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To investigate the feasibility of a radiomics model for the detection of bladder invasion (BI) by 
colorectal cancer (CRC) on CT images. Ninety-six patients with CRC and a suspicion of BI who 
underwent tumor resection with partial or total cystectomy were reviewed. The 96 patients were 
randomly assigned to the training dataset (n = 68) or test dataset (n = 28) at a ratio of 7:3. The CT 
images were reviewed by two experienced radiologists, who provided a CT impression of the invasion 
of the bladder by CRC. A region of interest (ROI) on the CT images for each case was manually labeled 
by two radiologists. A radiomics model was constructed using a Categorical Boosting (CatBoost) 
classifier. The predicted probability by CatBoost was used to evaluate the efficacy of the radiomics 
model. The areas under the curve (AUCs) of the receiver operating characteristic were compared 
between the radiomics model and the CT impression. In the training dataset, the AUC of the radiomic 
model [0.864 (95% CI: 0.778, 0.951)] was significantly greater than that of CT impression [0.678 (95% 
CI: 0.569. 0.786), P = 0.007]. In the test dataset, the AUC of the radiomic model [0.883 (95% CI: 0.699, 
1.000)] was also significantly greater than that of CT impression [0.570 (95% CI: 0.370, 0.770), P = 
0.040]. It is feasible to use radiomics models for the prediction of BI by CRC, which might perform 
better than human radiologists.
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Abbreviations
ACC  Accuracy
AUCs  Areas under the curve
BI  Bladder invasion
CatBoost  Categorical Boosting
CRC  Colorectal cancer
GIST  Gastrointestinal stromal tumor
ICCs  Intraclass correlation coefficients
MVR  Multivisceral resection
NLR  Negative likelihood ratio
NPV  Negative predictive value
PCA  Principal component analysis
PLR  Positive likelihood ratio
PPV  Positive predictive value
PR  Precision-recall
ROC  Receiver operating characteristic
ROI  Region of interest
SEN  Sensitivity
SPE  Specificity

Colorectal cancer (CRC) is the among the most common cancers worldwide, with at least 1.8 million new cases 
diagnosed annually1. Approximately 10% of these patients need to undergo multivisceral resection (MVR) 
because the tumor is adherent to contiguous organs or structures at the time of initial diagnosis2. However, true 
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malignant invasion to adjacent organs or structures was reported pathohistologically in 30–70% of patients who 
underwent MVR, while only inflammatory adhesion was detected in the remaining patients3. Therefore, MVR 
performed during curative resection for patients with CRC inflammation adhering to their surroundings is often 
overtreatment.

Current imaging modalities for preoperative assessment of bladder invasion (BI) face critical limitations. 
While contrast-enhanced CT is widely used for staging, retrospective studies demonstrate its sensitivity for 
macroscopic BI detection is only 64.3%, with pathological confirmation of malignancy in merely 28.6% of 
resected specimens4. CT cannot reliably differentiate inflammatory adhesions from true tumor infiltration, 
leading to overestimation of invasion. Cystoscopy, though adjunctively employed, detects mucosal abnormalities 
(e.g., edema) but fails to predict transmural invasion, resulting in 53% false-positive rates for malignancy4,5. 
These limitations underscore the unmet need for objective preoperative tools to stratify adhesion severity.

It is well acknowledged that extensive operation is often associated with a high rate of complications. 
Complication rates have been reported as 20–42% after MVR6. Yuji Nakafusa et al. revealed that the overall 
morbidity rate was 49.1% after MVR, while 17.8% after standard operation7. As the most common organ 
involved in MVR (53.2%)8, the bladder was partially or totally resected depending on the site and extent of 
bladder involvement. Compared with surgery for primary bladder cancer, urinary tract reconstruction after 
cystectomy is more susceptible to complications when performed via MVR for CRC9. Unfortunately, patients 
with inflammatory adherent CRC who undergo MVR cannot achieve oncological benefits3 and suffer from a 
greater risk of perioperative complications and poor postoperative quality of life.

