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With the rapid advancement of medical informatics, the accumulation of electronic medical records 
and clinical diagnostic data provides unprecedented opportunities for intelligent medical text 
classification. However, challenges such as class imbalance, semantic heterogeneity, and data sparsity 
limit the effectiveness of traditional classification models. In this study, we propose an enhanced 
medical text classification framework by integrating a self-attentive adversarial augmentation 
network (SAAN) for data augmentation and a disease-aware multi-task BERT (DMT-BERT) strategy. 
The proposed SAAN incorporates adversarial self-attention, improving the generation of high-quality 
minority class samples while mitigating noise. Furthermore, DMT-BERT simultaneously learns medical 
text representations and disease co-occurrence relationships, enhancing feature extraction from rare 
symptoms. Extensive experiments on the private clinical datasets and the public CCKS 2017 dataset 
demonstrate that our approach significantly outperforms baseline models, achieving the highest 
F1-score and ROC-AUC values. The proposed innovations address key limitations in medical text 
classification and contribute to the development of robust clinical decision-support systems.
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With the continuous advancement of smart healthcare, medical information data such as electronic health 
records (EHRs) has been widely adopted, providing strong support for the application of artificial intelligence 
(AI) in the medical field1. Medical text classification, which involves the automated categorization of textual data 
into predefined classes, plays a crucial role in various applications such as disease diagnosis, risk assessment, and 
medical information retrieval2,3.

Traditional machine learning (ML) techniques have been applied in medical text classification, yet they 
depend heavily on feature engineering and struggle with complex semantic representations4. Deep learning (DL) 
models5–8 have notably enhanced classification accuracy by learning hierarchical features from raw text data9. 
However, these models require large labeled datasets and often suffer from performance degradation due to the 
inherent imbalance in medical datasets, where rare disease cases are underrepresented10.

In recent years, the research on medical text classification has made remarkable progress driven by pre-
trained deep learning technology. Methods based on pre-trained language models can effectively acquire prior 
knowledge in the medical field by pre-training on large-scale medical corpora, overcoming the limitation of 
classic ML methods which necessitate a large volume of labeled data. Among them, the BERT (Bidirectional 
Encoder Representations from Transformers) model, with its bidirectional encoding mechanism and context-
awareness, has demonstrated unique advantages in medical text classification tasks. This model can not only 
accurately understand the contextual meaning of medical terms but also effectively identify subtle differences 
in symptom descriptions, providing strong technical support for improving the accuracy of disease diagnosis. 
For instance, Liao and Bressem et al.11,12 proposed the medical text classification model based on BERT to 
significantly enhance the classification performance by fine-tuning on specialized medical datasets. Gasmi et al.13 
developed an optimized deep learning model by integrating particle swarm optimization into BERT fine-tuning, 
improving classification performance on medical text datasets. Zhang et al.14 introduced KG-MTT-BERT, which 
incorporates medical knowledge graphs to enhance multi-task learning in clinical text classification, significantly 
outperforming baseline models in diagnostic-related group classification tasks. Zeberga15 proposed the RNN_
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Bert_Based model, integrating recurrent neural networks with BERT for superior temporal feature extraction 
in medical text classification, achieving state-of-the-art results on Stanford Sentiment Treebank v2 (SST-2). Dai 
et al.,16 addressed Chinese polyphone disambiguation within an end-to-end framework by leveraging semantic 
features extracted from pre-trained BERT models. The second paper (Darraz et al.17 integrated sentiment 
analysis with BERT to enhance hybrid recommendation systems, improving their performance and accuracy.

Expect the limitation of labeled data, the prevalent medical data class imbalance also mainly causes 
performance degradation of DL in medical text classification. Generative Adversarial Network (GANs)18,19 
optimizes the model’s generalization performance by generating high-quality minority class samples, providing 
a technical path for class imbalance problem. To address the prevalent class imbalance issue in medical data, 
Suresh et al.20 explored the application of generative adversarial networks in medical data augmentation. By 
optimizing the architecture design of the generator and discriminator, they successfully generated high-quality 
minority class samples, effectively balancing the class distribution of the dataset. Bissoto et al.21 provided a 
critical review of GAN-based data augmentation and anonymization techniques for skin-lesion analysis, 
evaluating their potential in improving model robustness and privacy in medical image analysis. In addition to 
GANs, multi-task learning enhances the model’s ability to learn the features of the minority class by introducing 
auxiliary tasks, significantly improving the recognition accuracy of rare cases while maintaining the model’s 
generalization ability. For instance, Liu et al.22 proposed a multi-task learning approach adapted to similar tasks 
for mortality prediction in rare diseases, enhancing prediction accuracy across diverse conditions. Facing the 
task of diagnosing the Alzheimer’s disease, Suk et al.23 combined sparse method with deep multi-task learning 
framework to enhance the clarity and effectiveness. Furthermore, Zhang et al.24 appended the multi-modal 
information in multi-task learning framework to strengthen the diagnostic accuracy of the same disease. Zeng 
et al.25 presented a deep belief network-based multi-task learning method for diagnosing Alzheimer’s disease, 
offering improved diagnostic capabilities across multiple tasks.

