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Finer resolutions and targeted process
representations in earth systemmodels
improve hydrologic projections and
hydroclimate impacts
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Earth system models inform water policy and interventions, but knowledge gaps in hydrologic
representations limit the credibility of projections and impacts assessments. The literature does not
provide conclusive evidence that incorporating higher resolutions, comprehensive process models,
and latest parameterization schemes, will result in improvements. We compare hydroclimate
representations and runoff projections across two generations of CoupledModeling Intercomparison
Project (CMIP) models, specifically, CMIP5 and CMIP6, with gridded runoff from Global Runoff
Reconstruction (GRUN) and ECMWF Reanalysis V5 (ERA5) as benchmarks. Our results show that
systematic embeddingof thebest availableprocessmodels andparameterizations, togetherwith finer
resolutions, improve runoff projections with uncertainty characterizations in 30 of the largest rivers
worldwide in a mechanistically explainable manner. The more skillful CMIP6 models suggest that,
following themid-rangeSSP370 emissions scenario, 40%of the riverswill exhibit decreased runoff by
2100, impacting 850 million people.

Earth System Models (ESMs) are critical tools for understanding climate
science, supporting climate adaptation, and informing water resources
management. The latest generation of these ESMs enables more refined
analysis of hydroclimate responses1–3, yet significant challenges remain in
ensuring the credibility of their projections, particularly for hydrologic
cycle components like runoff at stakeholder-relevant spatiotemporal
resolutions4,5. As water is essential for human sustenance, agriculture,
energy production, and ecosystem maintenance, accurate projections of
the global hydrologic cycle (GHC) are crucial6, especially given the
centrality of water to all 17 United Nations sustainable development
goals (UN SDGs)7. However, integrating hydrologic and hydroclimate
processes into ESMs get complicated by the heterogeneity of the process,
data and environment1,8, leading to notable gaps in GHC projections9,10.
Addressing these challenges involves determining whether improve-
ments can be achieved through systematic incorporation of model pro-
cesses, critical parameterization, and finer resolution. However, the
combined impact of these three advancements in watershed hydrology
has not been thoroughly analyzed in large watersheds. Here, we show
that a targeted advance in each of these categories can lead to
improvements that align with a mechanistic understanding of

hydroclimatology. This mechanistic perspective refers to how these
processes and parameterizations influence hydrologic responses, pro-
viding a physically grounded explanation for model improvements. Our
analysis of the historic performance of ESMs over the last two genera-
tions reveals that mean runoff projections in the current generation have
improved statistically significantly over the previous generation, with
95% confidence limits, particularly in the larger watersheds of the world.
Based on our analysis, countries with low GDP per capita and low
Human Development Index (HDI) are being impacted by decreasing
runoff with heavy population, and future projections also indicate that
40% of the world’s largest river basins could experience decreasing
runoff. Our analysis suggests that further improvements in runoff pro-
jections are achievable and may help in the analysis of hydroclimate
impacts, inform the design of water resources infrastructures, policies
and interventions, and enable risk-informed decisions to mitigate the
impacts.

The primary hypothesis of this study is that targeted improvements in
ESMs can enhance their ability to generate critical information for water
resource management in the largest river basins in the world. We evaluate
runoff simulations from the latest generation of ESMs, specifically,
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ensembles members from the Coupled Model Intercomparison Project
version6 (CMIP6)11.While prior researchhas assessedCMIP6performance
for runoff generation and its advancements over the previous generations,
specifically CMIP512–15, corresponding underlying factors driving these
variations remain understudied. Recent literature even suggests a possible
degradation in the performance of CMIP6models in some cases13,16,17, even
raising questions about whether thesemodels are approaching their current
limits18. Analogies can be drawn from thefield ofweather forecasting, where
periods of relative stagnation in numerical weather prediction modelling
were followed by improvements, such as in recent years through the use of
artificial intelligence19–21. The rationale for our hypothesis regarding ESM
performance is partially based on these analogies. ESMs simulate physical
processes (e.g., atmosphere, ocean, land, sea ice) at varying resolutions and
may include optional biophysical and biogeochemical components using
diverse parameterizations22. Previous studies have shown that improved
resolution refines dynamical and physical parameterizations across atmo-
spheric, oceanic, land, and sea ice systems, enhancing overall model
coupling23–28. Additionally, numerous studies from different modelling
groups have shown that comprehensive processes and enhanced para-
meterization are crucial for overall model improvements23,29–32. Despite the
intuitive understanding of the importance of these elements, our study
attempts to address a key gap by systematically investigating their roles by
examining the physics, parameterizations, and resolutions that the process
models have incorporated for runoff projections. We explore which com-
binations of parameterizations and resolutions yield the most accurate
hydrologic projections, providing valuable insights for future model
development and refinement.

Here, we focus on assessing runoff in major river basins, which are
crucial due to their relatively massive scales and notable impacts on human
populations33,34. Ourfindings show that as of 2020, approximately 2.8 billion
people reside within the larger river basins. Moreover, due to the coarse
resolution of the ESMs, many land surface processes are difficult to resolve
in small river basins, so we have selected 30 large river basins based on
discharge to capture these effects more accurately. We evaluated the per-
formance of both themulti-model ensemble (MME) and individualmodels
from CMIP6 and CMIP5, focusing on their statistical alignment with
reference runoff datasets and the quantification of associated uncertainties.
The runoff projections of CMIP6 and CMIP5 are compared using gridded
runoff from Global Runoff Reconstruction (GRUN)35 and ECMWF Rea-
nalysis V5 (ERA5)36 as benchmarks. Furthermore, we explore the potential
impacts of future runoff changes under two different Shared Socioeconomic
Pathways [SSP-1: Sustainability and SSP-3: Regional Rivalry], and investi-
gate how future population dynamicsmay be affected by changes in surface
runoff. Additionally, we have highlighted how discrepancies in future
projections of the best and worst performing models can influence impact
assessments.