However, since imaging examination methods are limited, diagnosing the nature of adhesions preoperatively 
is still a challenge10. Intraoperative identification of adhesions as inflammatory or malignant is often inaccurate, 
and frozen sectioning is often ineffective11,12. Intraoperative attempts to release adhesions often result in 
transection of the tumor, which leads to higher local recurrence rates and poorer overall survival in these CRC 
patients than in patients undergoing en bloc MVR2,6,13–15. Thus, the preoperative evaluation of locally advanced 
CRC, including those with a suspicion of BI, has become increasingly important and relevant, especially in the 
era of minimally invasive surgery for CRC and neoadjuvant chemoradiation for rectal cancer.

The term “radiomics”, which refers to the process of converting medical images into high-dimensional 
data by high-throughput extraction of quantitative features and subsequent data analysis for decision-making, 
has recently attracted increasing interest16. Currently, radiomics has been widely applied in tumor diagnosis, 
prognosis assessment and treatment response prediction17. To the best of our knowledge, no studies have 
focused on applying radiomics models to evaluate BI in patients with CRC.

Therefore, the purpose of this study was to investigate the feasibility of a radiomics model for the detection 
of BI by CRC on CT images.

Materials and methods
Data enrollment
This retrospective study was approved by the local Institutional Review Board (Peking University First Hospital 
2019–170), and all methods were performed in accordance with the relevant guidelines and regulations. Due to 
the retrospective nature of the study, Peking University First Hospital waived the need of obtaining informed 
consent. CT images of the abdomen between December 2009 and September 2021 were retrospectively collected. 
The inclusion criteria were as follows: (a) underwent primary CRC resection combined with partial or total 
cystectomy, (b) had clinical information available, and (c) had postoperative pathology to determine whether 
invasion of the bladder by CRC was present. The exclusion criteria were as follows: (a) CT data were obtained 
two weeks before surgery, (b) CT images did not fulfill the requirements of the study, (c) preoperative therapy 
(radiotherapy, chemotherapy or chemoradiotherapy).

A total of 96 eligible patients were ultimately included in this study; 35 had bladder invasion [BI(+)], and 61 
had no bladder invasion [BI(-)]. The 96 patients were randomly assigned to the training dataset (n = 68) or test 
dataset (n = 28) at a ratio of 7:3 (Fig. 1).

CT acquisition parameters
The CT images were acquired from six CT scanners. The detailed scanning parameters are shown in Table 1. 
There were no significant differences in the scanning parameters between the training dataset and the test 
dataset (all P > 0.05).

Clinical information
The age, sex, BMI, CA19-9, CEA, tumor location, tumor size, and differentiation of the tumors are shown in 
Table 2. The most common site of CRC was the sigmoid colon (62.5%), followed by the rectum (34.4%). There 
were no statistically significant differences in clinical information between the training and test datasets (all P > 
0.05), except for CA19-9 (P = 0.008).

CT impression by visual assessment of two radiologists
The CT images were reviewed by two experienced radiologists. The positive findings included CRC expansion 
to the bladder, thickening of the bladder wall, and stranding of the surrounding tissue. Bladder invasion was 
diagnosed only if direct CRC expansion to the bladder wall was observed. The presence of secondary signs 
(bladder wall thickening or perivesical stranding) supported the diagnosis but were not independently sufficient. 
The two radiologists gave the CT impression in consensus that there existed invasion of the bladder by the CRC.
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Region of interest for radiomics model
The region of interest (ROI) on the CT images was manually labeled by two radiologists (an intern in radiology 
training and a radiologist with 30 years of experience) with ITK-Snap software (http://www.itksnap.org). A 
rectangle shape of the ROI was annotated at the area where the bladder and the CRC were closest (Fig.  2). 
Radiologists manually delineated ROIs by marking key points to form minimum bounding cuboids around 
tumor regions. These cuboids were not constrained to align with the image axes. ROIs were variable in size 
(mean 25311 mm3, range: 13054–58767 mm3) to accommodate tumor heterogeneity.

Development of the radiomic model
All CT images were resampled to isotropic voxels (1 × 1 × 1 mm3) using B-spline interpolation to eliminate 
variations in spatial resolution caused by differences in slice thickness or reconstruction kernels. ROIs were 
converted to binary format and smoothed using morphological operations (e.g., dilation/erosion with a 3 × 
3 kernel) to reduce edge artifacts. HU values were truncated to a range of -100 to 400 to exclude irrelevant 
tissues (e.g., air, bone). A fixed bin number (64 bins) was applied to standardize the gray-level range across 
all scans, ensuring comparability of texture-based features between datasets. All preprocessing adhered to the 
Image Biomarker Standardization Initiative (IBSI) recommendations to ensure methodological transparency 
and cross-study comparability. Feature extraction from these images was carried out using the PyRadiomics 
package in Python, with further details available in the PyRadiomics documentation. This package enabled 
the calculation of 14 shape-related features, 18 primary-level features, and 70 textural features. To standardize 
these features, the Z score normalization technique was employed. To study the reproducibility of the radiomic 
features, the 68 patients in the training cohort were labeled again by Reader A and Reader B.