Despite these advancements, existing medical text classification approaches still face notable limitations. 
While BERT-based models have shown great potential in capturing complex semantic structures, they often 
struggle with class imbalance, leading to poor generalization for rare diseases. Moreover, current multi-
task learning strategies improve representation learning, but they lack explicit mechanisms to mitigate class 
imbalance effectively. Additionally, most existing approaches focus on either data augmentation or multi-task 
learning separately, without fully leveraging their complementary strengths. These gaps highlight the need for 
an integrated approach that simultaneously enhances representation learning and addresses class imbalance 
challenges.

To address these limitations, the proposed classification framework incorporating three key innovations:

	1.	 Self-attentive adversarial augmentation network (SAAN): Existing GAN-based data augmentation methods 
generate synthetic samples but fail to preserve domain-specific medical knowledge. We introduce SAAN, 
which employs adversarial sparse self-attention to enhance the quality of generated samples, ensuring more 
realistic and semantically coherent minority-class representations.

	2.	 Disease-aware multi-task BERT (DMT-BERT): Standard BERT models lack explicit medical domain knowl-
edge integration. We extend BERT by incorporating a secondary task that learns disease co-occurrence pat-
terns alongside classification, allowing the model to better understand medical relationships and improve 
classification accuracy for rare disease categories.

	3.	 The effectiveness of our proposed approach is validated through experiments on real-world medical datasets, 
demonstrating significant improvements over baseline models in terms of classification performance, espe-
cially for rare disease detection.

The remainder of this paper is structured as follows: Sect. 2 gives theoretical basis. Section 3 presents the details 
of our proposed methodology. Section 4 discusses the experimental setup and performance evaluation. Finally, 
Sect. 5 concludes the study and outlines future research directions.

Background on GAN and BERT
GAN and BERT are the basic modules of the proposed method Consequently, a comprehensive background on 
both GAN and BERT is presented as below.

Background on GAN
GAN is a class of DL models designed for data generation. GAN consists of two modules: a generator (G) that 
produces synthetic samples, the authenticity of these samples are assessed by a discriminator (D). These two 
networks are trained simultaneously in a minimax game, where G aims to generate realistic samples while D 
strives to differentiate between authentic and generated samples. Specifically, the loss functionLG of G is defined 
as:

	 LG = − Ez∼p(z) [log D (G (z))] � (1)

where G (z) represents the sample generated by G, D () denotes the output of D, and Ez∼p(z) indicates the 
expectation of the random noise z. This loss function guides G to continuously optimize itself, enabling the 
samples it generates to better “deceive” D. D acts as a “judge”, It receives inputs which can be real embedding 
vectors or the output of G, and Produces an estimated likelihood ∈ [0, 1], signifying how probable it is that the 
provided instances are authentic. The loss function LD  of D can be expressed as:

	 LD = −Ex∼pdata(x) [log D(x)] − Ez∼p(z) [log(1 − D(G(z)))]� (2)
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where x represents the real sample, and x ∼ pdata(x) denotes the distribution of the real data. D seeks to 
improve its capability to differentiate authentic and synthetic instances by reducing the value of LD .

Background on BERT
The powerful training capacity of the BERT model is driven by its input design and the multi-head self-attention 
mechanism. BERT’s primary input consists of vectors representing words, which are converted from raw text into 
tokens via the tokenizer function. These tokens capture the words’ meanings, while the positional embeddings 
represent their relative positions in the sequence. This structure enables BERT to effectively capture contextual 
and sequential relationships within the text. Self-attention mechanism is applied to the encoder module in 
BERT. The essence of attention is to give higher weight to the part of attention, so as to obtain more effective 
information. Calculating formulas as (3) shown.

	
Attention(Q, K, V)j = softmax(

QjKT
j√

dk

)Vj � (3)

Where (Q,K,V) is the result of input x multiplied by different weight matrices, dkis the dimension of kth head. 
The advantage of this design is that the model can have a more comprehensive feature extraction capability.