Results
Watershed hydrology and demographics
To understand the relationship between water availability and population
growth, we have studied the hydrological and demographic changes in 30
major river basins across the globe from1970s to 2010s.We used theGlobal
Runoff Reconstruction (GRUN)35 as gridded ground truth for runoff and
the Gridded Population of the World (GPW) data from Columbia
University37 for determining hydrologic and demographic dynamics over
the last 40 years.We also focused on the income andHDI data from2020 to
better understand the socioeconomic vulnerabilities in conjunction with
changes in runoff. For GDP per capita and HDI, we have used the UNDP
Human Development Report38 and World Bank data,39 respectively.
Figure 1 provides a detailed visualization of the differences and trends in
runoff alongside changes in population density as well as population count,
GDP per capita, and HDI in 2020. Increases in runoff are observed in only
three river basins (Orinoco, Paraná, and Zambezi), potentially due to
changes in regional precipitationpatterns.However, awidespreaddecline in
runoff is evident in 67% of the world’s largest river basins, particularly in

tropical regions of Africa and SouthAsia, wheremajor population increases
have been observed. These regions, characterized by low- tomiddle-income
countries with a low HDI, are especially vulnerable. The primary reasons
behind the declining runoff in many major river basins are thought to be
climate change and human activities40–42. Climate change has led to reduced
rainfall in several regions, directly impactingwater availability.Additionally,
human activities, including changes in land use and land classification, have
altered the natural flow of water, further reducing runoff 41,43. This growing
population, combined with decreasing runoff, presents a critical challenge
for the future, which arguablymakes it evenmore crucial to examine future
projections from ESMs to anticipate further changes in runoff and develop
adaptive strategies.

Skill, consensus and uncertainty quantification of current and
previous generation of Earth systemmodels
Weevaluate the performance of all available CMIP6models (25) in terms of
their historical projections of annual runoff from1960 to 2005.We compare
the MME mean, median and range of variability across 30 river basins
against two reference datasets: Global Runoff Reconstruction and Reana-
lysis.We have listed all models used in this study in supplementary table S1
with their modelling centers and grid sizes. Our model selection prioritize
diversity, including all available models that provide runoff data, while
avoiding redundancy by excluding multiple models from the same mod-
eling institute. Additionally, we analyze the MME mean from all available
CMIP5 ESMs to provide a comparative framework. Figure 2 shows the
MME mean and median annual runoff and the range of model variability
from CMIP6 and CMIP5 generation along with reference runoff for the
major river basins.

Our findings reveal that CMIP6 models show statistically significant
improvements over CMIP5 in simulating historical mean runoff, as eval-
uated against both ERA5 and GRUN reference datasets. A statistical com-
parison using the Wilcoxon signed-rank test44 demonstrates that CMIP6
models consistently outperform CMIP5 models in terms of Kling-Gupta
Efficiency (KGE)across all 30 river basins,withp-values<0.0001, indicating
significance at the 95% confidence level. This consistent improvement
across diverse hydrological contexts underscores the advancement in
simulation skill achieved by the latest generation of ESMs. However, it is
important to note thatCMIP6models exhibit a higher spread in their runoff
projections compared to CMIP5, particularly in high-discharge river basins
such as theAmazon, Congo,Ganges, Brahmaputra,Orinoco, andRioDeLa
Plata (Fig. 2, Supplementary Table S2). This increased spread suggests that
the addition of more models introduce more variability in certain contexts.
In other words, CMIP6 MME have higher skills, but models from CMIP5
generation have higher consensus. River basins with lower discharge gen-
erally showa smaller spread inCMIP6model projections, although there are
exceptions, such as the Irrawaddy, Mekong, and Yangtze rivers.

To further assess the credibility of CMIP6 improvements over CMIP5,
we analyzed a subset of 11 models available in both generations and esti-
mated their mean annual runoff (supplementary figure S1). This subset was
selected to evaluate whether developments from CMIP5 to CMIP6 led to
improvements in runoff simulations. Our results indicate that CMIP6 per-
forms better than CMIP5 in the majority of river basins, demonstrating
advancements inmodel representation of hydrologic processes. Additionally,
we observe that the range of variability is reduced in CMIP6.

To systematically evaluate model performance, we employed four
metrics—Percent Bias (PBIAS), Nash-Sutcliffe Efficiency (NSE), Kling-
Gupta Efficiency (KGE), and Pearson’s Correlation Coefficient (CC)—to
compare runoff simulations from these 11models against reference datasets.
The evaluation (supplementary figure S2) reveals that CMIP6 models gen-
erally outperform CMIP5 models across most river basins, as indicated by
the box plots. These results highlight improved accuracy, reduced bias, and
enhanced overall performance in CMIP6 models, demonstrating superior
skill in replicating historical runoff across diverse hydrological contexts.

Furthermore, there are inherent concerns regarding the role of internal
climate variability in model simulations, particularly when only a single
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ensemble member per model is used. Since each ensemble member repre-
sents a different realization of climate variability, relying on a single runmay
not fully capture the range of possible outcomes. To address this, we selected
three models from the CMIP5 and CMIP6 generations and analyzed five
randomly selected initial conditions per model (supplementary material
section A and supplementary figure S3). Our findings reveal that when
multiple ensemblemembers are considered, the range of variability is lower
in multiple initial condition ensemble (MICE) than multi model ensemble
(MME). This suggests that part of the increased spread in CMIP6 projec-
tions arises from structural differences betweenmodels rather than internal
variability alone.

Lastly, to quantify the uncertainty in runoff projections across river
basins we have analyzed the variability within the CMIP5 and CMIP6
model ensembles, implicitly assuming that multi-model variability con-
tributes to uncertainty in the projections. By examining the spread of
projections from each model ensemble, we aimed to capture the range of
runoff scenarios. In Fig. 3, we present a comprehensive comparison of

uncertainty between CMIP5 and CMIP6 models. Panel A shows a global
map of the increases in uncertainty from CMIP5 to CMIP6, categorized
into three levels (< 35%, 35-50%, > 50%), with hatching patterns that
indicate the status of the capture of reference runoff. Panel B displays violin
plots illustrating the distribution of model projections for each river basin.
The map reveals distinct spatial patterns in model performance, with
CMIP5 models failing to capture reference runoff primarily in South
American basins (Amazon, Parana, Orinocco, Rio de la Plata), while
CMIP6 models struggle more in higher latitudes of Asia and Europe (Ob,
Volga, Danube, Yenisei). We find that CMIP6 models exhibit higher var-
iance in their runoff projections across all basins, reflecting greater uncer-
tainty. This heightened uncertainty in CMIP6 may be attributable to the
broader exploration of the model parameter space or a more complex
representation of physical processes, potentially leading to a wider range of
plausible runoff scenarios. However, despite this increased variance, CMIP6
models performed better in capturing the reference runoff across a greater
number of river basins than CMIP5 models when considering all available

