scientific reports

OPEN

Doping effects of indium and copper on ferromagnetism in *N*type magnetic semiconductor Ba(Zn,Co)₂As₂

Xueqin Zhao¹, Jinou Dong¹, Lingfeng Xie¹, Qiaolin Yang¹, Xun Pan¹, Haoyuan Tang¹, Zhicheng Xu¹, Guoxiang Zhi¹, Yilun Gu¹, Licheng Fu^{1 \boxtimes} & Fanlong Ning^{1,2,3,4 \boxtimes}

We report the manipulation of ferromagnetism in *n*-type magnetic semiconductor Ba(Zn,Co)₂As₂ through carriers' doping. Doping In or Cu into Zn-sites introduces additional *n*-type or *p*-type carriers, respectively. Focusing on Ba(Zn_{0.97}Co_{0.03})₂As₂ which has a $T_C \sim 31$ K, In doping introduces additional *n*-type carriers and 2% In doping drastically improves the ferromagnetic transition temperature by 16% to 36 K. In contrast, 1.5% Cu doping suppresses T_C by 52% to 15 K; 3% Cu doping turns the dominant carrier to *p*-type, and eventually transforms the ferromagnetic ordering into a paramagnetic state. Our experimental results unequivocally demonstrate that the magnetic ordering in Ba(Zn,Co)₂As₂ is carriers' mediated ferromagnetism, and its ground states can be manipulated by carriers.

Magnetic semoconductors (MSs), which show both properties of semiconductors and ferromagnets, are the main sub-field of spintronics. In past few decades, a variety of thin film and bulk form MSs have been discovered¹⁻⁶. Based on these materials, many interesting phenomena were reported and several spintronic devices were fabricated¹⁻⁸. The most famous MSs are (Ga,Mn)As thin films that are synthesized through low temperature Molecular Beam Epitaxy (LT-MBE) method^{9,10}. In (Ga,Mn)As, Mn/Ga substitution induces both spins and holes simultaneously and turns the system into ferromagnetic state when the doping level of Mn exceeds ~ 1%. (Ga,Mn)As behaves as a *p*-type MS with carrier concentrations of $10^{20}-10^{21}/\text{cm}^{-3}$. Theoretical studies show that the spin-spin exchange interactions in (Ga,Mn)As are mediated by holes and can be enhanced with increasing carrier concentrations^{11,12}. As of today, the highest ferromagnetic transition temperature T_C observed in (Ga,Mn)As is ~ 200 K, with the doping level of Mn up to ~ $12\%^{13}$. In 2012, Tanaka et al. reported the *n*-type MS (In,Fe)As thin films, in which the spins are induced by Fe while carriers are induced by native defects and non-magnetic donors. That is, the carrier concentration can be regulated while fixing the spin concentration. Their results show that the Curie temperature in (In,Fe)As increases as carrier concentration increases, indicating that the ferromagnetism in (In,Fe)As is mediated by carriers^{4,14}.

In recent years, many series of bulk form MSs with decoupled spins and carriers doping have been reported, e.g. 111-type Li(Zn,Mn)As¹⁵ and Li(Zn,Mn)P¹⁶, 1111-type (La,Ba)(Zn,Mn)AsO¹⁷ and 122-type (Ba,K) (Zn,Mn)₂As₂^{18,19}. Through manipulating the spins' and carriers' concentrations separately, the individual dependencies of ferromagnetic ordering on spins or carriers have been carefully studied^{18,20–22}. It has been demonstrated that the exchange interactions between spins are mediated by carriers in these bulk form MSs. To achieve the highest Curie temperature, both concentrations of spins and carriers have to be optimized. The highest T_C observed experimentally in bulk form MSs has been achieved as high as 230 K in (Ba,K)(Zn,Mn)₂As₂¹⁹.