Proposed methodology
In this section, we present the detailed derivations of our proposed enhanced medical text classification 
framework, as shown in Fig. 1, which mainly consists of Self-Attentive Adversarial Augmentation Network 
(SAAN) and Disease-Aware Multi-Task BERT (DMT-BERT).

These models are developed to tackle the class imbalance and rare disease recognition in medical text 
classification tasks. First, we introduce the architecture and working principles of SAAN, which leverages a 
self-attentive adversarial approach to generate high-quality minority class samples for data augmentation. 
Following this, we delve into the DMT-BERT framework, which integrates multi-task learning with BERT to 
enhance feature learning, focusing specifically on disease co-occurrence relationships to improve classification 
performance. Both models complement each other and provide a holistic solution to enhance the overall 
classification accuracy, particularly for rare diseases in medical datasets.

SAAN
The SAAN is designed to address class imbalance in medical datasets by generating high-quality minority class 
samples. By incorporating sparse self-attention mechanisms within the GAN framework, SAAN enhances the 
generation process, ensuring that the synthetic samples are both contextually relevant and semantically coherent. 
This approach enhances the feature extraction capacity from the minority class, which is often underrepresented 
in medical text datasets. As shown in Fig. 2, SAAN is composed of an sparse attention generator (SAG) and an 
sparse attention discriminator (SAD). For better generating meaningful synthetic samples, sparse self-attention 
mechanisms are combined into both components to extract the long-term dependencies of data.

SAG is responsible for creating synthetic samples that resemble the minority class. Inputting random 
Gaussian noise z, SAG outputs a synthetic medical text sample x̂ as demonstrated in Eq. (4), in which sparse 
self-attention is incorporated to selectively process input regions, ensuring contextually coherent generation.

	 x̂ = SAG (z) = sparse_selfattention (z)� (4)

The sparse_selfattention () works by projecting the input sequence, i.e. z = {zi}t
i=1 with zi w.r.t xiand 

zi ∈ Rd, into several subspaces using linear transformations with respect to different parameter matrices. 

Fig. 1.  Overall framework of the proposed enhanced medical text classification model.
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Each sparse attention head applies its own matrix for projection, generating separate representations for each 
subspace. To enforce sparsity, each head applies a local window maskMj ∈ {0, −∞}n×nwhereMj,ik = 0 
only if |i − k| ⩽ w (window size w≪n), in which w is set as 86. The parallel sparse attention computations are 
denoted as m, which refers to the multi-head sparse attention mechanism:

	 sparse_selfattention (z) = Concat({headj}m
j=1)WA� (5)

	 headj = sparse_attention(Q, K, V)j � (6)

	
sparse_attention(Q, K, V)j = softmax

(
QjKT

j√
dk

+ Mj

)
Vj � (7)

	 Kj = zWk
j � (8)

	 Vj = zWv
j � (9)

	 Qj = zWq
j � (10)

where Qj ,Kj  and Vj  represent the query, key, and value vectors, respectively. headj  refers to the j-th attention 
head, and W k

j , W v
j , W q

j ∈ Rd×dk are the trainable matrices for each head, besides W A ∈ Rmdk×d  and 
dk = d/m.The noise vector z is sampled from a Gaussian distribution, and the self-attention mechanism helps 
the Generator to focus on the most relevant features during sample generation.

SAG aims to minimize the probability of the SAD correctly classifying its generated samples as fake. The 
SAG’s objective is to “fool” the SAD, making it believe the synthetic samples are real. The SAG loss is defined as:

	 LSAG = −Ez∼p(z) [log SAD (SAG (z))]� (11)

where SAD (SAG (z))is the SAD’s output for the generated sample.
SAD is responsible for differentiating real and synthetic samples, utilizing self-attention to identify global 

relationships within the input sequence. SAD outputs a probability SAD(x) representing the likelihood that the 
input X = [x, x̂] is a real sample x (i.e., from the minority class) or a fake one x^ (i.e., generated by SAG).

	 SAD (X) = sparse_selfattention (X)� (12)

SAD’s goal is to correctly distinguish between real and fake samples. The SAD loss is defined as:

	 LSAD = −Ex∼p(x) [log SAD (x)] − Ez∼p(z) [log (1 − SAD (SAG (z)))]� (13)

where p(x) is the real data distribution, and SAD (x) is the SAD’s output for a real sample.
This adversarial mechanism enables the generator to gradually master the distribution characteristics of real 

data and eventually generate high-quality samples of minority classes. These generated samples are then used to 
expand the training dataset, effectively alleviating the problem of class imbalance and enhancing the recognition 
ability of the improved BERT classification model for minority classes.

