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Pancreatic cancer (PC) is a fatal disease with an extremely low 5-year survival rate, mainly because of 
its poor detection rate in early stages. Given emerging evidence of the relationship between microbiota 
composition and diseases, this study aims to identify microbiome markers linked to the diagnosis 
of pancreatic cancer. We utilized extracellular vesicles (EVs) data obtained from blood samples of 38 
pancreatic cancer patients and 51 health controls. Least absolute shrinkage and selection operator 
(LASSO) and stepwise method were used to obtain some candidate markers in genus and phylum 
levels. These markers were used to develop various machine learning models including logistic 
regression (LR), random forest (RF), support vector machine (SVM), and Deep Neural Network (DNN) 
methods. In phylum level, DNN performed best with three markers (Verrucomicrobia, Actinobacteria 
and Proteobacteria) selected by stepwise method with the test AUC 0.959. In genus level, DNN using 
11 markers selected by LASSO (Ruminococcaceae UCG-013, Ruminiclostridium, Propionibacterium, 
Lachnospiraceae NK4A136 group, Corynebacterium.1, Akkermansia, Mucispirillum, Pseudomonas, 
Diaphorobacter, Clostridium sensu stricto 1 and Turicibacter) outperformed others with 0.961 test AUCs. 
These results highlight the potential of microbiome markers and prediction models in clinical studies of 
PC diagnosis.
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Pancreatic cancer (PC) is a highly aggressive malignancy with a dismal prognosis, primarily due to the lack 
of effective screening methods and the asymptomatic nature of early-stage disease, which often results in late-
stage diagnosis1. The five-year survival rate remains below 8%, highlighting the urgent need for improved early 
detection strategies2. The poor treatment response is largely attributed to the tumor microenvironment, which 
fosters an immunosuppressive landscape and contributes to resistance against conventional chemotherapy3. 
Additionally, the dense stromal composition of pancreatic tumors creates a physical barrier that limits drug 
penetration, further reducing therapeutic efficacy4. Early diagnosis plays a pivotal role in expanding treatment 
options, particularly by increasing the likelihood of surgical resection, which remains the only curative approach5. 
Even with advancements in targeted therapies and immunotherapy, early detection remains crucial for improving 
patient outcomes by enabling timely intervention before disease progression to advanced, unresectable stages6.

Studies have clearly shown that the human microbiota plays a key role in human health and disease, 
substantiating its potential use as a predictor for various diseases including cancers7–9. Microbiome profiles 
identified in fecal, urine, or serum samples of cancer patients have been utilized not only to help determine the 
course of cancer progression but also to suggest risk prediction models. With advances in sophisticated analytical 
methods using machine learning algorithms, it has become feasible to decipher the functional relationships 
between a specific microbiome and tumor progression10. Several studies have implicated candidates for early 
diagnostic biomarkers related to high risk of cancers including colon, hepatocellular carcinoma and breast 
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cancer11. Recently, the fecal microbiome signature of pancreatic adenocarcinoma was obtained by analyzing 
a cohort composed of 30 patients with PC and 29 controls of healthy subjects and patients with non-alcoholic 
fatty liver disease12. Fourteen bacterial features discriminated between PC and controls via a random forest (RF) 
model with an AUC of 0.825. The gut microbial profiles of PC in China have been reported in a cohort of 85 
PC and 57 matched healthy controls by MiSeq sequencing Gut microbial profile analysis by MiSeq sequencing 
of pancreatic carcinoma patients in China13. The results showed that microbial markers based on 40 genera 
associated with PC achieved a high classification power, with AUC of 0.842.

Microbial information obtained from extracellular vesicles (EVs) excreted from bacteria can serve as a stable 
and enriched source of microbial biomarkers, enabling the assessment of microbiota composition and its role 
in disease. EVs circulate in the bloodstream, providing a non-invasive means to capture microbial signatures 
from distant organs, including the tumor microenvironment14. Their stability in biological fluids and ability 
to cross physiological barriers make them particularly valuable for their potential applications in early cancer 
detection15,16. In the context of pancreatic cancer diagnosis, EV-derived microbial markers present a promising 
non-invasive alternative to conventional sampling methods, providing a more comprehensive and systemic 
representation of disease-associated microbiome alterations. Recent studies have analyzed diagnostic models of 
various cancer types such as glioblastoma17, colorectal cancer18, and ovarian cancer19 using microbial data from 
EVs. However, PC has not been widely studied in this regard.