Fig. 1 | Decreasing runoff intersects with increasing and more vulnerable
population. Analysis of changes in the 2010s (2005–2014) relative to 1970s
(1965–1974) in 30 of the largest river basins suggests decreasing runoff intersecting with
increasing population, especially in highly populated low- to middle-income countries
with a low Human Development Index (HDI).A Runoff (measured using GRUN data)
changes are categorized: diagonal hatching for decreases (< − 5 mm/year), blank for

stable (− 5 to 5mm/year), and vertical hatching for increases (> 5mm/year). Population
changes are marked by blue (decreasing), yellow (stable), and red (increasing), indi-
cating shifts of more than 10 people per square kilometer. Notable declines in runoff are
noted in tropical regions of Africa and South Asia, with rising population densities.
B Global population density, C Human Development Index, and D GDP per capita in
2020 are shown with varying shades.
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models from both ensembles for one random initial condition (25 CMIP6
models and 11 CMIP5 models). In simpler terms, the CMIP6 models
exhibit better skills while CMIP5 models show better consensus. Notably,
when the comparison was restricted to 11 models common to both gen-
erations (supplementary figure S4), the uncertainty levels in runoff pro-
jections remained comparable, suggesting that the increased variability in

CMIP6 arises primarily from the inclusion of additional models rather than
inherent differences in individual model performance.

Credibility of hydrologic projection. To assess the credibility of
hydrologic projections among CMIP6 models, we developed an aggre-
gated ranking matrix based on the four key performance metrics

Fig. 2 | Improved mean and changed variability for runoff projections in CMIP6
vs CMIP5.Mean and median annual runoff and model variability are compared
with reconstruction (GRUN) and reanalysis (ERA5) from 1960 to 2005 for 30
major river basins. Orange and green shaded areas represent the spread of
CMIP5 and CMIP6 projections, respectively. Solid lines indicate the MME
mean for CMIP5 (orange), CMIP6 (green), GRUN (black), and ERA5 (pink)

and dashed lines indicated MME medians. The latest generation of ESMs
(CMIP6) shows significant improvement (at 95%) over CMIP5 in mean runoff
for historical projections, when compared against ERA5 and GRUN [confirmed
by Wilcoxon signed-rank test (p < 0.00001)]. The spread of model projections
in CMIP6 ESMs seems to be much higher, which can be explained by the
addition of higher number of models that generate runoff projections.
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discussed earlier. These metrics collectively assess different aspects of
model performance, specifically, bias (Percent Bias), model efficiency
(NSE and KGE), and the strength of the relationship between model
predictions and observed data (CC). All performance metrics are cal-
culated using the MME mean and median. For each river basin, all 25
models were ranked for each metric. These rankings were derived by
comparing the performance of each model against two runoff reference
datasets. To improve the robustness of the ranking and reduce the
influence of random variability from a single ensemble member, we
selected up to three initial conditions for each model and calculated the
multi-initial condition ensemble mean for ranking purposes. For many
models, fewer than three initial conditions were available, and in some

cases only a single ensemble member could be used. The specific initial
conditions utilized for each model are detailed in the supplementary
section A. This approach helps mitigate the possibility that a model’s
ranking is overly influenced by a single ensemblemember that happens to
match observed historical sequences due to chance rather than inherent
model skill. Supplementary Figures S5 and S6 illustrate the rankings of
each model for each river basin in comparison to GRUN and ERA5,
respectively, with results visualized using color intensity–darker shades
indicating better performance. The rankings revealed that no single
CMIP6 model consistently outperforms others across all river basins.
However, certainmodels, such asMRI-ESM2,MIROC-ES2L, E3SM-1-0,
consistently achieved high ranks, demonstrating robust performance

Fig. 3 | Improved mean runoff projections but larger uncertainty in CMIP6 in
comparison to CMIP5. A Global map showing the spatial distribution of uncer-
tainty increases from CMIP5 to CMIP6 models, with uncertainty increases cate-
gorized as less than 35% (blue), 35–50% (yellow), and more than 50% (red).
Hatching patterns indicate reference runoff capture status: white indicates both
model generations captured reference runoff, dotted pattern shows both failed to
capture references, cross-hatching shows CMIP5 failed to capture references, and

vertical lines show CMIP6 failed to capture references.BViolin plots illustrating the
variability in model projections for each river basin, with blue and red shaded areas
representing the spread of model projections for CMIP6 and CMIP5, respectively.
Solid black lines indicate the median variance, while dashed lines represent the 25th
and 75th quartiles. CMIP6 models consistently exhibit higher variance in their
runoff projections across river basins, indicating greater uncertainty in projections
despite improved mean representation.
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across multiple river systems. Subsequently, we created an aggregated
rank by combining the results from all eight rankings–four metrics
compared across two reference datasets45. All metrics were given equal
weight in the creation of these aggregated ranks. Supplementary figure S7
displays these aggregated rankings. This ranking is valuable for both
water resource managers and earth systemmodelers or data analysts. For
water resourcemanagers, the rankings provide insight into whichmodels
are more reliable for informing mitigation and adaptation strategies in
their respective river basins. Formodelers, these rankings highlightwhich
models perform better in specific basins, allowing them to focus on tar-
geted improvements.

According to the aggregated ranks, some models outperform others
overall. To understand why certain models excel, we analyzed the interplay
between the physical science implementations, the incorporation of critical
parameterizations for runoff through the participation of keyMIPs, and the
spatial resolution of land surface models within ESMs. We plotted the
models from best to worst performance and examined the physical pro-
cesses they modeled and their corresponding resolutions. Figure 4 provides
a detailed analysis of 25 CMIP6 models, showing that advancements in
physical science processes, incorporation of critical runoff parameteriza-
tions through participation in key MIPs, and finer spatial resolutions sig-
nificantly improve runoff projections. A model with comprehensive
physical and biogeochemical representation typically includes eight key
processes: Atmosphere, Aerosol, Ocean, Land, Ocean Biogeochemistry,
Atmospheric Chemistry, Land Ice, and Sea Ice. We also considered model
participation in key CMIP6-endorsed Model Intercomparison Projects
(MIPs) relevant to runoff–such as the Cloud FeedbackMIP (CFMIP), Land
Use MIP (LUMIP), Land Surface Snow and Soil Moisture MIP (LS3MIP),
and Global Monsoon MIP (GMMIP)–which, while not parameterizations
themselves, guided the development, testing, or refinement of related
physical parameterizations within the models11.