DMT-BERT
The DMT-BERT framework extends the BERT model by introducing multi-task learning to capture disease-
related co-occurrence patterns, whose structure is shown in Fig. 3. This allows the model to better handle rare 
disease classification by simultaneously learning useful auxiliary tasks related to disease co-occurrences while 
performing the main classification task.

Fig. 2.  The structure of the proposed SAAN.
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Feature encoding module of DMT-BERT
BERT mainly makes up the encoding layer of DMT-BERT. The process of encoding mainly involves the following 
key steps:

Word segmentation  Firstly, the text needs to be processed through word segmentation, which splits consec-
utive words into meaningful words or sub-words to enhance the feature extraction ability. In the DMT-BERT 
model, word segmentation is implemented by BertTokenizer. BertTokenizer is a word segmenter based on the 
WordPiece algorithm, which can decompose the input text into a series of sub-words. This segmentation method 
can not only effectively handle common words but also solve the problem of out-of-vocabulary words. Moreover, 
the WordPiece algorithm achieves a good balance between the semantic integrity of words and the size of the 
model’s vocabulary by learning sub-word units.

Encoding by BERT  Bert as the encoder deals with the segmented text sequence through a multi-layer Trans-
former structure. Each Transformer layer contains multi-head self-attention mechanism and feed-forward neu-
ral network. By decomposing the attention mechanism into multiple heads, the model can simultaneously cap-
ture the semantic features of the text from different representation subspaces. Parallel attention computations 
not only enhance the model’s expressive power but also improve the stability of feature extraction. For the input 
x ∈ Rn×d, the calculation process of the multi-head self-attention mechanism is:

	 MultiHead(x) = contact(head1,head2,······ ,headn)� (14)

Among them, the calculation formula for each head is,

	 headi = sparse_selfattention(XWQ
i , XWK

i , XWV
i )� (15)

And the formula of the Attention is,

	
sparse_selfattention(Q, K, V) = softmax(QKT

√
dk

+ M)V� (16)

Among them, Q, K, V ∈ Rn×drepresent Query, Key and Value respectively. Through the multi-head attention 
mechanism, each attention head can focus on different aspects of the input sequence. Moreover, for the scaling 
factor 

√
dk , it can effectively avoid the gradient problem in the case of large dimensions.

Extract semantic vector  In each Transformer layer of DMT-BERT, a two-layer structure is adopted to con-
struct the feed-forward neural network. The first layer uses a larger hidden dimension to expand the feature 
representation space. The second layer subsequently transforms the features to match the original dimension. 
This design enables the model to maintain the integrity of information while enhancing the nonlinear transfor-
mation ability. Meanwhile, the use of residual connections ensures that the gradients can effectively propagate in 
deep networks. After obtaining the hidden states f ∈ Rn×d, the final text vector representation of DMT-BERT 
is obtained through mean operation:

Fig. 3.  The structure of the proposed DMT-BERT.
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H = 1

n

n∑
i=1

fi� (17)

By adopting this pooling strategy, the model is enabled to effectively integrate all positional information within 
the sequence, thereby generating a compact text representation.

Multi-task learning architecture of DMT-BERT
The DMT-BERT model consists of two key components:

	1.	 Primary task: The task of classifying medical texts into predefined categories (e.g., disease types or symptom 
categories) using the [CLS] token.

	2.	 Auxiliary task: The task of predicting disease co-occurrence relationships, which captures how certain dis-
eases or symptoms are likely to occur together.

The primary task involves classifying medical texts into predefined categories. This is done by using the BERT 
architecture, which generates contextualized embeddings of each token, while the output hclsassociated [CLS] 
token is for the final classification decision. Supposed thatX = [x1, x1, ?., xn], wherexi represents the tokens 
(words or sub-words), the output from the BERT model can be represented as H = [h1, h1, ?., hn], where each 
hi is the embedding vector of the tokenxi. Then, hcls is input a FC layer to obtain the predicted label for the 
input sequence. The formula for classification is:

	 ŷ = softmax(Wclshcls + bcls)� (18)

where Wclsand bcls are the weight matrix and bias of the FC layer, ŷ is the predicted class label (disease type 
or symptom category).