Inter- and intraobserver reliability were assessed using intraclass correlation coefficients (ICCs), derived 
from a two-way random effects model. Radiomics features demonstrating excellent reliability (with ICCs greater 
than 0.85) were deemed robust and subsequently chosen for model construction. The selected variables were 
then shifted to zero centered and scaled to have unit variance. Then, principal component analysis (PCA) was 
performed to reduce the dimensionality of the features. Principal components (PCs) explaining 95% of the 
cumulative variance were retained to balance information preservation and model simplicity. The top 15 PCs 

Fig. 1. Flow chart of patient enrollment. BI(-): absence of bladder invasion. BI(+): presence of bladder 
invasion.
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were subsequently selected for downstream analysis, as they collectively captured the majority of variance 
while minimizing redundancy. ANOVA was used to select the PCA features for training a Categorical Boosting 
(CatBoost) model. In this study, due to the limited size of the test set which may not fully represent the model’s 
performance, we performed 5-fold cross-validation on the training set to more robustly evaluate the model’s 
generalization capability while maximizing the use of the available data. After the CatBoost model was trained 
in the training dataset, the cases in the test dataset were predicted by the model. The probability predicted by 
CatBoost was used to evaluate the efficacy of the radiomics model.

Evaluation of the model
Model evaluation was performed using the R programming language (version 4.1.1). In the test cohort, the 
predictive efficacy of the radiomics model and the CT impression were assessed using receiver operating 
characteristic (ROC) curves, generated with the pROC package. Precision-recall (PR) curves and calibration 
curves (bootstrapped with 1,000 repetitions for bias correction) were plotted using the PRROC and rms 
packages, respectively. Model performance metrics—including accuracy (ACC), sensitivity (SEN), specificity 
(SPE), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and 
negative likelihood ratio (NLR)—were calculated using the modEvA package.

Statistical analysis
The statistical analysis was conducted using the R software, version 4.1.3. For continuous variables, those 
following a normal distribution were presented as mean ± standard deviation, while non-normally distributed 
variables were depicted as median [1st quartile, 3rd quartile]. Categorical variables were summarized as counts 
and percentages. Normality of distribution was assessed using the Kolmogorov-Smirnov test. Associations 
among categorical variables were evaluated using chi-square or Fisher’s exact tests as appropriate. For two-group 
comparisons involving non-normally distributed data, the Mann-Whitney U test was utilized. In cases where 
multiple groups were compared and the data did not meet parametric assumptions, the Kruskal-Wallis test 
was applied. The DeLong test was employed to compare the areas under the Receiver Operating Characteristic 
(ROC) curves across various models. Differences were considered statistically significant at a P value of less than 
0.05.

Results
Clinical characteristics of the cases
The clinical characteristics of the BI(+) and BI(-) patients are shown in Table 3. The characteristics of BI(+) and 
BI(-) patients were compared. No significant differences were found between the BI(+) and BI(-) groups for any 
of the clinical factors (all P > 0.05), except for the differentiation of the tumor in the test dataset (P = 0.018).

Overall Training dataset Test dataset

P value(n = 96) (n = 68) (n = 28)

Manufacture

 GE medical systems 71 (74.0%) 48 (70.6%) 23 (82.1%) 0.494

 Philips 16 (16.7%) 13 (19.1%) 3 (10.7%)

 SIEMENS 9 (9.4%) 7 (10.3%) 2 (7.1%)

Model name

 Brilliance 64 11 (11.5%) 8 (11.8%) 3 (10.7%) 0.383

 Discovery CT750 HD 54 (56.3%) 37 (54.4%) 17 (60.7%)

 iCT 256 5 (5.2%) 5 (7.4%) 0 (0%)

 LightSpeed VCT 10 (10.4%) 5 (7.4%) 5 (17.9%)