The dominant carriers of above mentioned bulk form MSs are holes, that is, they are *p*-type MSs. In 2019, our group has reported the successful fabrication of a new bulk form *n*-type MS Ba(Zn,Co)₂As₂²³. The highest T_C reaches ~ 45 K when the doping level of Co is up to 0.04, and muon spin relaxation (μ SR) measurements have confirmed that the ferromagnetic ordering in Ba(Zn,Co)₂As₂ is homogeneous and intrinsic. In 2021, Fu et al.²⁴ have investigated the manipulation of ferromagnetic ordering in Ba(Zn,Co)₂As₂ system by negative and positive chemical pressure introduced by isovalent Sb/As and Sr/Ba substitutions, respectively, and found that T_C increased significantly in Sr-doped Ba(Zn,Co)₂As₂. In order to investigate the origin of *n*-type carriers

¹School of Physics, Zhejiang University, Hangzhou 310027, China. ²State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China. ³Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China. ⁴Science and Technology Innovation Center, Chifeng High-Tech Industrial Development Zone, Chifeng 025250, China. [⊠]email: lcfu@zju.edu.cn; ningfl@zju.edu.cn

in Ba(Zn,Co)₂As₂, Zhi et al²⁵. performed systematic first-principles calculations on the electronic structure of Ba(Zn,Co)₂As₂. It has been found that carriers in Ba(Zn,Co)₂As₂ emerge when two (or more) Co atoms substitute for Zn atoms at adjacent lattice sites, and the density is predominantly contributed by As-4*p* orbitals, with subsidiary contributions from the Co-3*d* orbitals. In addition, Zhi et al. calculated the formation energies (E_f) of Co/Zn substitution and alternative defects, such as Co/Ba substitution and As vacancies²⁵. The calculated results have revealed that comparing with E_f for Co/Ba substitution ($E_f \sim 5.1$ eV) and an As vacancy ($E_f \sim 1.9$ eV), E_f for Co/Zn substitution is significantly lower ($E_f \sim -0.4$ eV). This further confirms that *n*-type carriers arise from hetero-valent Co/Zn substitution, and not arising from defects. While different to other bulk form *p*-type MSs, Co doping Ba(Zn,Co)₂As₂ introduces both spins and electron carriers (confirmed by Hall effect and Seebeck effect measurements²³) simultaneously, which makes it difficult to investigate the individual influence of carriers and spins on the formation of ferromagnetism. Therefore, how the ferromagnetism in Ba(Zn,Co)₂As₂ is mediated by carriers has yet to be investigated.

In this paper, we report the effect of carriers doping on the ferromagnetism in *n*-type MS Ba(Zn,Co)₂As₂. Focusing on Ba(Zn_{0.97}Co_{0.03})₂As₂ which has a $T_C \sim 31$ K, additional *n*-type or *p*-type carriers have been introduced through In/Zn or Cu/Zn substitutions, respectively. The X-ray diffraction results show that all Indoped and Cu-doped samples maintain the high-temperature tetragonal structure. Hall effect measurements confirm that In doping introduces additional *n*-type carriers, and Cu doping introduces additional *p*-type carriers. DC magnetization measurements indicate that 2% In/Zn substitution significantly improves T_C of Ba(Zn_{0.97}Co_{0.03})₂As₂ by 16% to 36 K. On the other hand, 1.5% Cu doping obviously suppresses T_C by 52% to 15 K, and eventually transforms the ferromagnetic ordering into a paramagnetic state with 3% Cu doping. Our experimental results show that the ferromagnetism in *n*-type MS Ba(Zn,Co)₂As₂ can be manipulated by additional carriers through non-equivalent chemical doping, not only the concentrations but also the type of carrier.