Our findings reveal that the top-performing models are distinguished
by their incorporation of a greater number of these processes and para-
meterizations, along with finer spatial resolutions and participation in
CMIP6 endorsed MIPs. Panel A of the figure displays the total count of
processes and participation in CMIP6 ensodres MIPs considered, while
Panel B shows the specific processes andMIPs incorporated by eachmodel.
Notably, almost all models include the four core processes–Land Bio-
geochemistry, Atmosphere, Ocean, and Sea Ice–so these are not highlighted
in Panel B. MIROC-ES2L has performed well despite having 250 km
resolution, with the incorporation of critical parameterizations. Interest-
ingly, CanESM5 performed well despite its coarser 500 km spatial resolu-
tion, likely due to its comprehensive inclusion of physical processes. On the
other hand, models like GISS-E2-1-G and CMCC-CM2-SR5, despite hav-
ing finer resolutions (100 km) and extensive parameterizations, under-
performed due to the absence of critical elements such as Ocean Bio-geo
Chemistry and Land Ice in their simulations.

This analysis underscores the potential importance of both resolution
and the breadth of process representation in producing credible hydrologic
projections. However, it is important to emphasize that these relationships
are correlative rather than causal. While structural characteristics appear to
align with model performance, isolating the specific effects of individual
processes or configurations would require targeted sensitivity experiments
or controlled intercomparison studies.

For greater statistical robustness, we conducted both mean-based
andmedian-based analyses of model performance across river basins and
evaluation metrics. A Spearman rank correlation analysis revealed a
moderate positive correlation (ρ = 0.567, p = 0.0032) between mean-
based and median-based rankings, indicating that while there is some
consistency between methods, the choice of central tendency metric
significantly affects model evaluation outcomes. The statistically sig-
nificant p-value (p < 0.01) confirms that this relationship is unlikely to
have occurred by chance, supporting the need for both metrics when
assessing model performance. Supplementary figure S8 compares these
rankings to highlight differences in model behavior. As shown in Fig. S8,

several models exhibit shifts in ranking when evaluated using medians
rather than means. For example, INM-CM5-0 and TaiESM1 rank sub-
stantially higher using median-based evaluation, while models like
FGOALS-g3 and EC-Earth3 rank considerably lower. This shift reveals a
critical nuance that some models perform well consistently across basins,
while others achieve high mean scores due to strong performance in a
limited number of regions. Median-based rankings favor consistency and
resilience across diverse hydrologic regimes. Notably, while some high-
ranking models (e.g., MRI-ESM2-0) feature extensive physical process
representations, others (e.g., INM-CM5-0) perform well despite having
fewer parameterizations or lower spatial resolution. These results suggest
that model performance is not solely a function of structural complexity,
but also of how well specific processes are implemented and calibrated.
This complementary analysis underscores the importance of evaluating
model skill through multiple statistical lenses, and indicates that targeted
improvements to key processes may be more effective than simply
increasing model complexity. Such insights are vital for guiding the
future development and evaluation of Earth System Models.

Impact on Human Population. We have examined the potential impact
on populations under changes in future runoff, focusing on projected
trends in 30major river basins globally. The analysis is based on long-term
future projections from CMIP6 MME under a certain shared socio-
economic pathway scenario, where we estimated the mean and trends for
surface runoff from 2017 to 2100. CMIP6 models use SSPs, which are
more realistic representations of future world46,47. There are 5 SSP sce-
narios and among them SSP126 and SSP245 denotes a greener world in
future whereas SSP 370 and SSP 585 has a higher radiative forcing in
future11. In this study, SSP 370 situation has been considered as this sig-
nifies a forcing level familiar to several unmitigated SSP baselines48 and
this corresponds to a 7 w/m2 radiative forcing11 during the end of the
century. Furthermore, when we assessed the number of people impacted
by changes in runoff across different SSPs within our study area (Fig. 5A),
we found that the SSP370 scenario projects thehighest population growth.
Panel A of the figure highlights the projected population49 in the study
areas under five Shared Socioeconomic Pathways (SSPs) for the years
2030, 2050, and 2100. Projections shows nearly 40% of the total popula-
tion will be living in the study areas under SSP3 scenario (‘Regional
Rivalry’) highlighting the urgency of understanding the potential impacts
of changing hydrological conditions under such a high-risk pathway.

The projections from MME mean from 21 CMIP6 model under SSP
370 indicate that at the end of the century, approximately 40% of the river
basins will experience a decreasing trend in their long-term mean runoff.
PanelBoffigure5depicts the runoffmean in these river basinsunder theSSP
370 scenario, with population density in, 2100 overlaid.Notably, basins such
as the Ganges, Brahmaputra, Irrawaddy, and Yukon are expected to show
the highest increasing trends, while the Amazon, Orinoco, Colorado, Nel-
son, Churchill, Volga, Orange, Murray and Danube basins are projected to
see a decreasing trend. Themajority of densely populated areas are expected
to coincide with regions showing an increasing trend in runoff. This
represents a different scenario from the past 40 years (1970-2010), during
which awidespreaddecline in runoff has beenobserved inmany river basins,
particularly in tropical regions of Africa and South Asia. However, it is
important to note that CMIP6 MME models have a tendency to over-
estimate runoff; historical analysis shows that 22outof 30 riverbasins tend to
exhibit runoff overestimation. This introduces substantial uncertainty in the
projected increasing trends for the majority of river basins, highlighting the
need for cautious interpretation and careful planning in the future.

Furthermore,wehave assessed thenumberofpeople thatwill be affected
by changes in runoff trends. A decreasing trend in runoff could lead to water
scarcity, impacting numerous people. According to population projections
for 2100 under the SSP3 scenario, approximately 5 billion people will live in
the 30major river basins. Among this, approximately 260million people will
still be affected by decreasing trends in runoff by 2100. This estimate was
derived from a 21-member model ensemble (MME). However, when we
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consider the 5-member ensembles of the best-performing and worst-
performingmodels (based on historical performance), we observe significant
differences in theprojected impacts.Thebest-performingmodels suggest that
9 out of 30 rivers will experience a decreasing trend, potentially affecting 850
million people. Conversely, the worst-performingmodels indicate that fewer
rivers will face decreasing runoff, impacting 250 million people. This dis-
crepancy highlights the need for careful consideration when interpreting

model outputs, as the choice of model can significantly influence projected
impacts. Moreover, given the tendency of CMIP6 MME models to over-
estimate runoff, the actual number of people impacted by decreasing runoff
trends could be even higher, underscoring the need for careful consideration
in future water resource management and planning.