 LightSpeed16 7 (7.3%) 6 (8.8%) 1 (3.6%)

 SOMATOM definition flash 9 (9.4%) 7 (10.3%) 2 (7.1%)

Reconstruction diameter (mm)

 Median [Q1, Q3] 372 [360,387] 375 [361,389] 367 [355,385] 0.283

Slice thickness (mm)

 Median [Q1, Q3] 1.25 [1.25,1.25] 1.25 [1.00,1.25] 1.25 [1.25,1.25] 0.133

Slice spacing (mm)

 Median [Q1, Q3] 5.00 [1.00,5.00] 5.00 [1.00,5.00] 5.00 [1.00,5.00] 0.739

Pixel spacing (mm)

 Median [Q1, Q3] 0.727 [0.703,0.755] 0.732 [0.705,0.759] 0.716 [0.692,0.752] 0.319

Tube current (mA)

 Median [Q1, Q3] 300 [300,332] 300 [300,316] 300 [300,350] 0.334

Exposure time (ms)

 Median [Q1, Q3] 800 [749,800] 800 [749,800] 800 [749,800] 0.725

Table 1. CT image acquisition protocols.
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Results of the CT impression
The results of the CT impression are shown in Table 4. The inter-reader agreement for the CT image features of 
CRC expansion, bladder wall thickening, and perivesical stranding was 0.876, 0.761, and 0.769, respectively. In 
the training dataset, the diagnostic accuracy of the CT impression was 64.7%. In the test dataset, the diagnostic 
accuracy of the CT impression was 53.6%.

Results of the radiomics model
After PCC analysis, 88 features were selected as robust features and passed for PCA. Then, feature reduction 
was performed by PCA (Fig. 3; Table 5), and five PCA features were selected to train the CatBoost model. For 
training the CatBoost model, accuracy was used to select the optimal model using the largest value. The final 
values used for the model were depth = 2, learning_rate = 0.1, iterations = 100, l2_leaf_reg = 1e-06, rsm = 0.9, 

Fig. 2. Region of interest of the models. A rectangle-shaped ROI was annotated at the area where the bladder 
and the CRC were closest. The ROIs are shown in the axial (a), sagittal (b), and coronal (c) planes and were 
viewed three-dimensionally (d).

 

Overall Training dataset Test dataset

P value(n = 96) (n = 68) (n = 28)

Age (yrs)

 Mean (SD) 60.4(12.3) 60.7(11.9) 59.8(13.3) > 0.999

Gender

 Female 22 (22.9%) 16 (23.5%) 6 (21.4%) > 0.999

 Male 74 (77.1%) 52 (76.5%) 22 (78.6%)

CEA

 < 5.0 ng/ml 75 (78.1%) 23 (82.1%) 52 (76.5%) 0.734

 ≥ 5.0 ng/ml 21 (21.9%) 5 (17.9%) 16 (23.5%)

CA19-9

 < 37.0U/ml 56 (58.3%) 10 (35.7%) 46 (67.6%) 0.008

 ≥ 37.0U/ml 40 (41.7%) 18 (64.3%) 22 (32.4%)

BMI

 Mean (SD) 23.2 (3.46) 22.2 (2.68) 23.6 (3.68) 0.050

Location of the tumor

 Descending colon 1 (1.0%) 0 (0%) 1 (3.6%) 0.354

 Sigmoid colon 60 (62.5%) 42 (61.8%) 18 (64.3%)

 Rectum 33 (34.4%) 25 (36.8%) 8 (28.6%)

 Sigmoid colon and rectum 2 (2.1%) 1 (1.5%) 1 (3.6%)

Differentiation

 Low 5 (5.2%) 3 (4.4%) 2 (7.1%) 0.250

 Middle 78 (81.3%) 55 (80.9%) 23 (82.1%)

 High 3 (3.1%) 1 (1.5%) 2 (7.1%)

 Mucinous 10 (10.4%) 9 (13.2%) 1 (3.6%)

Diameter (cm)

 Median [Q1,Q3] 7.00 [5.50,9.00] 7.50 [5.88,9.00] 6.25 [5.00,7.63] 0.051

Table 2. Clinical characteristics of the training and test datasets.
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and border_count = 255. The relative importance of the PCA features was 24.12%, 21.17%, 20.73%, 19.50%, and 
14.49% in the overall model. The AUC values and their corresponding 95% confidence intervals from the 5-fold 
cross-validation were 0.706 (0.551–0.806), 0.797 (0.636–0.891), 0.747 (0.588–0.799), 0.831 (0.774–0.858), and 
0.891 (0.768–0.991), respectively.