Our recent microbiome profiling study using serum EVs identified biomarkers indicating PC and allowed 
us to propose a diagnosis model classified in terms of operational taxonomic units (OTUs)20. Candidate 
markers were first selected using nine single marker selection methods: microbiome specific methods such as 
metagenome-seq (gaussian and log-normal)21, ZIBSeq22, ANCOM23 and CLR permutation24, simple statistical 
analysis such as Wilcoxon rank sum test25, and RNA-seq data specific methods such as DESeq2 (LRT, Wald)26 
and edgeR23,27. For those markers commonly identified by these methods, the best marker combination was 
selected by exhaustive search. Logistic regression (LR) models using these markers yielded high area under the 
curve (AUC) of receiver operating characteristics (ROC) of 0.966 and 0.913 in phylum and genus level in the 
test set, respectively.

While this model was shown to provide a reasonably well-predicted performance, there remains considerable 
room for improvement. For example, single marker selection does not consider the well-known, strong 
correlations among microbiome markers. In building prediction models, it is more efficient to choose, as much 
as possible, those markers less correlated and more complementary. Furthermore, many available machine 
learning models may provide better performance than LR.

In this study, we adopt multiple marker selection methods to account for the multi-collinearity among the 
candidate markers. Moreover, we apply machine learning models such as random forest (RF), support vector 
machine (SVM), and deep neural network (DNN) to achieve better prediction performance. RF was selected 
for its robustness in handling high-dimensional data and mitigating overfitting through ensemble learning. 
SVM was chosen for its ability to classify non-linearly separable data using various kernel functions. DNN 
was employed to capture complex hierarchical patterns in microbiome data, potentially enhancing prediction 
accuracy. These models were selected to comprehensively evaluate different classification approaches and 
identify the most effective method for pancreatic cancer diagnosis. The performance of each combination of 
marker selection and machine learning model is evaluated to choose the optimal combination. At phylum level, 
a DNN model using 3 markers (Verrucomicrobia, Actinobacteria and Proteobacteria) was selected with test 
AUC of 0.959. In genus level, a DNN model using 11 markers (Ruminococcaceae UCG-013, Ruminiclostridium, 
Propionibacterium, Lachnospiraceae NK4A136 group, Corynebacterium.1, Akkermansia, Mucispirillum, 
Pseudomonas, Diaphorobacter, Clostridium sensu stricto 1 and Turicibacter) yielded the highest test AUC with 
0.961.

This paper is organized as follows: the materials and methods section introduce the marker selection methods 
and prediction models based on machine learning methods used for PC prediction. The marker sets selected via 
each method and the performance of the models are listed in the results section.

Materials and methods
Study population
The information on PC patients was obtained from Seoul National University Hospital, and data of healthy 
controls were received from Boramae Medical Center of Seoul National University Hospital and Inje University 
Haeundae Paik Hospital. The patients included in this analysis were diagnosed and underwent surgical 
resection between 2009 and 2015. For healthy controls, people with no history of any cancers, including PC, 
were considered. Patients of all cohorts who had clinical characteristics (age and sex) were included in our 
study, with their data anonymized. To mitigate potential confounding effects arising from differences in clinical 
characteristics, we applied propensity score matching (PSM), specifically controlling for age and gender. This 
approach ensured that the case and control groups were balanced with respect to these covariates, thereby 
reducing biases and improving the validity of our findings. Our study was approved by the Institutional Review 
Board, and all methods were carried out in accordance with relevant guidelines and regulations.

The 16s rRNA data was obtained from blood samples. The gg_13_5_99 GREENGENES reference was used 
in taxonomic assignment, and UCLUST and QIIME were performed28,29. The process of data preparation and 
microbiome sequencing is detailed in our previous research20. From the resulting OTU table, samples with low 
sequence count (< 2500) and OTUs constituting less than 0.005% of the total count were filtered out. The data 
were then subjected to centered log ratio (CLR) transformation to compare the compositional differences of PC 
patients and healthy controls.