Results and discussion

X-ray diffraction

Depending on the synthesis condition, BaZn₂As₂ exhibits two different crystal structures, the low-temperature orthorhombic phase α -BaZn₂As₂ (space group Pnma, metal)²⁶ and the high-temperature tetragonal phase β -BaZn₂As₂ (space group I4/mmm, semiconductor with a bandgap $\sim 0.2 \text{ eV}$)^{27,28}. We should note that all $BaZn_2As_2$ -based MSs can be realized only in the tetragonal phase β -BaZn_2As_2, as reported previously^{18,23}. We conducted X-ray diffraction to determine the crystal structure, and show polycrystalline X-ray diffraction patterns of In-doped Ba(Zn_{0.97-x}Co_{0.03}In_x)₂As₂ (x = 0, 0.01, 0.02, 0.03 and 0.04) and Cu-doped Ba(Zn_{0.97-x}Co_{0.03}Cu_x)₂As₂ (x = 0.015 and 0.03) samples in Fig. 1a. With In or Cu doping, the peaks just shift slightly and no new peaks are found, which demonstrates that neither In/Zn nor Cu/Zn substitution breaks the tetragonal crystal structure, as shown in Fig. 1b. We also carried out the Rietveld refinements for the X-ray diffraction data of all samples with tetragonal β -BaZn₂As₂ phase using an open-source package GSAS-II²⁹, and show the Rietveld refinement result of $Ba(Zn_{0.95}Co_{0.03}In_{0.02})_2As_2$ in Fig. 1c as an example. The resultant weighted reliable factor R_{wp} is $\sim 6.5\%$, indicating the good fitting. The lattice parameters a and c can be obtained from the refinements. In Fig. 1d, we show the lattice parameters of all the samples. The obtained lattice constants a = 4.1221 Å and c = 13.5709 Å of the starting compound $Ba(Zn_{0.97}Co_{0.03})_2As_2$ agree well with those reported in previous work²³. For In-doped samples, both the lattice constants a and c increase monotonically as the doping level x increases. For Cu-doped samples, with the increasing of Cu doping levels, the lattice constant *a* increases, while *c* decreases. We should note that the overall change of lattice parameters is quite small. The unit cell volume just increases \sim 0.3% at the highest In doping level and decreases $\sim 0.4\%$ at the highest Cu doping level.

Transport and Hall effect

The temperature-dependent resistivity of both In-doped and Cu-doped $Ba(Zn_{0.97}Co_{0.03})_2As_2$ samples are shown in Fig. 2a. For all In-doped samples, the resistivity increases with the decreasing of temperature, indicating that the samples retain semiconducting behavior. The magnitude of resistivity for In-doped samples decreases significantly with the increasing of In doping level, which agrees with our expectation that In/Zn substitution will induce more carriers. While for Cu-doped samples, the resistivity decreases with temperature decreasing, indicating that the samples change from semiconductor to metal, and the magnitude is much lower than that of In-doped samples in low temperature region. To examine the type and the concentrations of carriers for both In-doped and Cu-doped samples, we carried out the Hall effect measurements, and show the results in Fig. 2b-d. For the starting compound $Ba(Zn_{0.97}Co_{0.03})_2As_2$, due to the poor signal-to-noise ratio in low temperature region, we only show the experimental result measured at 300 K. The negative slope indicates that the dominant carriers are electrons, with a concentration $\sim 6 \times 10^{17}$ /cm⁻³. As shown in Fig. 2c, for Cu-doped sample, the slopes of Hall resistivity curves at different temperature are all positive, indicating that the dominant carriers already change from electrons to holes. The carrier concentration obtained from the slope at different temperatures is quite close, $\sim 3 \times 10^{20}$ /cm⁻³, which agrees with the metallic behavior observed in the resistivity measurement. While for In-doped samples, as shown in Fig. 2d, the *n*-type carriers are confirmed by Hall resistivity results as the slope is negative. The carrier concentration also increases with temperature increasing, which is also consistent with the semiconducting behavior. The carrier concentration at 300 K is $\sim 2 \times 10^{19}$ /cm⁻³, two orders higher than that of $Ba(Zn_{0.97}Co_{0.03})_2As_2$. According to the formula $\sigma = ne\mu$, where σ , n, e and μ represent electrical conductivity, carrier concentration, elementary charge and carrier mobility, respectively, we calculate the carrier mobility of $Ba(Zn_{0.97}Co_{0.03})_2As_2$ and $Ba(Zn_{0.93}Co_{0.03}In_{0.04})_2As_2$ at 300 K that are 3.6 cm²/V · s and 8.5 $\text{cm}^2/\text{V} \cdot \text{s}$, respectively. The improvement in carrier mobility is likely attributed to increased carrier concentration, which enhances the screening effect, thereby weakening the carrier scattering³⁰. Our results demonstrate that In/Zn substitution induces more n-type carriers and conserves the semiconducting behavior

