.97 186.16 185.34 185.08

Table 7.  Ultimate bearing capacity/kN.

 

Fig. 5.  Schematic diagram of damage location40.

 

Steps J r0
k(10− 4) re

k(10− 4) Me
0k De

0k

k∏
i=1

Me
0k

De
k

2 49.56 0 1 0 1 0

3 38.57 16.65 1 0 1 0

4 38.03 16.62 1 0 1 0

5 37.39 16.42 1 0 1 0

6 36.72 17.06 1 0 1 0

7 36.08 18.33 1 0 1 0

8 35.42 20.22 1 0 1 0

9 34.76 22.91 1 0 1 0

10 34.12 26.43 1 0 1 0

11 33.52 30.60 1 0 1 0

12 33.02 35.18 0.937 0.063 0.937 0.063

13 32.72 39.20 0.821 0.179 0.769 0.231

14 32.67 42.09 0.752 0.248 0.578 0.422

15 33.05 44.05 0.720 0.280 0.417 0.583

16 33.72 44.52 0.729 0.271 0.304 0.696

17 33.53 44.52 0.724 0.276 0.220 0.780

18 33.33 44.45 0.720 0.280 0.158 0.842

19 33.18 44.31 0.718 0.282 0.114 0.886

20 33.07 44.19 0.718 0.282 0.082 0.918

21 32.99 44.10 0.718 0.282 0.059 0.941

22 32.93 44.04 0.717 0.283 0.042 0.958

23 32.88 44.02 0.716 0.284 0.030 0.970

24 32.84 44.01 0.715 0.285 0.022 0.978

25 32.80 44.02 0.714 0.286 0.015 0.985

26 32.76 44.04 0.712 0.288 0.011 0.989

27 32.72 44.05 0.711 0.289 0.008 0.992

28 32.69 44.06 0.710 0.290 0.006 0.994

29 32.65 44.06 0.709 0.291 0.004 0.996

30 32.62 44.06 0.708 0.292 0.003 0.997

Table 6.  Damage parameters for element 16 (Class 2 of high-stressed element).

 

Scientific Reports |         (2025) 15:8957 11| https://doi.org/10.1038/s41598-025-93307-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Stiffness damage and evolution of elements
Utilizing the methodology delineated in this paper, the damage evolution of the modified Warren steel truss 
structure depicted in Fig. 6a is investigated. Each truss member is subdivided into 2 elements, as illustrated in 
Fig. 6b. Analyzing only the left half-span due to symmetry, the iterative variations of elastic modulus, damage 
factor, and EBRs for select elements are presented in Fig. 7a–c. Damage parameters for Element 14, Element 
5, and Element 15 are computed concerning Example 1 in Section  “Warren steel truss structure (triangular 
web system)”, with detailed outcomes provided in Tables 9, 10 and 11. It is evident that elements 14 and 41 
maintain EBRs below the benchmark throughout iterations, incurring no damage, with a damage factor of 
zero, and an unaltered elastic modulus. Conversely, Element 5, Element 6, and Element 18 consistently exhibit 
EBRs surpassing the benchmark, leading to progressive damage, increasing damage factors, and a decrement 
in elastic modulus. By the final iteration, as the structure approaches the plastic limit state, the damage factor 
nears 1.0, indicating pronounced stiffness degradation. Initially, Element 15, Element 26, and Element 27 have 
EBRs beneath the benchmark, thus avoiding damage. However, subsequent internal force redistribution results 
in EBRs exceeding the benchmark, initiating damage post the fourth step with a consequent reduction in elastic 
modulus. Thus, at the termination point of the plastic limit state iteration, diverse members manifest varying 
damage extents, with not all members concurrently reaching failure.

Comparing experimental results, when the test steel truss reaches its ultimate load, significant plastic 
deformation is observed, particularly in the severely damaged bottom chord Element 5 and Element 6, top chord 
Element 15 and Element 18, and diagonal web Element 26 and Element 27. This results in noticeable outward 
bulging, as illustrated for element 5 in Fig. 8. A similar deformation pattern is observed near node C in Element 
15, indicating a strong correlation between the damage evolution analysis results presented in this study and the 
experimental outcomes.