To minimize the bias of the covariate effects in the case and control groups, we adopted the PSM procedure30, 
a statistical matching method which minimizes the bias induced by the confounding variable, thus reducing the 
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confounding effect of the data in observational studies31. The application of PSM to microbiome data aims to 
remove the effect of specific characteristics and obtain the pure effect of the target microbiome. As our data were 
highly heterogeneous in age and sex distribution between PC and healthy groups, PSM was applied to control 
the confounding effects caused by these covariates.

For model building, we divided the dataset into model development (MD) and test sets in a 1:1 ratio. This equal 
partitioning was maintained for consistency with our previous study, which employed a similar analysis pipeline 
using logistic regression (LR)20. Since this study extends the prior work by incorporating machine learning (ML) 
models, we retained the same partitioning strategy to ensure methodological consistency and comparability. 
Additionally, given the relatively small sample size after propensity score matching (n = 90; PC patients = 38, 
controls = 52), this approach ensured a sufficiently large independent test set for robust model evaluation. The 
MD set was further divided into a training set and validation set at the same proportion, stratified by the healthy 
controls and PC patients for twofold cross-validation. The AUC value of the validation set was used as a criterion 
for selecting the model. We selected candidate markers using a multiple marker selection method based on 
LASSO analysis and stepwise regression. These markers were then used to develop prediction models.

Multiple marker selection methods
As mentioned, LASSO regression and stepwise method were used to select candidate markers. All the selection 
processes were performed using the MD set with twofold cross-validation, the marker set with the biggest 
average validation AUC being selected.

In the LASSO regression, 100 λ  values were obtained, and the searching range of optimal lambda was set 
between λ min and λ 1se to avoid overfitting32. We compared the validation AUC value of the fitted model 
in this predetermined range and selected the λ  value yielding the highest validation AUC, the corresponding 
markers then being utilized.

For the stepwise method, two approaches were applied. In the first approach (stepwise1), the model that 
yielded the least AIC was selected, and the marker combination used for the model was then selected in a 
forward-backward manner. The performance was averaged and the best combination (yielding the maximum 
validation performance) became the candidate combination to be tested further.

The second approach (stepwise2) first determined the number of markers. After using the stepwise method 
to fix the optimal number of markers, we used an exhaustive search to select those variables yielding the best 
validation AUC. The variables were added one by one until the number of markers reached the number that had 
been set.

In addition to those markers found by the selection methods explained above, we also considered three more 
marker sets for comparison: (1) whole markers, (2) only clinical information (age and sex) without markers, and 
(3) markers selected through single marker selection. The candidate markers were searched in both phylum and 
genus levels and then utilized to develop prediction models using LR, RF, SVM and DNN. The detailed model 
building procedure is given below.

Prediction model
We constructed predictive models identifying PC patients from the healthy control group, with markers selected 
via the methods illustrated above and clinical information including age and sex. The models we considered 
were LR, RF, SVM and DNN. All models except LR require optimized hyper-parameters to get the best 
performance (Supplementary Table S1). To determine the optimal hyperparameters, we employed a grid search 
approach, systematically evaluating combinations of predefined parameter values to identify the configuration 
that maximized model performance. By using twofold cross-validation, an optimal model yielding the highest 
average value of validation AUC was chosen.

RF utilizes many classifiers to learn. We set the number of the subtrees with values (4, 8, 16, 32, 64), and 
two classification criteria, gini and entropy. To prevent overfitting, the number of subtrees was limited to 100 
considering the sample size.

For the SVM model, four different kernels (linear, polynomial, RBF and sigmoid) were used with each 
candidate hyper-parameter value. The cost, degree, and gamma value needed to be optimized, and the range of 
the hyper-parameters were set with values (0.5, 0.8, 1, 2, 4, 8, 16, 20, 25, 30), (2, 3, 4) and (0.1, 5, 10), respectively.

A DNN model was also implemented for prediction. The number of hidden units in each layer was 
determined considering the size of the input feature of the previous layer. We calculated the hidden units of the 
current layer as (0.2, 0.4, 0.6, 0.8), the proportion of number of hidden units in the previous layer, combined 
with the set of layer numbers (3, 4) and the batch size (6, 8, 10). Exceptionally, a (0.5, 1) hidden unit proportion 
was used for the null model since it has only two features. The models were trained with Adam optimizer33 and 
binary cross-entropy loss function, and all layers except the output layer used a rectified linear unit (RELU) 
activation function at learning rate 0.0001. The sigmoid activation function was used for the output layer. Also, 
the early stopping method34 was introduced with 100 patience. Since the sample size for the model was much 
smaller than the feature number, the data were standardized and cross-validated to avoid over-fitting. Some 
models with a small feature size skipped some hyper-parameter combinations like hidden unit proportion 0.2 
to avoid a number of hidden units smaller than 1. Using average validation AUC value as a criterion, the best 
combination was selected for each marker set. The optimized model was fitted with the whole MD set, and the 
final performance then calculated with the test set.