Fig. 1. (a) The X-ray diffraction patterns for polycrystalline In-doped Ba $(Zn_{0.97-x}Co_{0.03}In_x)_2As_2$ (x = 0.01, 0.02, 0.03 and 0.04) and Cu-doped Ba $(Zn_{0.97-x}Co_{0.03}Cu_x)_2As_2$ (x = 0.015 and 0.03). (b) The crystal structure of Ba Zn_2As_2 with high-temperature tetragonal phase. (c) The Rietveld refinement of Ba $(Zn_{0.95}Co_{0.03}In_{0.02})_2As_2$. (d) The lattice parameters *a* and *c* obtained from the Rietveld refinements for both In-doped and Cu-doped samples.

in Ba(Zn_{0.97-x}Co_{0.03}In_x)₂As₂, while Cu/Zn substitution induces *p*-type carriers and turns the semiconductor to metal in Ba(Zn_{0.97-x}Co_{0.03}Cu_x)₂As₂.

Magnetic properties

In Fig. 3a, we show the temperature-dependent DC magnetization for both In-doped and Cu-doped samples measured in field cooling (FC) modes under an applied external field of 100 Oe. Above 60 K, no magnetic instability can be observed for all samples. At lower temperatures, sharp increase appears, indicating the onset of ferromagnetic ordering. In the inset of Fig. 3a, we can see clearly the evolution of ferromagnetic transition with the doping level x. Compared with the starting compound $Ba(Zn_{0.97}Co_{0.03})_2As_2$, the transition temperature shifts to higher temperature region with In doping level increasing from 0 to 0.02, and then remain almost unchanged. In contrast, the transition temperature quickly shifts to lower temperature region with 1.5% Cu doping. When Cu-doping level reaches 0.03, the ferromagnetic transition is completely suppressed; The magnetization at 2 K is only $0.0043\mu_B/Co$, which is two orders of magnitude smaller than that of the starting compound $Ba(Zn_{0.97}Co_{0.03})_{2}As_{2}$. In Fig. 3(b) and (c), we show the iso-thermal magnetization curves M(H) for both In-doped and Cu-doped samples measured at 2 K. Clear hysteresis loops can be observed in Cu-doped sample with doping level x = 0.015 and all the In-doped samples, which demonstrates the ferromagnetic ordering state. The coercive field of these samples are quite small, ~ 10 Oe, comparable to that of the starting compound Ba $(Zn_{0.97}Co_{0.03})_2As_2$. Such a small coercive field is good for spin manipulation. For the sample with 3% Cu doping, no hysteresis loop can be observed, which indicates that the ground state has been transformed into a paramagnetic state. We fit the paramagnetic part of the T-dependent magnetization data with a modified Curie-Weiss formula, $(\chi - \chi_0)^{-1} = (T - \theta)/c$, χ_0 , C and θ represent the temperature-independent term, the Curie constant, and the Weiss temperature, respectively. From the fitting results, we can obtain the Weiss temperature θ and the effective momentum μ_{eff} by using the formula $C = N \mu_0 \mu_{eff}^2 / 3k_B$. The effective momentum μ_{eff} is ~ 1.4-1.7 μ_B/Co , which is close to the expected value of 1.7 μ_B/Co for $S = 1/2^{23}$. Based on the experimental observation of the magnetization of 0.2-0.3 μ_B /Co in M(T) curves at 2 K, we think that antiferromagnetic interactions exist between certain Co ions in the system. Specifically, the competition between ferromagnetic and antiferromagnetic interactions results in the reduced magnetization. The evolution of the Weiss temperature θ can also be seen clearly through the linear fitting of the reverse of $(\chi - \chi_0)$ versus temperature in the high temperature region, which is plotted in Fig. 4a and b. θ can be read from the the intersections of the linear fitting

Fig. 2. (a) Temperature-dependent resistivity of In-doped and Cu-doped Ba($Zn_{0.97}Co_{0.03}$)₂As₂ samples. (b-d) Hall resistivity of (b) Ba($Zn_{0.97}Co_{0.03}$)₂As₂, (c) Ba($Zn_{0.94}Co_{0.03}Cu_{0.03}$)₂As₂ and (d) Ba($Zn_{0.93}Co_{0.03}In_{0.04}$)₂As₂.

lines and x axis. In Fig. 4c and d, we show the dM(T)/dT versus temperature curves for all the samples, and the Curie temperature T_C were defined as the temperatures where dM(T)/dT versus T curve shows a minimum.