Lastly, while much of our analysis focuses on the SSP3-7.0 scenario
which is chosen for its relevance to high-emissions and high-risk futures–it

Fig. 4 |Analysis of 25CMIP6models shows that advancements in physical science
processes, critical parameterizations for runoff, and finer resolution improve
runoff projections. A The bar chart shows the count of processes (sky blue) and
participiation in key MIPs (violet) included in each CMIP6 model. Models are
categorized by their spatial resolution, represented by colored dots-blue for 100 km,
green for 250 km, and orange for 500 km resolution. The chart highlights that
leading models typically incorporate a greater number of processes, participation in
key MIPs, and finer spatial resolutions. B The scatter plot highlights model

differences in process representation, parameterization strategies, and spatial
resolution. Leading models are distinguished by their participation in CMIP6-
endorsed MIPs focused on cloud feedback (CFMIP), land use (LUMIP), and land
surface snow and soil moisture (LS3MIP), which promoted improvements in rele-
vant physical parameterizations. A star preceding a model’s name denotes its pre-
sence in both the CMIP6 and CMIP5 phases. Models are arranged from highest-
performing (left) to lowest-performing (right).
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is important to consider a broader range of plausible climate pathways. To
explore the potential hydrologic benefits of mitigation, we conducted a
complementary analysis using the SSP1-2.6 scenario, which represents a
low-emissions future aligned with ambitious climate targets. The CMIP6
models included in this analysis are listed in Supplementary Table S1. Here,
Fig. S9 quantitatively compares runoff projections between these scenarios
across all 30 basins, revealing significant differences in both magnitude and
trend direction.Whilemean runoff values showmoderate differences (4.7%
higher on average under SSP3-7.0), the runoff trends exhibit striking con-
trasts - in 7 out of 30 basins, the scenarios predict opposite trend directions,

with most instances showing decreasing trends under SSP3-7.0 but
increasing trends under SSP1-2.6. Statistical analysis confirms that under
SSP1-2.6, the estimated population exposed to declining runoff by 2100
drops by approximately 41%, from 850 million to 500 million people. The
inter-model spread is alsonotably lower under SSP1-2.6 (standarddeviation
32% smaller on average), suggesting higher agreement among models for
this lower-forcing scenario. These quantitative differences underscore both
the potential hydrological benefits of emissions mitigation and the impor-
tance of explicitly characterizing scenario uncertainty when evaluating cli-
mate change impacts on water resources and associated adaptation needs.

Fig. 5 | End of century projections suggest that larger population will be at the
risk of water deficiency. 9 of the 30 largest watersheds globally, corresponding to
850 Million people by 2100 according to regional rivalry scenario (SSP3), show
decreasing runoff trends according to best performing models. However, historical
analysis of CMIP6 MME reveals that 22 of these basins tend to overestimate runoff,
indicating even more people could face reduced water availability. A Projected
population percentages in the study areas under five Shared Socioeconomic

Pathways (SSPs) for 2030, 2050, and 2100, with the highest population under SSP3.
B Changes in mean runoff from historical observations to future projections
(CMIP6MME from 21Models, SSP 370) and trends in river basins by 2100. Vertical
hatches indicate increasing runoff (> 0.0005 mm/day); diagonal hatches indicate
decreasing runoff (< 0 mm/day). Population density is color-coded, with densely
populated areas showing increasing runoff trends. Blue and red dots indicate
whether CMIP6 MME historically overestimated or underestimated runoff.
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Discussion
Over the past 40 years, runoff has been decreasing in many major river
basins worldwide, raising concerns about water availability for human
consumption, agriculture, and ecosystems. This decline is particularly pro-
nounced in tropical regions of Africa and South Asia, where population
growth and economic development place increasing pressure on freshwater
resources50,51. Research focused on tropical Africa has found decreasing
runoff trends in river basins between 1961-1990, with the most severe
reductions occurring in regions experiencing rapid land-use change52. Similar
patterns have been observed in tropical Asia, where studies have demon-
strated runoff decreases in major basins53,54. These hydrological changes
intersect with growing water stress, as research has found that nearly 80% of
the global population already faces high levels of threat to water security, with
hot spots concentrated in regions experiencing runoff declines55. Several
factors contribute to this trend, including deforestation, urbanization, and
the conversion of natural landscapes for agriculture. The role of land-use
change in exacerbating these trends is substantial; studies have estimated that
anthropogenic land cover transformations have altered runoff patterns56,57,
with deforestation in tropical watersheds increasing peak flows while redu-
cing dry-season baseflow58. Given these widespread changes, it is critical to
investigate the key drivers influencing runoff projections in Earth System
Models (ESMs) and assess how well the latest generation of climate models
from CMIP6 captures these complex hydrological dynamics.

Our findings highlight that CMIP6 models demonstrate improvements
in skill over CMIP5. However, despite their improved mean runoff repre-
sentation, CMIP6 models exhibit a higher spread in their projections, par-
ticularly in high-discharge river basins such as the Amazon, Congo, Ganges,
Brahmaputra, Orinoco, and Rio de la Plata. This increased spread suggests
that while advancements in process representation and parameterizations
have enhanced the models’ ability to capture complex hydroclimatic inter-
actions, they have also introduced more variability due to differing imple-
mentations across modeling groups. Consequently, CMIP6 models exhibit
greater uncertainty compared to CMIP5, highlighting the trade-off between
improved skill and increased variability in hydrologic projections. This higher
variability in runoff projections raises important questions about whether the
spread stems from underlying climate variability or model structural
uncertainties. For example, in African basins (Congo, Zambezi and Nile),
Conway et al. found that high interannual rainfall variability translates into
even greater amplification in river flow responses, with rainfall accounting for
approximately 60-80% of river flow variability52. Another study confirmed
that model uncertainty dominates total projected uncertainties for runoff,
with low-latitude regions of Africa showing the greatest uncertainty59. This
suggests that the observed hydrological spread in CMIP6 projections likely
stems from both enhanced climate forcing variability andmore diversemodel
structures, highlighting the ongoing challenge of balancing improved process
representation with reduced uncertainty in hydrologic projections.

In terms of uncertainty quantification,when comparing 25 CMIP6
models versus 11 CMIP5 models, we found that CMIP6 models generally
captured reference runoff in more river basins than CMIP5, despite their
higher variability. CMIP5models predominantly failed to capture reference
runoff in South American basins, while CMIP6 models struggled more in
higher latitudes of Asia and Europe. This spatial pattern suggests regional
differences in how model improvements have affected performance.
However, the variance in CMIP6 projections was consistently higher across
all basins, indicating a tradeoff between improvedmean representation and
increased uncertainty in future projections. This pattern shifted when we
restricted our analysis to a direct comparison of 11 models from each
generation. When we compared 11 models from both generations, the
CMIP5models outperformed CMIP6 in terms of skills for a larger number
of river basins. This finding is consistent with recent literature13,17, which
suggests that despite advancements in the CMIP6 models, they do not
always outperform CMIP5 models in all contexts, and in some cases, they
even performworse. Guo et al.13 evaluatedCMIP5 and CMIP6 runoff using
GRUN, ERA5, and other reference datasets, finding that CMIP5 models
sometimes demonstrate better performance in specific river basins.