The auxiliary task in DMT-BERT aims to predict disease co-occurrences based on the relationship between 
different diseases or symptoms mentioned in the text. The co-occurrence prediction is based on the output 
embeddings for the tokens h1, h1, ?., hn. To predict disease co-occurrences, we define a binary classification 
for each pair of diseases di and dj  in the text. The task is to predict whether diseases di and dj  co-occur in the 
same medical record. The co-occurrence prediction is modeled by calculating the attention between the token 
representations corresponding to the diseases di and dj . For each pair, the attention score Aij  is computed as:

	
Aij =

hi · hT
j

∥hi∥ ∥hj∥
� (19)

where hi and hj  are the embeddings for the tokens corresponding to diseases di and dj , and ∥⋅∥represents the 
vector norm. Thus, the co-occurrence prediction loss is then computed using binary cross-entropy:

	
Lco-occurrence = −

∑
i,j

[yij log (pij) + (1 − yij) log (1 − pij)]� (20)

Where yij  is the true label indicating whether diseases di and dj  co-occur, pij is the predicted probability that 
diseases co-occur, computed from the attention score Aij .

The overall loss function for DMT-BERT is a weighted sum of the primary classification loss and the auxiliary 
co-occurrence prediction loss:

	 LDMT-BERT = λ1Lclassification + λ2Lco-occurrence � (21)

Where Lclassification  the cross-entropy loss for the primary disease classification task, λ1 and λ2 are 
hyperparameters controlling the relative importance of the two tasks.

In DMT-BERT, the BERT model is fine-tuned with additional layers corresponding to the auxiliary task. The 
[CLS] token output is used for the main classification task, while the other token embeddings are used to predict 
disease co-occurrences in the auxiliary task. The BERT model undergoes pre-training with two tasks: Masked 
Language Modeling (MLM) and Next Sentence Prediction (NSP). During fine-tuning, both the classification 
task and the co-occurrence task are optimized simultaneously.

Experimental analysis
Evaluation indexes
Multi-evaluation indexes are adopted in the paper. First, Confusion Matrix (Table 1) are presented. Next, the 
ROC curve is used to illustrate the relationship between the True Positive Rate (TPR) and the False Positive Rate 
(FPR) across various threshold values. This offers an intuitive assessment of the model’s classification ability.

Besides, F1 Score is adopted as another evaluation index, whose calculation formula are,

	
F1 = 2 × precision × recall

precision + recall
� (22)

	
precision = TP

TP + FP
� (23)
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recall = TP

TP + FN
� (24)

The description of the clinical dataset
The clinical data used is a statistical table containing a large number of patient cases, which records the detailed 
medical history, examination results, diagnosis and treatment situations of different patients. The clinical dataset 
is retrospectively collected from 2 tertiary cardiovascular hospitals in China between January 2023 and December 
2023, comprising 317 de-identified patient records. This paper focuses on the four columns: chief complaint, 
present illness history, past medical history, and the effect of right heart angiography. The three columns of 
chief complaint, present illness history and past medical history contain rich symptom characteristics, while the 
column of the effect of right heart angiography contains five different results, namely no obvious right-to-left 
shunt at the atrial septum plane, right-to-left shunt at the atrial septum plane (grade I), right-to-left shunt at 
the atrial septum plane (grade II), right-to-left shunt at the atrial septum plane (grade III), and others. In this 
experiment, the above results are classified into 0 class, 1 class, 2 class, 3 class and 4 class respectively.

The description of the CCKS 2017 datasets
To evaluate our proposed model, we conducted experiments on the CCKS 2017 Task 2 dataset26, which comprises 
1,198 training samples and 796 test samples. Table 2 summarizes the statistics of five distinct entity types. Both 
datasets were annotated using the BIO scheme, where the “B-” prefix indicates the first character of an entity and 
the “I-” prefix denotes subsequent characters. Specifically, B-BODY/I-BODY denote the initial and non-initial 
characters for body parts; B-SIGNS/I-SIGNS correspond to those for symptoms; B-CHECK/I-CHECK refer to 
medical examinations; B-DISEASE/I-DISEASE indicate disease entities; and B-TREATMENT/I-TREATMENT 
represent treatment entities. The label “O” is used for characters that do not belong to any named entity.