Fig. 7.  Damage evolution of elements.

 

Fig. 6.  Idealization model of revised Warren steel truss.

 

Member category Member number l (mm) b × h × t (mm) b/ t

Top and bottom chords BC, CF, FG, GJ, JK, KN, AD, DE, EH, HI, IL, LM 800 100 × 100 × 4.0 25

End vertical member AB, MN 1000 60 × 40 × 3.0 20

Vertical web member CD, EF, GH, IJ, KL 1000 60 × 40 × 3.0 20

Diagonal web member AC, CE, EG, GI, IK, KM 1280.62 80 × 80 × 4.0 20

Table 8.  Section sizes of revised Warren steel truss [39].
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Structural ultimate bearing capacity analysis
The influence of finite element mesh discretization on the ultimate load capacity calculations is initially examined, 
with findings detailed in Table 12, where NE represents the number of elements per structural member. The 
results demonstrate that dividing each member into two elements yields stable convergence in calculating the 
ultimate load capacity. Further refinement of mesh density has negligible impact on the results, suggesting that 
the proposed method can achieve high accuracy without the necessity for fine mesh discretization, and exhibits 
minimal dependency on the discretization scheme.

It is evident that the proposed method accurately identifies member damage by establishing damage factors 
and the criterion. It stimulates the damage evolution process through stiffness degradation, avoiding the need 
for coupled stress-strain and damage solutions. This approach eliminates complex nonlinear iterative analyses, 
thus achieving higher computational efficiency and stability compared to traditional structural damage analysis 
methods.

Conclusion
This paper develops a framework for assessing damage in box-shaped steel members through the establishment 
of damage factors and the criterion grounded in elastic modulus, facilitating the simulation of damage 
evolution via stiffness degradation. A novel computational approach for evaluating the load-bearing capacity 
of compromised steel truss structures is introduced, coupled with an adaptive damage simulation method for 
ultimate load capacity analysis. The following conclusions can be drawn:

	(1)	� A HGYF for the box section with the high fitting degree is established through the GYF of GB50017. Based 
on the definition of EBRs and reference EBRs in HGYF, a damage criterion for box steel components is 
established to determine whether the component is damaged. The analysis process does not involve the 
interaction between the stress-strain field and damage, thereby reducing the difficulties caused by coupling 
calculation.

	(2)	� The formulation of a damage factor based on the conservation principle of deformation energy allows for 
a quantitative assessment of damage severity through reductions in elastic modulus. This underpins the 

Steps J r0
k(10− 4) re

k(10− 4) Me
0k De

0k

k∏
i=1

Me
0k

De
k

2 215 13 1 0 1 0

3 210 15 1 0 1 0

4 204 15 1 0 1 0

5 200 16 1 0 1 0

6 196 16 1 0 1 0

7 193 17 1 0 1 0

8 191 18 1 0 1 0

9 188 18 1 0 1 0

10 186 19 1 0 1 0

11 183 21 1 0 1 0

12 180 22 1 0 1 0

13 178 23 1 0 1 0

14 175 25 1 0 1 0

15 172 25 1 0 1 0

16 170 28 1 0 1 0

17 167 32 1 0 1 0

18 165 39 1 0 1 0

19 162 48 1 0 1 0

20 160 58 1 0 1 0

21 158 70 1 0 1 0

22 157 81 1 0 1 0

23 156 93 1 0 1 0

24 154 103 1 0 1 0

25 153 114 1 0 1 0

26 153 126 1 0 1 0

27 32.72 22.15 1 0 1 0

28 32.69 22.11 1 0 1 0

29 32.65 22.07 1 0 1 0

30 32.62 22.03 1 0 1 0

Table 9.  Damage parameters for element 14 (low load-stressed element).
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adaptive simulation of damage evolution in steel truss structures via stiffness degradation, obviating the 
need for intricate coupling calculations associated with stress-strain and damage, and diminishing reliance 
on finite element mesh discretization.