Similarly,Wang et al.17 observed that for precipitation simulation - a critical
driver of runoff - CMIP5 models occasionally show superior performance
over CMIP6 in regional basins. Zhu et al.60 further confirmed this pattern
when analyzing terrestrial water storage anomalies, noting that increased
model complexity doesn’t necessarily translate to improved hydrological
representation across all regions. One possible explanation for this is the
incorporation of new cloud physics parameterizations in 8 out of the 11
CMIP6 models considered here. These parameterizations were introduced
to enhance the physical accuracy of the models, in terms of atmospheric
feedbacks. However, this modification is known to contribute to higher
climate sensitivity and projected warming61, which led the IPCC AR6 to
assign less weight to these models in warming projections62. It is plausible
that these parameterizations also impact hydrological variables, such as
precipitation, evaporation, and runoff, resulting in less consistency between
CMIP6 runoff projections and observed runoff patterns. In the remaining
14 CMIP6models, only 3 incorporated the cloud physics parameterization.
While these models without the updated parameterization exhibit slightly
higher uncertainty, they outperform the CMIP5 models in capturing
reference runoff. This suggests that while advancements in model physics
are essential, they do not uniformly improve model performance in all
contexts. A key caveat here is that the higher uncertainty inCMIP6 does not
necessarily imply lower accuracy, as it could reflect a more comprehensive
exploration of possible future scenarios. Further studies are needed to better
understand the implications of this parameterization on hydrological pro-
jections and to refine themodels to strike a balance between uncertainty and
accuracy in runoff predictions. Furthermore, to better understand the
specific impacts of cloud-related parameterizations on hydrologic out-
comes, future work could employ targeted sensitivity analyses or controlled
single-model experiments. Initiatives such as the Cloud Feedback Model
Intercomparison Project (CFMIP) and the Aerosols and Chemistry Model
Intercomparison Project (AerChemMIP) offer structured frameworks to
isolate and evaluate the effects of physical parameter changes. Controlled
experiments focusing on cloud physics schemes, similar to approaches
outlined by Zelinka et al.61, could help clarify how structural changes
influence hydrological projections, providing actionable pathways to
advance process representation while maintaining model credibility.

Additionally, we developed an aggregated ranking matrix to assess the
credibility of hydrologic projections among CMIP6 models. To enhance
robustness, we selected up to three initial conditions per model where
available and calculated the multi-initial condition ensemble mean to
mitigate the influence of any single realization. However, the model rank-
ings remain sensitive to initial condition choices, and some models lacked
sufficient ensemble members, limiting the statistical robustness of the
rankings. Given that three initial conditions are insufficient to fully capture
variability arising from internal climate dynamics, future analyses with a
larger number of initial conditions and broader model participation would
improve ranking reliability.

Despite these limitations, our results show that model rankings are
strongly influenced by structural differences, including parameterization
choices and resolution, rather than internal variability alone. Models that
incorporated a more comprehensive set of physical processes and critical
parameterizations (through participation in CMIP6 endorsed MIPs rele-
vant for runoff), generally performed better in simulating historical runoff.
Nevertheless, no single model consistently outperformed others across all
river basins, reinforcing the importance of using a multi-model ensemble
approach when evaluating future hydrologic changes.

While expanding ensemble sizes could, in principle, help reduce
sampling uncertainty, our findings suggest that CMIP6 already exhibits
substantial inter-model spread that is not fully resolved through ensemble
averaging alone. Therefore, rather than focusing solely on increasing
ensemble size, future modeling efforts should prioritize strategic ensemble
design-selecting structurally diverse models and incorporating
performance-based weighting methods-to minimize ensemble noise and
bias. Furthermore, advances in artificial intelligence (AI) and hybrid
modeling techniques, such as AI-assisted model tuning and ensemble
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filtering, offer promising pathways to improve ensemble credibility without
relying on brute-force increases in model counts. Integrating lessons from
these emerging approaches, could enhance both the robustness and effi-
ciency of future hydrologic projection frameworks.

Our study also provides insight into the broader impact of model
structural differences and emissions pathways on future projections. The
CMIP6 multi-model ensemble suggests that approximately 40% of the
world’s largest river basins may experience declining runoff by 2100,
potentially affecting up to 850 million people under the SSP3-7.0 scenario,
based on estimates from the best-performing models. However, compara-
tive analysis with SSP1-2.6 demonstrates that ambitious climate mitigation
could significantly reduce both the magnitude of hydrological impacts and
the associated uncertainty in projections. Notably, in several basins, the
scenarios predict opposite trend directions, emphasizing how different
emissions pathways can fundamentally alter projected hydrological trajec-
tories. While substantial discrepancies exist between the best- and worst-
performing models under both scenarios, these findings underscore both
the value of continued improvement in model process representation and
the potential benefits of lower-emissions pathways for global water security.

While our projection offers an important baseline for understanding
climate-related water risks, several limitations should be acknowledged.
First, these estimates are derived from a single emissions scenario (SSP3-
7.0) and are based on ensemble mean values, without representing the full
range of inter-model uncertainty. Second, although runoff is a key indicator
of surface water availability, it does not capture other essential components
of the hydrologic cycle-such as groundwater dynamics, storage changes,
and direct human interventions in water systems. Recent studies under-
score how these anthropogenic influences, particularly groundwater
depletion and land use change, can compound uncertainty and exacerbate
water scarcity beyond what is captured by runoff-based analyses alone63.
These considerations highlight the importance of interpreting population
exposure estimates with appropriate caution and emphasize the need for
robust model evaluation prior to applying ensemble projections to long-
term water planning. Future work should incorporate multiple emissions
pathways, explicitly quantify projection uncertainty using confidence
bounds or probabilistic methods, and integrate additional hydrologic
components to develop more comprehensive and policy-relevant assess-
ments of water security under climate change.