Data preprocessing
A multi-stage preprocessing framework is implemented to ensure data quality and consistency. In the first 
phase, regular expressions are employed to clean the raw text by removing special characters, redundant spaces, 
punctuation, and other irrelevant elements while correcting common formatting errors such as repeated characters 
and improper line breaks. At the same time, a specialized medical term dictionary is integrated to maintain the 
professional integrity of the text; term matching and standardization processes ensure accurate extraction and 
consistent representation of medical terminology. Next, the open-source Chinese word segmentation tool jieba 
is utilized for precise tokenization. Given the unique characteristics of medical texts, the jieba segmenter is 
optimized for the medical field through dictionary expansion and adjustment of word frequency weights, which 
improves the recognition accuracy of domain-specific terms. This step lays a solid foundation for subsequent 
feature extraction. Finally, the representational capabilities of a pre-trained BERT model are leveraged to convert 
the processed text into high-dimensional embedding vectors. This transformation captures the semantic nuances 
of the text while preserving contextual relationships, thereby providing high-quality feature representations for 
downstream classification tasks.

The detailed description of Stratified K-Fold Cross-Validation has been appended. To ensure the model’s 
stability and generalization capability, we implement a stratified K-fold cross-validation approach with K set to 
5. In this method, the dataset D is partitioned into five subsets D1, D2, …, D5, each reflecting the original class 
distribution. For each fold, one subset is designated as the validation set while the remaining four subsets are 
used for training. This process is repeated until every subset has served as the validation set once. Performance 
is evaluated using metrics such as precision, recall, F1 score, and accuracy, with the final results obtained by 
averaging the outcomes across all folds. This detailed strategy minimizes evaluation bias and provides a robust 
estimate of the model’s performance.

Data enhancement
To address the issue of class imbalance in the dataset and enhance the generalization ability of the model, we 
have devised a dual data augmentation strategy: The first strategy is based on the SAAN as described previously. 

Dataset Body Signs Disease Check Treatment Total

Train set 10,719 7831 722 9546 1048 29,866

Test set 3021 2311 553 3143 465 9493

Table 2.  Token-level distribution of five entity types.

 

Actual

Predicted

Positive Negative

Positive TP (true positive) FN (false negative)

Negative FP (false positive) TN (true negative)

Table 1.  The structure of confusion matrix, making general binary classification as an example.
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Through the generator of SAAN, the features of minority class samples are simulated, and new samples with 
similar statistical characteristics are generated, thereby increasing the proportion of the minority class in the 
dataset. This method not only balances the class distribution but also maintains the semantic coherence of the 
generated samples.

The second strategy adopts a vocabulary-based enhancement approach, mainly modifying the text through 
two operations: synonym substitution and random insertion. For the original text T, an enhanced text T’ is 
generated by replacing the words in it with a certain probability p, and the probability model is expressed as:

	 P
(
T′|T

)
= pk(1 − p)(n−k)� (25)

where p represents the probability of substitution, k denotes the number of words to be replaced, and n indicates 
the total number of words in the text. Meanwhile, through random insertion operations, words related to the 
semantic context are inserted at appropriate positions in the text to further increase the expression diversity of 
the text. The insertion positions and the selection of words are based on the calculation of the semantic relevance 
to the context. Figure 4 show the proportions of various data before and after enhancement.

Model parameter settings
After ten parallel trials, based on the optimal test results, the hyperparameter Settings of the model are shown 
in the Table 3.

Experimental performance evaluation of the clinical dataset
Prediction evaluation of the proposed method
Table 4 outlines the model’s performance metrics for each of the five cross-validation folds in detail. From the 
data, it can be observed that the model performs stably across all folds, with an average precision rate of 0.93 
and an average recall rate of 0.91. Particularly noteworthy is that even on the minority class samples, the model 
still maintains a relatively high recognition accuracy rate, which validates the effectiveness of the GAN data 
augmentation strategy in balancing the class distribution.

Hyperparamete Value Hyperparameter Value

Maximum text length 512 Number of encoder module 2

batch size 32 Encoder of DMT-BERT 256

learning rate 2e-5 Disease classifier/ Predictor 768-256-4/256-2

Epochs 200 Dropout 0.2

AG module 50 AD module 50

Table 3.  The hyper-parameters of the prosed model.

 

Fig. 4.  The proportions of various data before and after enhancement.
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Figure 5 displays the ROC curves for the classification model across five different categories. The ROC curve 
is a key metric for assessing classification models, displaying the relationship between the True Positive Rate 
(TPR) and False Positive Rate (FPR) to highlight the model’s effectiveness in classification. The red dashed line 
represents the baseline for random guessing, while the five solid lines, each in a different color, correspond to 
the ROC curves of the five categories. The legend for each curve shows the corresponding AUC (Area Under 
the Curve) values, with class 0 having an AUC of 0.94, and the other three categories achieving an AUC of 0.98. 
An AUC value closer to 1 signifies superior model performance. From the figure, it is evident that all categories 
exhibit high AUC values, demonstrating the model’s excellent classification performance across these categories. 
The model has shown high accuracy and reliability in handling classification tasks for these five categories.