We tabulate the Curie temperature T_C , the Weiss temperature θ , the effective moment μ_{eff} and M_{2K} (the M value measured at T = 2 K and H = 100 Oe in FC condition) in Table 1. We can see that both T_C and θ reach a maximum at x = 0.02 for In-doped samples, and then T_C remain unchanged while θ slightly rollback with more In doping. For $x \ge 0.02$, the variation of both T_C and θ is quite small (less than 2 K). In some cases, over-doping carriers may suppress the ferromagnetic ordering, which has been experimentally verified in some bulk form MSs like Li(Zn,Mn)P²² and Li(Cd,Mn)P³¹. The carrier-mediated ferromagnetism can be described by the RKKY-like exchange interaction as $J \sim \cos(2k F r)/r^3$, where k F is the radius of Fermi surface and r is the distance between localized spins. Extra carriers will modify the Fermi surface, thus affects the value of J, and then the ferromagnetic ordering. While for Cu-doped samples, both T_C and θ decrease rapidly with the increasing of Cu doping level, and reach nearly 0 for x = 0.03, indicating the disappearence of ferromagnetism. Combining the results of In/Zn and Cu/Zn substitutions in Ba(Zn_{0.97}Co_{0.03})₂As₂ together, we can readily find that appropriate In/Zn substitution enhances the Curie temperature of ferromagnetic ordering, while Cu/Zn substitution suppresses the ferromagnetic ordering.

Summary

In previous report, the ferromagnetic ordering in Ba(Zn,Co)₂As₂ can be manipulated by chemical pressure²⁴, and the isovalent Sb/As and Sr/Ba substitutions don't induce extra carriers directly. The experimental results have revealed that Sb/As substitution induces negative chemical pressure through expanding lattice, which results in the decreasing of T_C ; While Sr/Ba substitution induces positive chemical pressure through compressing lattice, which results in the increasing of T_C . In current work, In/Zn substitution induces extra *n*-type carriers and Cu/Zn substitution induces extra *p*-type carriers, but the variation of unit cell volume is very small, which is only $\sim 0.3\%$ for the highest In doping level x = 0.04 and $\sim 0.4\%$ for the highest Cu doping level x = 0.03; That means doping In or Cu introduces very small chemical pressure. The Curie temperature T_C for Ba(Zn_{0.97}Co_{0.03})₂As₂ is defined as 31 K by reading from the minimum of dM(T)/dT versus *T* curves. We can see that 2% In/Zn substitution increases T_C by 16% from 31 K to 36 K. But for the highest Cu doping level x = 0.03, the ferromagnetic ordering has even been completely suppressed and transformed into a paramagnetic state, which is much more significant than the effect on T_C by negative chemical pressure induced by Sb/As substitutions.

To summerize, in this work, based on *n*-type MS $Ba(Zn_{0.97}Co_{0.03})_2As_2$, In/Zn and Cu/Zn substitution have been designed, and the doping effects have been investigated. Our X-ray diffraction results have demonstrated

that both In and Cu dopings will not affect the tetragonal crystal structure, and the lattice parameters do not change much at the highest doping levels of In and Cu. Through the Hall effect measurements, we find that In doping introduces additional electron carriers into the system, and improves the Curie temperature from 31 K to 36 K at the doping level x = 0.02, that is, 2% In doping into $Ba(Zn_{0.97}Co_{0.03})_2As_2$ improves T_C by 16%. With more In doping, the magnitude of resistivity is decreasing, while the Curie temperature T_C does not linearly increase, and the ferromagnetic ordering display RKKY-like exchange interactions. On the other hand, Cu doping induces extra hole carriers, which eventually suppresses the ferromagnetic ordering in $Ba(Zn_{0.97}Co_{0.03})_2As_2$ at the doping level of 3% Cu. Our work experimentally demonstrated that the mechanism of the ferromagnetic long range ordering in $Ba(Zn_{1-x-y}Co_xIn_y)_2As_2$ are consistent with the general carrier mediated ferromagnetism picture that has been proposed for MSs^{3,8}, and the ground state can be effectively manipulated by carriers' densities. This finding is helpful to understand the general mechanism responsible for the long range ferromagnetic ordering in all magnetic semiconductors.