The RF and DNN models were performed in Python using Keras (Version 2.4.3,  h t t p s : / / g i t h u b . c o m / k e r a s - t e 
a m / k e r a s     ) and the Tensorflow (Version 2.3.0, https://github.com/tensorflow/tensorflow)  library. SVM analysis 
was also performed using R version 1.2.5 on Window 10 (Version 1.2.5, http://www.R-project.org).
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Results
Sample selection and bias mitigation using propensity score matching
Among 234 samples with clinical data, 198 were selected by excluding samples with low sequence count 
(< 2500). To reduce the bias induced by clinical information, the remaining data were filtered with propensity 
score matching (PSM) to yield 90 samples of 38 PC patients (21 females, 17 males) and 52 healthy controls (35 
females, 17 males). From 1134 OTUs in the samples, 20 phyla and 296 genera were assigned. The distributions 
of age and sex did not show any significant differences between PC and health groups: p = 0.35 by the chi-square 
test for sex, and p = 0.51 by Wilcoxon rank-sum test for age (Fig. 1).

Selecting candidate biomarkers using multiple marker selection methods
The markers related to PC were selected using least absolute shrinkage and selection operator (LASSO)35 and 
two stepwise36 methods. The markers were selected at both the phylum and genus levels to capture microbial 
community characteristics at different taxonomic resolutions. Phylum-level analysis provides a broad overview 
of microbial shifts, identifying high-level taxonomic changes that may indicate dysbiosis, while genus-level 
markers offer more specific insights into particular microbial taxa associated with pancreatic cancer. This 
combined approach allows for a more comprehensive characterization of the microbiome’s role in disease 
progression and enhances the robustness of biomarker selection.

The result of LASSO regression in phylum level is tabulated in Table 1A. Instead of presenting one optimal 
value of λ , we listed the markers according to various λ  values within the range of λ 1se and λ min to avoid 
overfitting (shaded in yellow). We calculated the average AUCs of the training and validation sets using twofold 
cross-validation for each λ  value. The best fitted model was obtained when using λ min with AUC 0.855. 
Accordingly, ten markers, Verrucomicrobia, Deferribacteres, Actinobacteria, Saccharibacteria, Armatimonadetes, 
Absconditabacteria (SR1), Acidobacteria, Cyanobacteria, Euryarchaeota, and Deinococcus-Thermus were 
selected and used for prediction model building. The average training and validation AUCs of the model using 
100 λ  values and binomial deviance of LASSO analysis were also obtained (Supplementary Figure S1). In 
LASSO analysis in genus level shown in Table 1B, eleven markers were selected with AUC 0.936, the markers 
being: Ruminococcaceae UCG-013, Ruminiclostridium, Propionibacterium, Lachnospiraceae NK4A136 group, 
Corynebacterium 1, Akkermansia, Mucispirillum, Pseudomonas, Diaphorobacter, Clostridium sensu stricto 1, and 
Turicibacter. The model performance using 100 λ  values and the binomial deviance of the model were also 
calculated (Supplementary Figure S2).

In the stepwise1 method for phylum level marker selection, markers were not removed in backward 
elimination. In this process, model obtained the highest validation AUC of 0.930 with Verrucomicrobia, 
Actinobacteria, and Proteobacteria. The performance of the model by each step is shown in Table  2A, the 
optimal marker set being shaded in yellow. In stepwise1 method for genus level marker selection, Akkermansia, 
Propionibacterium, and Burkholderia-Paraburkholderia were selected with AUC 0.836. The results when each 
marker was added one by one are summarized in Table 2B.