Evaluation of the model
The area under the curve (AUC) and other evaluation metrics for CT impression and the radiomics model are 
shown in Table 6; Fig. 4, including AUC, accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive 
value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio 
(NLR), respectively. In the training dataset, the AUC of the radiomic model [0.864 (95% CI: 0.778, 0.951)] was 
significantly greater than that of CT impression [0.678 (95% CI: 0.569. 0.786), P = 0.007]. In the test dataset, 
the AUC of the radiomic model [0.883 (95% CI: 0.699, 1.000)] was also significantly greater than that of CT 
impression [0.570 (95% CI: 0.370, 0.770), P = 0.040].

The PR curves of the CT impression and the radiomics model are shown in Fig. 5. The calibration curves are 
shown in Fig. 6. With 1,000 repetitions of bootstrapping, the calibration curve of the CT impression yielded a 
mean absolute error of 0.042, a mean squared error of 0.002, and a 0.9 quantile of absolute error of 0.043. The 
calibration curve of the radiomics model yielded a mean absolute error of 0.029, a mean squared error of 0.001, 
and a 0.9 quantile of absolute error of 0.071.

Training dataset Test dataset

CT impression (+) CT impression (-) CT impression (+) CT impression (-)

BI(+) 21 5 6 3

BI(-) 19 23 10 9

Table 4. Results of the CT impression.

 

Training dataset

P value

Test dataset

P value

BI(-) BI(+) BI(-) BI(+)

(N = 42) (N = 26) (N = 19) (N = 9)

Gender

 Male 30 (71.4%) 22 (84.6%) 0.341 14 (73.7%) 8 (88.9%) 0.673

 Female 12 (28.6%) 4 (15.4%) 5 (26.3%) 1 (11.1%)

Age

 Mean (SD) 61.8 (12.5) 59.0 (10.9) 0.253 59.8 (12.2) 59.6 (16.2) 0.921

CEA

 < 5.0 ng/ml 33 (78.6%) 19 (73.1%) 0.822 15 (78.9%) 8 (88.9%) 0.910

 ≥ 5.0 ng/ml 9 (21.4%) 7 (26.9%) 4 (21.1%) 1 (11.1%)

CA19-9

 < 37.0U/ml 28 (66.7%) 18 (69.2%) > 0.999 8 (42.1%) 2 (22.2%) 0.546

 ≥ 37.0U/ml 14 (33.3%) 8 (30.8%) 11 (57.9%) 7 (77.8%)

BMI

 Mean (SD) 23.9 (3.64) 22.9 (3.73) 0.218 22.8 (2.19) 20.9 (3.25) 0.085

Location

 Descending colon 0 (0%) 0 (0%) 0.683 1 (5.3%) 0 (0%) 0.426

 Sigmoid colon 25 (59.5%) 17 (65.4%) 12 (63.2%) 6 (66.7%)

 Rectum 16 (38.1%) 9 (34.6%) 6 (31.6%) 2 (22.2%)

 Sigmoid colon and rectum 1 (2.4%) 0 (0%) 0 (0%) 1 (11.1%)

Differentiation

 Low 1 (2.4%) 2 (7.7%) 0.629 0 (0%) 2 (22.2%) 0.018

 Middle 34 (81.0%) 21 (80.8%) 18 (94.7%) 5 (55.6%)

 High 1 (2.4%) 0 (0%) 0 (0%) 2 (22.2%)

 Mucinous 6 (14.3%) 3 (11.5%) 1 (5.3%) 0 (0%)

Diameter

 Median [Min, Max] 7.25 [3.00, 17.0] 7.75 [3.00, 14.0] 0.626 6.00 [4.00, 13.0] 7.50 [4.00, 13.0] 0.729