Methods

Material synthesis

In-doped Ba(Zn_{0.97-x}Co_{0.03}In_x)₂As₂ and Cu-doped Ba(Zn_{0.97-x}Co_{0.03}Cu_x)₂As₂ polycrystalline samples were synthesized through conventional solid-state reaction method, similarly to that of Ba(Zn,Co)₂As₂²³. Starting materials Ba pieces, In, Zn, Co, As, Cu powders were well mixed according to the elementary ratio and transferred to alumina crucibles and finally sealed in evacuated silica tubes. The mixture was heated at 1150 °C for 25 h followed by cooling to room temperature. The obtained products were then grounded, pressed into pellets with 8 mm in diameter, placed in aluminum crucibles, then sealed in evacuated silica tubes and reheated at 1150 °C for another 25 h for sufficient reaction. After heating, the samples were quickly cooled to room temperature through quenching in the water to stabilize the high-temperature phase, tetragonal β -BaZn₂As₂³².

Fig. 4. (**a**, **b**) $(\chi - \chi_0)^{-1}$ versus temperature plots for Cu-doped and In-doped samples. Straight lines show the linear fitting, and the fitting temperature range is from 100 K to 200 K. (**c**, **d**) dM(T)/dT versus temperature plots for Cu-doped and In-doped samples. T_C were determined as the temperature showing a minimum of these curves.

Doping level x	T_C (K)	θ (K)	$\mu_{eff}~(\mu_B/{ m Co})$	$M_{2K}~(\mu_B/{ m Co})$
Cu-doped 0.03	0	- 1	1.7	0.004
Cu-doped 0.015	15	43	1.5	0.181
Ba(Zn _{0.97} Co _{0.03}) ₂ As ₂	31	56	1.4	0.210
In-doped 0.01	35	61	1.6	0.245
In-doped 0.02	36	63	1.6	0.267
In-doped 0.03	36	61	1.4	0.250
In-doped 0.04	36	61	1.4	0.211

Table 1. The Curie temperature T_C from the minimum value of dM(T)/dT, the Weiss temperature θ , the effective moment μ_{eff} from Curie–Weiss fit and the base magnetization M_{2K} measured at 2 K under FC mode for different doping levels *x*.

Experimental characterization

The X-ray diffraction (XRD) measurements were carried out on a PANalytical powder X-ray diffractometer with monochromatic Cu- $K_{\alpha 1}$ radiation. The DC magnetization measurements were conducted on a Quantum Design Magnetic Property Measurement System (MPMS-3). The Hall effect was measured on a Quantum Design Physical Property Measurement System (PPMS). The electrical resistivity was measured using the typical four-probe technique.

Data availability

All data generated or analysed during this study are included in this published article or available from the corresponding author on reasonable request.