In the stepwise2 method for phylum level marker selection, Proteobacteria was replaced with Deferribacteres, 
resulting in selecting Verrucomicrobia, Actinobacteria and Deferribacteres as the final marker set, achieving 0.964 
AUC. The performance of each step is listed in Table 3A. However, different markers were selected when applying 
the stepwise2 method. The Lachnospiraceae NK4A136 group, Ruminococcaceae UCG-013, and Bacteroides were 
selected with AUC of 0.915, the performance of each marker being listed in Table 3B. No markers were removed 
during the backward stepwise process in either method.

Compared with the single marker selection results13, some overlapping markers were selected in both methods, 
showing consistency. Additionally, our current study provided some new candidate biomarkers for developing 
the performance of PC prediction models (Supplementary Table S6). The markers in the “Single” column in 
Supplementary Table S6 were referenced in our previous analysis13. Two phylum-level markers, Actinobacteria 
and Verrucomicrobia, were selected in all methods. In genus level, there were no commonly chosen biomarkers 
in all methods, but Propionibacterium, Akkermansia, Ruminococcaceae UCG-013 and Lachnospiraceae NK4A136 

Fig. 1. Age distribution of the samples and p-value of Wilcoxon and t-test: (a) Age distribution of all samples; 
(b) Age distribution of males; (c) Age distribution of females.
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group were selected by two of them. Some species within Actinobacteria, such as certain Bifidobacterium strains, 
contribute to butyrate metabolism, although the primary butyrate producers belong to the Firmicutes phylum37. 
Butyrate is a short-chain fatty acid that plays a crucial role in modulating the immune response. It acts as an anti-
inflammatory agent by inhibiting nuclear factor-kappa B (NF-κB) activation in colon epithelial cells38, thereby 
promoting gut homeostasis and reducing chronic inflammation. Given that chronic inflammation is a key factor 
in tumor development, the observed decrease in Actinobacteria abundance in PC patients suggests a potential 
loss of protective anti-inflammatory effects, which may contribute to a tumor-promoting environment39.

In contrast, Verrucomicrobia, particularly Akkermansia muciniphila, was found to be more abundant in PC 
patients than in healthy controls. Akkermansia is known for its role in maintaining glucose homeostasis and 
strengthening gut barrier integrity40; however, its relationship with pancreatic cancer remains insufficiently 
studied. Emerging evidence suggests that altered glucose metabolism is a hallmark of cancer, and the increased 
abundance of Akkermansia  may reflect meta bolic shifts rather than a direct causal role in tumorigenesis41. 

(A) Phylum

# markers Lambda marker AUCtr AUCval

0 0.256802 sex + age 0.688 0.663

1 0.233989 + Verrucomicrobia 0.772 0.771

2 0.213202 + Deferribacteres 0.826 0.807

3 0.194261 + Actinobacteria 0.865 0.841

5 0.063612 + Saccharibacteria
+ Armatimonadetes 1.000 0.840

6 0.057961 + Absconditabacteria (SR1) 1.000 0.836

7 0.043845 + Acidobacteria 1.000 0.836

8 0.03995 + Cyanobacteria 1.000 0.836

9 0.036401 + Tenericutes 1.000 0.840

10 0.022861
+ Euryarchaeota
+ Deinococcus-Thermus
– Tenericutes

1.000 0.855

9 0.015757 - Deferribacteres 1.000 0.863

10 0.013082 + Planctomycetes 1.000 0.871

11 0.01192 + Chloroflexi 1.000 0.878

10 0.002953 - Acidobacteria 1.000 0.894

(B) Genus

# markers Lambda marker AUCtr AUCval

0 0.300095 sex + age 0.758 0.684

3 0.286455 + Ruminococcaceae UCG-013 + Ruminiclostridium
+ Propionibacterium 0.783 0.699