Figure 6 contains four subplots, each displaying a confusion matrix for a classification model across different 
folds (Fold 1 to Fold 4). The confusion matrix provides a visual representation of model performance by 

Fig. 5.  ROC-AUC curves for each category.

 

Sub task Precision Recall F1 score

Fold1 0.94 0.92 0.92

Fold2 0.92 0.88 0.89

Fold3 0.93 0.91 0.91

Fold4 0.93 0.91 0.91

Fold5 0.93 0.91 0.91

Mean value 0.93 0.91 0.91

Table 4.  Accuracy rate, recall rate, F1 score on each fold.
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comparing true labels with predicted labels. In each subplot, the x-axis shows the true labels, and the y-axis 
displays the predicted labels. Diagonal values indicate correctly classified samples, while off-diagonal values 
represent misclassifications. The color intensity indicates the sample size, with darker colors indicating higher 
quantities. The model’s performance is relatively stable across all folds, with most samples being correctly 
classified, as reflected in the dark-colored blocks along the diagonal. For instance, in Fold 1, classes 0, 1, 2, 
and 3 had 54, 38, 36, and 31 samples correctly classified, respectively. In Fold 2, classes 0, 1, 2, and 3 had 54, 
27, 24, and 35 samples correctly classified, respectively. Similar trends were observed in other folds, although 
there were minor misclassifications in certain folds (e.g., Fold 3 and Fold 4). However, the model’s classification 
performance remained strong overall. These confusion matrices indicate that, despite some misclassifications, 
the model can accurately recognize most categories, demonstrating high classification accuracy.

Study of ablation
A series of ablation experiments are performed to assess the effectiveness of the proposed approach. In these 
experiments, we compared different versions of the model by systematically removing or modifying key 
components. Model m1 represents the complete SAAN and DMT-BERT framework, incorporating both 
SAAN-based augmentation and multi-task learning. Model m2 adopts the identical architecture as m1, except it 
excludes the SAAN component, relying solely on DMT-BERT with multi-task learning. In this setup, the model 
does not benefit from the synthetic minority class samples generated by SAAN. Model m3 adopts the full SAAN 
architecture but uses a single-task BERT model for classification instead of multi-task learning. In this case, the 
model performs only the primary classification task, omitting the auxiliary disease co-occurrence prediction 
task. Model m4 represents a baseline version, where both the SAAN and DMT-BERT components are removed, 
and the model relies on the standard BERT architecture with no augmentation or multi-task learning. Each 
model is optimized through fine-tuning, and ten parallel experiments are run for each version. The average F1-
score, Recall, and Precision accuracy across all experiments were calculated and summarized in Table 5.

The results clearly demonstrate that m1, the full model, consistently outperforms all other variants. Specifically, 
Model m2 (DMT-BERT only) shows a noticeable decrease in performance, especially in the recognition of rare 

Fig. 6.  Confusion matrices on different folds.
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diseases, while Model m3 (SAAN only) performs better but still lacks the benefit of multi-task learning. Model 
m4, the baseline model, performs the worst, as it neither incorporates the augmentation from SAAN nor benefits 
from the auxiliary task of disease co-occurrence learning. These results demonstrate that both SAAN and 
DMT-BERT are essential for enhancing the model’s performance. The SAAN-based augmentation significantly 
handles class imbalance, while the multi-task learning helps generalize ability to rare diseases by learning disease 
co-occurrence patterns.

Study of compared results with recent methods
To highlight the advantages of the proposed approach, a comparative study was conducted against several recent 
deep learning models, including BERT, RoBERTa, XLNet, Wind2vec-BERT, Bert-pin, and Mask-guided BERT. 
Ten parallel experiments are performed to fine-tune each model on the medical dataset, and the performance 
metrics (precision, recall, and F1-score) are summarized in Table 6. As shown, the highest performance across 
all metrics is achieved by the proposed model, with a precision of 0.93, recall of 0.91, and F1-score of 0.91, 
surpassing the best-performing baseline, Mask-guided BERT, by 1% in F1-score.Wind2vec-BERT and Bert-pin 
both exhibit improvements over the baseline BERT, with Bert-pin attaining slightly higher precision and recall 
than Wind2vec-BERT. The marked gains in the proposed method can be attributed to the integration of SAAN 
for data augmentation and DMT-BERT for multi-task learning, which together address class imbalance and 
capture disease co-occurrence patterns more effectively. This approach is particularly beneficial for the detection 
of rare diseases in medical text. In conclusion, superior performance is demonstrated by the proposed model in 
comparison to existing state-of-the-art methods, and robust generalization capabilities are exhibited, making it 
highly effective for medical text classification tasks.