Table 3. Clinical characteristics of patients with and without BI.
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Discussion
Predicting BI by locally advanced CRC is important because it can help determine the stage of the cancer and 
guide treatment decisions. Studies have shown that the most relevant preoperative predictors of definite BI in 
patients with CRC are gross hematuria, a tumor visible during cystoscopy, and abnormal CT findings5. CT can 
provide detailed images of the bladder and surrounding structures, allowing radiologists to identify abnormal 
findings such as gross tumor invasion, an enhancing mass at the bladder wall, irregular bladder mucosa, and loss 
of the perivesical fat plane that may indicate cancer. However, CT scans are not definitive and are often used in 
combination with other diagnostic methods, such as cystoscopy and MRI, to confirm the diagnosis. Relatively 
low concordance rates, approximately 35-55%, between preoperative CT scans and final histopathology results 
have been reported8,18, which means that there may be excessive preoperative staging, which leads to an increase 
in the proportion of neoadjuvant therapy and the expansion of the scope of intraoperative resection. Thus, 
improving the coincidence rate of imaging and pathology is the future direction of diagnosis. Radiomics is a field 
of medical imaging in which advanced computational methods are used to extract a large number of quantitative 
features from medical images. In the case of CRC, radiomics has been shown to be useful for evaluating the 
aggressiveness of the disease, as well as for predicting patient outcomes19.

CT impression Radiomic model

AUC 0.678 (0.569, 0.786) 0.864 (0.778, 0.951)

ACC 0.647 (0.640, 0.654) 0.794 (0.789, 0.799)

SEN 0.808 (0.656, 0.959) 0.962 (0.888, 1.000)

SPE 0.548 (0.397, 0.698) 0.690 (0.551, 0.830)

PPV 0.525 (0.370, 0.680) 0.658 (0.507, 0.809)

NPV 0.821 (0.680, 0.963) 0.967 (0.902, 1.031)

PLR 1.785 (1.219, 2.616) 3.107 (1.965, 4.912)

NLR 0.351 (0.152, 0.809) 0.056 (0.008, 0.385)

Table 6. AUCs and other evaluation metrics for the CT impression and the radiomics model.

 

PC1 PC2 PC3 PC4 PC5

Standard deviation 6.0843 4.0977 3.6719 2.59871 1.83007

Proportion of variance 0.4207 0.1908 0.1532 0.07674 0.03806

Cumulative proportion 0.4207 0.6115 0.7647 0.84143 0.87949

Table 5. Standard deviation and proportion of the top 5 PCA features.

 

Fig. 3. Feature reduction was performed by PCA. (a) Variance against the number of dimensions in the result 
of PCA. (b) Individual case in the PCA. Each individual case is plotted on the platform of dimension 1 (Dim1) 
and dimension 2 (Dim2). Dim1 and Dim2 contribute to the principal component with proportions of 42.1% 
and 19.1%, respectively. (c) Individual case in the PCA with different groups. Group 0 [BI(-)] in red and group 
1 [BI(+)] in green are plotted in the platform of dimension 1 (Dim1) and dimension 2 (Dim2).
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In comparison to prior radiomics studies on colorectal cancer, our work advances the field in two key 
aspects. First, while existing CT-based radiomics research in CRC has addressed diverse diagnostic tasks (e.g., 
tumor staging, lymph node metastasis), our study is the first to specifically evaluate bladder invasion. This 
addresses a critical unmet need in preoperative assessment, where distinguishing true BI from inflammatory 

Fig. 5. Precision‒recall curves of the CT impression and the radiomic model in the training dataset (a) and the 
test dataset (b).

 

Fig. 4. ROC curves of the CT impression and the radiomic model in the training dataset (a), the AUC of the 
radiomic model [0.864 (95% CI: 0.778, 0.951)] was significantly greater than that of the CT impression [0.678 
(95% CI: 0.569. 0.786), P = 0.007]. In the test dataset (b), The AUC of the radiomic model [0.883 (95% CI: 
0.699, 1.000)] was significantly greater than that of the CT impression [0.570 (95% CI: 0.370, 0.770), P = 0.040].
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adhesions remains a major clinical challenge. By resolving this ambiguity, our model could reduce unnecessary 
multivisceral resections and improve surgical planning. Second, we introduce a standardized rectangular ROI 
spanning the tumor-bladder interface. Unlike conventional approaches that rely on irregular tumor contours, 
this method ensures consistent, reproducible annotations across radiologists, thereby enhancing the validity and 
reliability of radiomics feature extraction. Together, these advances strengthen the clinical utility of radiomics 
for guiding preoperative surgical decisions in CRC.