4 0.227011 + Lachnospiraceae NK4A136 group 0.942 0.831

6 0.206844 + Corynebacterium 1
+ Akkermansia 0.975 0.871

7 0.179902 + Mucispirillum 0.991 0.900

9 0.16392 + Pseudomonas + Diaphorobacter 0.996 0.903

10 0.149358 + Clostridium sensu stricto 1 0.996 0.916

11 0.085468 + Turicibacter 1.000 0.936

12 0.074336 + Actinomyces 1.000 0.941

13 0.070957 + Campylobacter 1.000 0.941

14 0.067732 + Megamonas 1.000 0.944

16 0.05891 + Bacillus + Rubellimicrobium 1.000 0.937

17 0.056232 + Alistipes 1.000 0.929

18 0.053676 + Sutterella 1.000 0.932

17 0.035316 + Chromohalobacter -Turicibacter - Megamonas 1.000 0.937

18 0.027987 + Brevibacterium 1.000 0.932

17 0.021171 - Propionibacterium 1.000 0.929

18 0.016015 + Turicibacter 1.000 0.933

19 0.010537 + Cytophaga 1.000 0.925

20 0.004354 + Mycobacterium 1.000 0.921

21 0.00345 + Roseburia 1.000 0.921

22 0.003144 + Ruminococcaceae UCG-014 1.000 0.921

Table 1. Selected markers via the LASSO analysis in phylum and genus. The range between λ 1se and λ min 
is shaded in yellow.
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Further studies are required to elucidate whether these microbial shifts are drivers or consequences of pancreatic 
cancer progression. The overall abundance of selected phylum level markers in PC patients and the healthy 
group is shown in Fig. 2A and genus level in Fig. 2B.

Fig. 2. Overall abundance of selected markers in phylum and genus level.

 

(A) Phylum

# markers marker AUCtr AUCval

0 class ~ sex + age 0.599 0.545

1 + Verrucomicrobia 0.960 0.931

2 + Actinobacteria 0.970 0.964

3 + Deferribacteres 0.972 0.964

(B) Genus

# markers marker AUCtr AUCval

0 class ~ sex + age 0.599 0.545

1 + Lachnospiraceae NK4A136 group 0.907 0.852

2 + Ruminococcaceae UCG-013 0.947 0.858

3 + Bacteroides 0.955 0.915

Table 3. Selected markers using stepwise2 procedure in phylum and genus level. The mean train and 
validation AUCs are recorded.

 

(A) Phylum

# markers marker AUCtr AUCval

0 class ~ sex + age 0.606 0.581

1 + Verrucomicrobia 0.983 0.907

2 + Actinobacteria 1.000 0.874

3 + Proteobacteria 1.000 0.930

(B) Genus

# markers marker AUCtr AUCval

0 class ~ sex + age 0.606 0.581

1 + Akkermansia 0.985 0.825

2 + Propionibacterium 1.000 0.831

3 + Burkholderia-Paraburkholderia 1.000 0.836

Table 2. Selected markers using stepwise1 procedure in phylum and genus level. The mean train and 
validation AUCs are recorded.
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Prediction model for early diagnosis of pancreatic cancer
In order to develop the prediction model for pancreatic cancer, we used several statistical models and machine 
learning techniques. The models we considered were LR, RF, SVM, and DNN. After each model was tuned with 
optimal hyper-parameters to obtain the highest value of average validation AUC, the test AUC and average 
model development (MD) AUC were calculated.

The performance of LR with various marker sets was calculated, as shown in Figs. 3A and 4A (Supplementary 
Table S2). In phylum level, the model with stepwise1 markers performed best, with 0.934 of AUC, followed by 
stepwise2 and LASSO with AUCs of 0.915 and 0.818, much higher than the case using whole markers (0.891 of 
AUC). In genus level, the model built with markers selected by stepwise1 yielded 0.955 of AUC. Models with 
stepwise2 and LASSO performed 0.924 and 0.896, respectively. In both cases, the models outperformed the case 
of using whole markers (full model) with AUC of 0.891 and 0.378, respectively.

For RF models selecting multiple markers, the hyper-parameter combination for best model was chosen. For 
all markers, (entropy, 64) was selected for (number of subtrees, classification criteria). The AUC was calculated 
with the optimal hyper-parameter (Supplementary Table S3), and the performance is shown in Figs. 3B and 
4B. The best performance in phylum level was obtained from the model developed with markers selected via 
stepwise2, achieving test AUC of 0.935. The score was slightly higher than the following criteria, which is 0.922 
of AUC with the LASSO method and 0.891 of AUC with the stepwise1 method. In genus level, markers selected 
with stepwise1 achieved the best performance, with 0.929 in AUC. This was followed by stepwise2, with test 
AUC 0.921 and LASSO with test AUC 0.877. In both phylum and genus level, the full model performed best, 
with test AUC of 0.956 and 0.957, respectively.