Besides, the proposed approach, combining SAAN-based data augmentation and multi-task learning, offers 
significant accuracy improvements for medical text classification, particularly for rare diseases. While this 
integration does introduce a computational burden due to the complexity of the models, the resulting precision 
enhancements are crucial for medical applications. These improvements enable more accurate disease diagnosis 
and risk assessment, ultimately contributing to better patient care. Thus, the trade-off between computational 
complexity and accuracy is justified, as the benefits of improved classification outweigh the additional 
computational cost. Noted that this research has achieved remarkable results on specific clinical datasets, it may 
encounter some challenges when generalized to different types and domains of medical texts.

Experimental performance evaluation of the CCKS 2017 datasets
Table 7 presents the precision, recall, and F1-scores for all five entity types. Notably, the SIGNS and CHECK 
categories exhibit superior F1 performance relative to DISEASE and TREATMENT. This discrepancy may be 
due to the highly variable lengths of TREATMENT annotations and a relatively lower volume of annotated 
DISEASE instances.

In order to evaluate the performance of our proposed model, we compare our model with several baseline 
models. Table 8 provides a performance comparison among several models on the CCKS 2017 dataset in terms of 
precision, recall, and F1-score. The experimental results demonstrate the superior performance of the proposed 
method compared to existing approaches. Comparative analysis with architectures including RoBERTa27 and 
XLNet28 confirms the proposed method’s superior capability in capturing domain-specific linguistic patterns. 
Our model achieves state-of-the-art precision of 94.52% and recall of 93.24%, surpassing the best baseline 
(Mask-guided BERT11) by 1.40% and 1.90% respectively in these two metrics. While the F1-score (91.80%) 
slightly trails Wind2vec-BERT29 (90.89%) and Bert-pin30 (91.54%) in absolute value, this discrepancy primarily 
stems from our method’s balanced optimization strategy that prioritizes clinical decision-making requirements 

Model Precision Recall F1 score

BERT 0.89 0.85 0.87

RoBERTa27 0.89 0.88 0.87

XLNet28 0.90 0.86 0.86

Wind2vec-BERT29 0.90 0.87 0.88

Bert-pin30 0.91 0.88 0.89

Mask-guided BERT11 0.92 0.88 0.90

Proposed 0.93 0.91 0.91

Table 6.  Comparison results with state-of-arts.

 

Model Precision Recall F1 score

m4 0.85 0.80 0.82

m3 0.90 0.88 0.89

m2 0.88 0.85 0.86

m1 0.93 0.91 0.91

Table 5.  Ablation experiment results of different methods on clinical dataset.
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through precision-recall tradeoff calibration. Notably, the proposed approach maintains consistent performance 
improvements across all evaluation dimensions, particularly excelling in precision-critical medical entity 
recognition tasks where it outperforms conventional BERT variants by 6.62–14.06%. This enhanced capability 
in minimizing false positives while preserving recall sensitivity suggests effective integration of domain-specific 
linguistic patterns through our novel architectural modifications.

Conclusion
This paper proposes an enhanced medical text classification framework integrated with SAAN and DMT-
BERT to address class imbalance and improve the classification of rare diseases in medical texts. The main 
contributions are as follows: First, the introduction of SAAN enhances high-quality synthetic samples generation 
for underrepresented classes, addressing the class imbalance issue. Second, DMT-BERT leverages multi-task 
learning to capture disease co-occurrence patterns, which improves the model’s performance, particularly in 
recognizing rare diseases. The effectiveness of these innovations was confirmed through ablation experiments, 
which demonstrated the significant contribution of both components to the overall performance. The enhanced 
medical text classification framework outperforms recent models in terms of key metrics such as F1-score, 
Precision, and Recall, showing improvements for disease detection. The results highlight the effectiveness of the 
proposed model in handling medical text classification tasks, particularly in overcoming the challenges of class 
imbalance and rare disease recognition. In the future, the explain-ability strategies will be researched to bridge 
AI models with clinical reasoning.

Data availability
To improve the transparency and reproducibility of our work, raw data are publicly available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​
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