In this study, we reviewed 96 CRC patients who underwent surgery for suspected bladder invasion. A CT 
visual assessment model and a radiomics model were developed and compared. We found that there were no 
significant differences in age, sex, BMI, CA19-9, CEA, tumor location, or tumor diameter between patients with 
and without BI. However, there was a statistically significant difference in tumor differentiation between the two 
groups in the test dataset. In the test dataset, the AUC of the radiomics model (0.883) was significantly greater 
than that of the CT visual assessment (0.570, P = 0.040).

Accurate and consistent annotation of ROIs is crucial for our radiomics study to be robust20. Our PubMed 
search results indicate that most radiomics studies on rectal cancer use manual segmentation, in which 
radiologists annotate the location and precise boundary of the tumor21. In this study, we chose the ROI as 
the area where the bladder and the CRC were closest because we believe that this area contains important 
information about the biology of the tumor, such as the aggressiveness of the tumor, the extent of invasion, and 
the potential for metastasis. Using this clear definition of the ROI, we can ensure that the radiologists consistently 
annotate the ROI, making the results of the study valid and reliable. To evaluate the bias in the ROI, we enlisted 
the participation of two radiologists with varying levels of experience and assessed the intra- and interrater 
repeatability of the annotations. The results demonstrated good consistency between them.

At present, comprehensive treatment based on surgical resection is still the treatment mode for locally 
advanced CRC with bladder involvement. This study revealed that applying radiomics models for the prediction 
of BI by CRC is feasible and may perform better than human radiologists, expecting to improve the accuracy 
of clinical staging of locally advanced CRC, guide the selection of appropriate treatment strategies and decrease 
unnecessary bladder resection.

A first diagnosis of locally advanced CRC with suspected bladder infiltration is recommended for radiomics 
assessment. For locally advanced colon cancer, if the bladder is assessed as non-invasive using the radiomics 
model, surgical exploration may be an option for attempting to preserve the bladder intactly or reduce the extent 
of cystectomy; otherwise, combined partial or total cystectomy or neoadjuvant therapy may be an option. For 
locally advanced rectal cancer, if the bladder is assessed as non-invasive by the radiomics model, attempts may 
be made to preserve the bladder intactly or reduce the extent of cystectomy after neoadjuvant therapy.

This study has several limitations. First, the small sample size (particularly the limited number of positive 
invasion cases, n = 8 in the test set) may compromise the statistical power and robustness of the radiomics model, 
thereby affecting its reproducibility—a critical criterion for radiomics models. Second, the use of heterogeneous 

Fig. 6. Calibration curve of the CT impression (a), with 1,000 repetitions of bootstrapping, the calibration 
curve yielded a mean absolute error of 0.042, a mean squared error of 0.002, and a 0.9 quantile of absolute 
error of 0.043. Calibration curve of the radiomics model (b), with 1,000 repetitions of bootstrapping, the 
calibration curve yielded a mean absolute error of 0.029, a mean squared error of 0.001, and a 0.9 quantile of 
absolute error of 0.071.
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CT scanners with varying imaging protocols could introduce variability in radiomic feature extraction, further 
limiting the reproducibility of results. Future work should incorporate harmonization techniques, such as batch 
effect correction using empirical Bayes methods (e.g., ComBat) or deep learning-based domain adaptation, to 
mitigate scanner- and parameter-related variability. Third, the study population was primarily composed of 
patients who underwent CRC resection and cystectomy, which may introduce selection bias as conservatively 
managed patients were excluded. Future prospective cohorts including both surgical and non-surgical patients 
are needed to better reflect real-world clinical diversity. Fourth, the single-center design and limited dataset 
restrict the generalizability of our findings; external validation with multicenter data is essential to confirm the 
model’s applicability across diverse clinical settings. Finally, manual ROI annotation, while necessary for this 
study, is labor-intensive and prone to inter-observer variability. Automated segmentation methods should be 
developed in future work to improve efficiency and consistency.

Conclusions
In summary, based on the results of this study, it appears that using radiomics models for the prediction of BI by 
locally advanced CRC is feasible and may perform better than human radiologists. The application of radiomic 
models can assist in the preoperative staging of locally advanced CRC, guide the selection of treatment strategies, 
and reduce unnecessary bladder resection.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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