In the SVM model, various hyper-parameter sets were chosen but models using stepwise1 performed 
best in both levels. With hyper-parameter combination (kernel, cost, degree, gamma), the best model had 
an AUC of 0.957 with (linear, 0.5, default, 1) and 0.943 with (polynomial, 4, 2, default) in phylum and genus 
level, respectively. Compared with the full model (AUC of 0.899 and 0.980 in each level), the selected model 
outperformed in phylum level, but the full model performed better in genus level. The performance is shown in 
Figs. 3C and 4C.

The test AUC of the best performing DNN model was 0.959 and 0.961 in phylum and genus level, respectively 
(Supplementary Table S5). In phylum level, the model with stepwise1 markers, with (6, [0.6, 0.2, 0.6]) hyper-
parameter combination for (batch size, hidden unit proportion) was selected, and a model using LASSO markers 
with (10, [0.8,0.8,0.8]) hyper-parameter combination was selected for the genus level. Here, the stepwise2 and 

Fig. 3. Best model performance by marker set in phylum level for test data. (a) Performance of LR; (b) 
Performance of RF; (c) Performance of SVM; (d) Performance of DNN.
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LASSO methods achieved 0.937 and 0.899 in test AUC in phylum level, while stepwise2 and stepwise1 in genus 
level achieved 0.868 and 0.807 test AUC. Here, the full model achieved 0.848 in phylum level and 0.998 in genus 
level. Overall performance of the model is shown in Figs. 3D and 4D.

For comparison, the best performance for every combination of marker selection method and predictive 
model is tabulated in Table  4. Compared to the model when only age and sex information were used (null 
model), the results suggest that the prediction model became more accurate when marker selection was 
processed at both levels. Also, compared to the result with whole markers without marker selection (full model), 
the reduced model achieved quite a similar or even better score, with AUC much higher than 0.9, suggesting that 
marker selection via LASSO and stepwise provides reasonable PC biomarker candidates. In the phylum level, the 
same markers (Actinobacteria, Verrucomicrobia) as those identified in the previous13 were selected when using 
all multiple marker methods. However, markers selected in genus level were quite different according to the 
selection methods. Among the four methods in genus level, three selected Propionibacterium and Akkermansia.

Discussion
Emerging evidence from microbiome analysis has demonstrated that the human microbiota plays a critical 
role in the carcinogenesis of various cancers and significantly influences therapeutic responses, including 
chemotherapy and immunotherapy42-46. Several studies have suggested that microbiome signatures can serve 
as predictive markers for multiple cancers, including colorectal, breast, hepatocellular carcinoma, ovarian, and 
pancreatic cancer12,47-50.

Our study is one of the few to explore pancreatic cancer biomarkers through extracellular vesicle (EV)-
driven microbiome analysis, a novel approach that offers significant advantages over traditional methods. 
Unlike fecal or tissue-based microbiome analyses, which provide localized microbial signatures, EV-driven 
microbiome profiling captures systemic microbial alterations by identifying microbial extracellular vesicles 
circulating in the bloodstream. This systemic approach enables the detection of microbiome shifts linked to 
tumor microenvironment changes and immune interactions, thereby potentially improving pancreatic cancer 
diagnostic sensitivity and specificity.

By integrating EV microbiome profiling with machine learning-based biomarker selection, our study 
achieved high predictive performance (AUC > 0.95). Using multiple feature selection methods (LASSO, stepwise 
selection) and classification models (DNN, SVM, RF, LR), we optimized the selection of microbiome markers 
at both the phylum and genus levels. Our results suggest that EV-based microbial markers may offer diagnostic 

Fig. 4. Best model performance by marker set in genus level for test data. (a) Performance of LR; (b) 
Performance of RF; (c) Performance of SVM; (d) Performance of DNN.
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advantages compared to traditional microbiome profiling methods, which can suffer from sample contamination 
and limited clinical applicability.

A key strength of our study is the identification of specific microbial taxa linked to pancreatic cancer. Among 
these, Akkermansia muciniphila and Propionibacterium have been previously associated with host metabolic and 
immune responses. Akkermansia, a genus within Verrucomicrobia, is known for its role in gut barrier integrity 
and glucose homeostasis40, and its increased abundance in pancreatic cancer patients suggests a potential 
metabolic link to tumorigenesis. However, whether Akkermansia promotes or inhibits tumor progression in 
pancreatic cancer remains unclear. On the other hand, Propionibacterium, a member of the Actinobacteria 
phylum, has been linked to immune modulation, though the primary butyrate-producing bacteria belong to the 
Firmicutes phylum38,39. Future studies are needed to determine whether these microbial taxa actively contribute 
to pancreatic tumorigenesis or merely reflect disease-associated dysbiosis.