Received: 20 December 2024; Accepted: 18 March 2025

Published online: 28 March 2025

References

- 1. Žutić, I., Fabian, J. & Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323-410 (2004).
- 2. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).
- 3. Dietl, T. et al. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev. Mod. Phys. 87, 1311 (2015).
- 4. Tanaka, M. Recent progress in ferromagnetic semiconductors and spintronics devices. Jpn. J. Appl. Phys. 60, 010101 (2020).
- 5. Guo, S. & Ning, F. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. *Chin. Phys. B* 27, 097502 (2018).
- 6. Gu, Y., Guo, S. & Ning, F. Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR. *J. Semicond.* **40**, 081506 (2019).
- 7. Takanashi, K. Creation and control of spin current in solids. Jpn. J. Appl. Phys. 49, 110001 (2010).
- 8. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).
- 9. Ohno, H. et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363-365 (1996).
- 10. Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. *Nat. Phys.* 6, 22–25 (2010).
- 11. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. *Science* 287, 1019–1022 (2000).
- 12. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. *Phys. Rev. B* 63, 195205 (2001).
- 13. Chen, L. et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. *Nano. Lett.* **11**, 2584–2589 (2011).
- Hai, P. N. et al. Growth and characterization of n-type electron-induced ferromagnetic semiconductor (In, Fe)As. Appl. Phys. Lett. 101, 182403 (2012).
- 15. Deng, Z. et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I-II-V semiconductor. Nat. Commun. 2, 1-5 (2011).
- Deng, Z. et al. Diluted ferromagnetic semiconductor Li(Zn, Mn)P with decoupled charge and spin doping. *Phys. Rev. B* 88, 081203 (2013).
- Ding, C. et al. (La1-xBax)(Zn1-xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. *Phys. Rev. B* 88, 041102 (2013).
- Zhao, K. et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' ironbased superconductors. Nat. Commun. 4, 1–5 (2013).
- Zhao, K. et al. Ferromagnetism at 230 K in (Ba_{0.7}K_{0.3})(Zn_{0.85}Mn_{0.15})₂As₂ diluted magnetic semiconductor. *Chin. Sci. Bull.* 59, 2524–2527 (2014).
- 20. Chen, B. et al. New fluoride-arsenide diluted magnetic semiconductor (Ba, K)F(Zn, Mn) As with independent spin and charge doping. Sci. Rep. 6, 1–9 (2016).
- Yang, X. et al. K and Mn co-doped BaCd₂As₂: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J. Appl. Phys. 114, 223905 (2013).
- 22. Ning, F. et al. Suppression of T_C by overdoped Li in the diluted ferromagnetic semiconductor $\text{Li}_{1+y}(\text{Zn}_{1-x}\text{Mn}_x)$ P: A μ SR investigation. *Phys. Rev. B* **90**, 085123 (2014).
- Guo, S. et al. Ba(Zn, Co)₂As₂: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. *Phys. Rev. B* **99**, 155201 (2019).
- 24. Fu, L. et al. Drastic improvement of Curie temperature by chemical pressure in N-type diluted magnetic semiconductor Ba(Zn, Co)₂As₂. *Sci. Rep.* **11**, 7652 (2021).
- 25. Zhi, G. et al. First-principles study on the electronic structure of n-type magnetic semiconductor $Ba(Zn_{1-x}Co_{x})_{2}As_{2}$. New J. Phys. 26, 033030 (2024).
- Klüfers, P. & Mewis, A. Zur struktur der verbindungen BaZn₂P₂ und BaZn₂As₂/The crystal structure of BaZn₂P₂ and BaZn₂As₂. Z. Naturforsch. B 33, 151–155 (1978).
- 27. Hellmann, A., Löhken, A., Wurth, A. & Mewis, A. Neue arsenide mit ThCr₂Si₂-oder einer damit verwandten struktur: Die verbindungen ARh₂As₂ (A: Eu, Sr, Ba) und BaZn₂As₂/New arsenides with ThCr₂Si₂-type or related structures: The compounds ARh₂As₂ (A: Eu, Sr, Ba) and BaZn₂As₃. *Z. Naturforsch. B* **62**, 155–161 (2007).
- Xiao, Z. et al. Epitaxial growth and electronic structure of a layered zinc pnictide semiconductor, β-BaZn₂As₂. Thin Solid Films 559, 100–104 (2014).
- Toby, B. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).
- 30. Ren, Q. et al. Establishing the carrier scattering phase diagram for zrnisn-based half-heusler thermoelectric materials. *Nat. Commun.* **11**, 3142 (2020).
- 31. Han, W. et al. Li(Cd, Mn)P: A new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping. *Sci. Rep.* **9**, 7490 (2019).
- 32. Xiao, Z. et al. Narrow bandgap in β -BaZn₂As₂ and its chemical origins. *J. Am. Chem. Soc.* **136**, 14959–14965 (2014).

Acknowledgements

The work at Žhejiang was supported by National Key R&D Program of China (No. 2022YFA1403202, 2022YFA1402701), NSF of China (No. 12074333), the Key R&D Program of Zhejiang Province, China (2021C01002).

Author contributions

F.L.N., L.C.F. and X.Q.Z conceived this work, X.Q.Z. and L.C.F. conducted the experiments with the help of J.O.D., L.F.X., X.P., H.Y.T. and Z.C.X, results were analysed by X.Q.Z., L.C.F., Q.L.Y., G.X.Z. and Y.L.G., all authors contributed to the preparation of this manuscript.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to L.F. or F.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025