	(3)	� The adaptive damage simulation method proposed in this article solves the ultimate bearing capacity of 
steel truss structures through linear elastic iteration, avoiding the complex process of nonlinear iteration 
of strain energy calculation through stress-strain. The calculated results are in good agreement with exper-
imental results, ensuring high efficiency and accuracy of structural damage analysis and bearing capacity 
calculation.

Steps J r0
k(10-4) re

k(10-4) Me
0k De

0k

k∏
i=1

Me
0k

De
k

2 215 286 0.725 0.275 0.725 0.275

3 210 283 0.709 0.291 0.514 0.486

4 204 281 0.692 0.308 0.356 0.644

5 200 278 0.680 0.320 0.242 0.758

6 196 276 0.670 0.330 0.162 0.838

7 193 275 0.662 0.338 0.107 0.893

8 191 273 0.655 0.345 0.070 0.930

9 188 272 0.646 0.354 0.045 0.955

10 186 272 0.636 0.364 0.029 0.971

11 183 271 0.626 0.374 0.018 0.982

12 180 271 0.615 0.385 0.011 0.989

13 178 270 0.605 0.395 0.007 0.993

14 175 269 0.594 0.406 0.004 0.996

15 172 269 0.582 0.418 0.002 0.998

16 170 268 0.572 0.428 0.001 0.999

17 167 267 0.563 0.437 0.001 0.999

18 165 267 0.551 0.449 0 1

19 162 267 0.541 0.459 0 1

20 160 266 0.531 0.469 0 1

21 158 266 0.524 0.476 0 1

22 157 266 0.517 0.483 0 1

23 156 266 0.511 0.489 0 1

24 154 266 0.504 0.496 0 1

25 153 266 0.499 0.501 0 1

26 153 266 0.497 0.503 0 1

27 32.72 22.15 1 0 1 0

28 32.69 22.11 1 0 1 0

29 32.65 22.07 1 0 1 0

30 32.62 22.03 1 0 1 0

Table 10.  Damage parameters for element 5 (Class 1 of high-stressed element).
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Fig. 8.  Schematic diagram of test damage location39.

 

Steps J r0
k(10− 4) re

k(10− 4) Me
0k De

0k

k∏
i=1

Me
0k

De
k

2 215 187 1 0 1 0

3 210 188 1 0 1 0

4 204 187 1 0 1 0

5 200 188 1 0 1 0

6 196 190 1 0 1 0

7 193 192 1 0 1 0

8 191 196 0.971 0.029 0.971 0.029

9 188 201 0.935 0.065 0.908 0.092

10 186 206 0.896 0.104 0.814 0.186

11 183 211 0.859 0.141 0.699 0.301

12 180 215 0.827 0.173 0.578 0.422

13 178 217 0.802 0.198 0.464 0.536

14 175 218 0.786 0.214 0.364 0.636

15 172 216 0.776 0.224 0.282 0.718

16 170 216 0.765 0.235 0.216 0.784

17 167 215 0.756 0.244 0.163 0.837

18 165 213 0.748 0.252 0.122 0.878

19 162 215 0.724 0.276 0.088 0.912

20 160 221 0.689 0.311 0.061 0.939

21 158 225 0.662 0.338 0.040 0.960

22 157 229 0.640 0.360 0.026 0.974

23 156 232 0.622 0.378 0.016 0.984

24 154 234 0.606 0.394 0.010 0.990

25 153 236 0.594 0.406 0.006 0.994

26 153 237 0.586 0.414 0.003 0.997

27 32.72 22.15 1 0 1 0

28 32.69 22.11 1 0 1 0

29 32.65 22.07 1 0 1 0

30 32.62 22.03 1 0 1 0

Table 11.  Damage parameters for element 15 (Class 2 of high-stressed element).
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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