Finally, while our study provides valuable insights into the improve-
ments and limitations of CMIP6 models, it is important to acknowledge
certain limitations. First, our evaluation focused primarily on mean annual
runoff rather than extreme hydrologic events. Given the increasing fre-
quency of floods and droughts under climate change, future work should
examine whether CMIP6models also improve the simulation of hydrologic
extremes. Second, we observed notable differences between the two refer-
ence datasets (GRUN and ERA5), which highlights the need for future
studies to consider uncertainty stemming from observational datasets when
evaluatingmodel performance. A quantitative comparison revealed that the
mean absolute difference between GRUN and ERA5 is 0.33 mm/day across
all 30 river basins, with larger discrepancies in high-discharge tropical
basins (mean difference of 0.63 mm/day) compared to mid-latitude basins
(0.38 mm/day) and snow-dominated basins (0.16 mm/day). The Pearson
correlation coefficient between these datasets ranges from 0.13 to 0.88
across basins, indicating variable agreement in temporal patterns with some
systematic biases. The largest discrepancies occur in data-sparse regions
such as the Irrawaddy, Yangtze, and Ganges-Brahmaputra basins, where
GRUN’s machine learning approach may be less constrained by observa-
tional data. Previous studies have documented that ERA5-Land runoff
products tend to overestimate discharge volumes in many regions due to
positive bias in precipitation inputs36,64,65. Conversely, GRUN has been
shown to underestimate runoff in regions with sparse gauging networks,
particularly in tropical watersheds during high-flow seasons35,66. Third,
while this study focused exclusively on 30 of the world’s largest river basins
to accommodate the coarse spatial resolution of current ESMs, we
acknowledge that this scope limits the direct applicability of our findings to

regional and local water resource decision-making. Future research could
address this limitation by evaluating runoff projections in smaller basins
using higher-resolution regional climate models (RCMs) or statistically
downscaled CMIP products, where available. Addressing these limitations
will be crucial for further refining simulation and evaluation of hydrologic
projections and improving their applicability to water resource manage-
ment and climate adaptation efforts.

Furthermore, future work can be benefitted from incorporating addi-
tional benchmarking datasets to further constrain model evaluation uncer-
tainty. The LORA (Linear Optimal Runoff Aggregate) dataset optimally
combines multiple land surface model outputs and may offer improved
performance where GRUN and ERA5 show limitations67. For tropical basins
with sparse observation networks, the GSCD (Global Streamflow Char-
acteristics Dataset) provides complementary information derived directly
from gauge records68. Process-based VIC (Variable Infiltration Capacity)
global simulations with multiple meteorological forcings could help distin-
guish between forcing-related and model structural uncertainties69.

In conclusion, our study demonstrates that CMIP6models represent a
significant step forward in improving hydrologic projections, but they also
introduce greater variability that must be carefully considered in climate
impact assessments. The balance between improved skill and increased
uncertainty underscores the complexity of earth system modeling and the
need for continued refinements in process representation, parameterization
schemes, and uncertainty quantification methodologies. Future work
should include a detailed examination of these extremes to better inform
water resource management and climate adaptation strategies.

Methods
Dataset. Earth System Model Projections of Runoff data are collected
from CMIP6 and CMIP5 models as well as reference runoff at monthly
resolution. For the assessment of performance of CMIP6 models,
Experiment ID: Historical and SSP126 as well as SSP 370 (future pro-
jection) are selected. All available models with runoff projections ware
used in this study, discarding the models with missing data, and multiple
models from the same institutions are also not considered. For historical
projections, 25 CMIP6 models and 11 CMIP5 models are used, while for
future projections, 23 for SSP 126 and 21 for SSP370 CMIP6 models are
used in this study. InTable S1, the list ofmodels used for each case and the
name of their modelling group and resolutions are listed. All the CMIP6
models with historical experiment have data from 1850 to 2014 and
CMIP5models have data from 1850 to 2005. For future experiment, data
from 2015 to 2100 is available. Models provide runoffs in kg/m2s unit and
they are converted into mm/day unit for ease of calculation.

For reference surface runoff in historical timescale, this study con-
sidered two sources. One is reanalysis dataset and another one is recon-
struction based runoff. For reanalysis dataset, runoff datasets are extracted
from the European Union’s Earth Observation Program (ERA5)36. Reana-
lysis dataset is created from sparsely available observation data combined
with data from climate models or remote sensing. Reanalysis datasets are
gridded and the grid size (lat x lon) for ERA5 Runoff model is 1800 x 3600.
The dataset was gridded using optimal interpolation. Runoff from ERA5
climate reanalysis dataset was available from 1950 to 2021. Reanalysis
datasets are also available at the National Oceanic and Atmospheric
Administration (NOAA)70. However, the spatial resolution for NOAA
Runoff simulations are 94 x 192, and was very coarse in comparison to the
other reanalysis dataset. For these reasons, NOAA dataset was not con-
sidered in this study. For grid-based observations of monthly runoff data,
GRUN35 dataset has been used in this study, which is available from 1902 to
2014 with a grid size of 360 x 720. Preprocessing was performed for aligning
the coordinates of all models and datasets. To maintain corresponding time
frame, 1960-2005 was considered as the historical study period. For future
runoff projections, runoff data for the period of 2017-2100 was selected. The
spatial information of the rivers was extracted from the Global Runoff Data
Centre (GRDC). which can be downloaded from their website (https://www.
bafg.de/GRDC/EN/02_srvcs/22_gslrs/gislayers_node.html).
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Population data plays a vital role in estimating the impact of changes in
runoff in the river basins. Gridded global population (v4) data37 is used in
this study for the years 1970, 2010 and 2020. This dataset is available at 1 km
spatial resolution and the data are stored inWGS84, geographic coordinate
system. For future population projection in this study, gridded population
data was used from a recent study where, population was projected for 5
different SSP scenarios. The population projection was simulated based on
the WorldPop dataset and other related covariates using Random Forest
algorithm. This dataset is available at 1 km spatial resolution covering 248
countries for a 5-year temporal resolution starting from 2020 to 210049. We
used populationprojections for SSP3 scenario in 2020, 2030, 2050, 2070 and
2100. For GDP per capita and HDI data we have used, UNDP, Human
DevelopmentReport (2024) -withminor processing byOurWorld inData.
and World Bank (2023) - with minor processing by Our World in Data.

Model Performance Metrics. To assess the statistical significance of
differences in model performance between CMIP5 and CMIP6, we
employed theWilcoxon signed-rank test, a non-parametric alternative to
the paired t-test that does not assume normality of the data. The test was
applied to compare performance metrics such as the Kling-Gupta Effi-
ciency (KGE), calculated for eachmodel across 28 river basins using both
ERA5 and GRUN reference datasets. By evaluating the median differ-
ences in model skill across basins, the Wilcoxon test enabled a robust
assessment of whether CMIP6 models showed statistically significant
improvements over CMIP5.