Despite these promising findings, our study has some limitations. First, the relatively small sample size may 
impact the statistical power of our results. While propensity score matching (PSM) was applied to minimize 
bias from confounding variables, a larger cohort is necessary for validation. Additionally, although our study 
identified potential microbial markers, the causal relationship between microbiota and tumor progression 
remains unclear. Further research, including functional experiments and longitudinal studies, is needed to 
establish whether these microbial shifts drive tumorigenesis or are secondary effects.

In summary, our study highlights the potential of EV-driven serum microbiome analysis as a promising 
tool for pancreatic cancer diagnosis. By integrating advanced machine learning approaches with microbiome 
biomarker discovery, we provide a framework for future research aimed at improving early detection strategies. 
Larger validation studies and mechanistic investigations will be critical to translating these findings into clinically 
applicable diagnostic tools for pancreatic cancer patients.

Conclusions
The study considers correlations among microbiomes to propose the use of some microbiome markers to 
differentiate PC patients and healthy groups. Specifically, we propose some candidate markers in phylum 
level (Verrucomicrobia, Actinobacteria and Proteobacteria) and genus level (Ruminococcaceae UCG-013, 
Ruminiclostridium, Propionibacterium, Lachnospiraceae NK4A136 group, Corynebacterium.1, Akkermansia, 
Mucispirillum, Pseudomonas, Diaphorobacter, Clostridium sensu stricto 1, and Turicibacter). Although the 
markers resulted in high AUC with DNN in predicting PC patient diagnosis, additional studies using larger 

Phylum Genus

Clinical
information

Marker
selection Prediction model AUCMD AUCts

Marker
selection Prediction model AUCMD AUCts

Age, sex

Clinical
information
only

LR 0.599 0.545
Clinical
information
only

LR 0.599 0.545

RF 0.859 0.664 RF 0.859 0.664

SVM 0.599 0.545 SVM 0.599 0.545

DNN 0.600 0.453 DNN 0.600 0.453

Single
(2)

LR 0.970 0.964

Single
(7)

LR 1.000 0.927

RF 1.000 0.952 RF 1.000 0.938

SVM 0.984 0.957 SVM 1.000 0.913

DNN 0.910 0.954 DNN 1.000 0.988

Stepwise1
(3)

LR 0.990 0.934

Stepwise1
(3)

LR 0.996 0.955

RF 1.000 0.891 RF 1.000 0.929

SVM 0.984 0.957 SVM 0.939 0.943

DNN 0.855 0.959 DNN 0.962 0.807

Stepwise2
(3)

LR 0.955 0.915

Stepwise2
(3)

LR 0.972 0.924

RF 1.000 0.935 RF 1.000 0.921

SVM 0.931 0.947 SVM 0.968 0.929

DNN 0.858 0.937 DNN 0.910 0.868

LASSO
(10)

LR 0.936 0.818

LASSO
(11)

LR 1.000 0.896

RF 1.000 0.922 RF 1.000 0.877

SVM 1.000 0.844 SVM 1.000 0.929

DNN 0.966 0.899 DNN 1.000 0.961

Whole marker
(20)

LR 1.000 0.891

Whole marker
(296)

LR 1.000 0.378

RF 1.000 0.956 RF 1.000 0.957

SVM 1.000 0.889 SVM 1.000 0.980

DNN 1.000 0.848 DNN 1.000 0.998

Table 4. Performance of prediction models using various marker sets selected by several methods. The 
numbers in parentheses indicate the number of markers used in the prediction models.

 

Scientific Reports |        (2025) 15:10995 9| https://doi.org/10.1038/s41598-025-94183-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


cohorts for validation and further experiments to clarify the biological function of biomarkers in relation to PC 
are needed. Still, the finding heralds the promise of PC diagnosis prediction using EV-driven microbiome data.

Data availability statement
The data presented in this study are available on request from the corresponding author. The data are not publicly 
available due to patients’ privacy.
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