Percent Bias (PBIAS) and Conditional Bias (CB) are widely used
metrics for evaluating climate variable estimates. These metrics provide
insight into the systematic deviation of model predictions from observed
data. PBIAS is particularly informative as it expresses the bias as a percen-
tage, allowing for a clear interpretation of the model’s tendency to over-
estimateorunderestimate theobservedvalues.A lowPBIAS is preferred, as it
indicatesminimal systematic error, while a high PBIAS suggests highmodel
bias, pointing to the model’s failure to accurately capture the true values.

PBIAS ¼ 100×

Pn
i¼1 xi � yi

� �

Pn
i¼1 xi

ð1Þ

Where, n = number of years, xi = reference runoff and yi = CMIP
Projections.

The Pearson’s Correlation Coefficient (CC) is widely used in climate
communities for comparison studies. A CC value of 1 denotes the perfect
correlation. The formula of CC is as follows:

CC ¼
P

xi � �x
� �

yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � �x
� �2 P

yi � �y
� �2

q ð2Þ

Where, CC = correlation coefficient, xi = reference runoff, yi = CMIP
Projections, �x =mean of the reference runoff values, �y =mean of the CMIP
Projections.

Nash Sutcliffe Efficiency (NSE) is a commonly used and potentially
dependable statistic for evaluating predictive skills of hydrologic variables71.
NSE value of 1 shows perfect similarity between observed and predicted
variable.AnNSEvalue close to0means that themeanof the observedvalues
is as good as predicted values. However, negative NSE values mean that the
average of the observed data is a better predictor than the simulated data.
The formula is shown below:

NSE ¼ 1�
Pt

t¼1 ðx � yÞ2�

Pt
t¼1 ðx � �xÞ2� ð3Þ

Where, NSE = Nash Sutcliffe Efficiency, x = reference runoff at time t, �x =
mean of the reference runoff, y = simulated runoff at time t.

NSE value gives an indication of MSE and correlation between
observed and predicted variables. But inmost cases,measure of variability is

also important to understand the efficiency of any variable projections. For
this reason,ModifiedKlingGuptaEfficiency is also estimated in this study as
it considered 3 components: correlation coefficient, bias ratio as well as
relative variability72. Similar to NSE, KGE value of 1 denote perfect simu-
lations. If KGE value is greater than −0.41 then the model simulations are
considered to be better than the mean of the observed values.

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR� 1Þ2 þ ðβ� 1Þ2 þ ðγ� 1Þ2
q

ð4Þ

R ¼ Covðx; yÞ
σxσy

ð5Þ

β ¼
μy
μx

ð6Þ

γ ¼
σy
μy
σx
μx

ð7Þ

Where, KGE = Kling Gupta Efficiency, R = correlation Coefficient, β = bias
ratio, γ = relative variability, x = observed runoff, y = simulated runoff,
Cov(x, y) = covariance of reference and simulated runoff, σy = standard
deviation of simulated runoff, μy =mean of simulated runoff, σx = standard
deviation of observed runoff, μx = mean of observed runoff.

Uncertainty. The uncertainties associated with runoff projections were
estimated by calculating the variance across multiple CMIP5 and CMIP6
model ensembles. For each river basin, we computed the mean annual
runoff for each model, grouped the results by year, and then calculated the
variance across all models to quantify uncertainty. In addition to variance,
we visualized the interquartile range (IQR) and median of the uncertainty
distributions for each river basin. This provided a comprehensive view of
the spread and central tendency of the model outputs, enabling a more
detailed understanding of runoff projection uncertainty. In addition to
estimating uncertainty through variance, we also assessed whether the
model ensembles could capture the reference runoff within the spread of
model outputs. For each river basin, we computed the minimum and
maximum runoff values across both CMIP5 and CMIP6model ensembles
and compared these ranges to reference runoff values. Specifically, we
evaluated whether the reference runoff fromGRUN and ERA5 datasets fell
within the range ofmodel predictions. This analysis enabled us to assess the
performance of each model ensemble in capturing observed runoff varia-
bility, providing further insight into model reliability for each river basin.

Aggregate ranking (AR) of models. For each river basin, all 25 models
are ranked for each of the four metrics from 1 (best performance) to 25
(least performance). For each model i, we compute the sum of the ranks
across all four metrics:

SRi ¼ RankPBias;i þ RankNSE;i þ RankKGE;i þ RankCC;i ð8Þ
The Aggregate Ranking (AR) for model i is defined as:

ARi ¼ SRiðGRUNÞ þ SRiðERA5Þ ð9Þ

where, SRi(GRUN) is Sum of rankings for model i across all four metrics
when compared against the GRUN dataset. SRi(ERA5) is Sum of rankings
formodel i across all fourmetricswhen compared against the ERA5dataset.

To obtain a global or overall score, we average the rankings across all
basins for each model:

AR ¼ 1
n

Xn

i¼1

ARi ð10Þ
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where,n: Number of basins considered in the evaluation andARi: Aggregate
Ranking for model i. This formulation allows for a comprehensive evalua-
tion of model performance across multiple metrics and datasets. By
aggregating the performance scores over different river basins and reference
datasets, we obtain a balancedmetric for comparingmodels within CMIP6.

Data availability
CMIP6 and CMIP5 models datasets are available at World Climate
Research Program Website hosted by Lawrence Berkeley National
Laboratory in the respective addresses (https://aims2.llnl.gov/search/cmip6/)
and (https://aims2.llnl.gov/search/cmip5/). ERA5 and GRUN runoff data
can be obtained from ECMWF Website (https://climate.copernicus.eu/
climate-reanalysis) and here (https://doi.org/10.6084/m9.figshare.9228176)
respectively. Global Runoff Data can be downloaded from (https://www.bafg.
de/GRDC/EN/02_srvcs/22_gslrs/gislayers_node.html). Global Population
Data is available at (https://sedac.ciesin.columbia.edu/). Future Projection of
Global Population Data dataset is available at (https://www.nature.com/
articles/s41597-022-01675-x#Sec9). Human Development Index (HDI) and
GDP per capita data are available at (https://ourworldindata.org/grapher/
human-development-index and https://ourworldindata.org/grapher/gdp-
per-capita-worldbank?time=2022) respectively.
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