Table 1 Summary of representative AI studies in lung cancer

From: Progress and challenges of artificial intelligence in lung cancer clinical translation

Reference

Year

Steps

Tasks

Number of cases

Data modality

Algorithm

Performance

Engelhard et al.20

2021

Prevention

Predict environment-associated risk of smoking craving

48

Environment images

CNN

AUC > 0.8

Senyurek et al.22

2020

Prevention

Smoking detection

40

Puff topography

CNN

F1-score 78%

Gould et al.28

2021

Screening

Predict lung cancer risk

196,102

Clinical and laboratory data

XGBoost

AUC 0.86

Lu et al.29

2020

Screening

Predict lung cancer risk

41,856

Medical records and chest X-ray

CNN

AUC 0.755

White et al.30

2017

Screening

Predict lung cancer risk

4,813,985

Web Search Logs

Statistical classifier

True-positive rate ranging from 3% to 57%; False-positive rates ranging from 0.00001 to 0.001

Ardila et al.33

2019

Screening

Malignancy risk estimation of lung nodules

6,716

Low-dose CT

CNN

AUC 0.944

Mikhael et al.34

2023

Screening

Malignancy risk estimation of lung nodules

15,000

Low-dose CT

CNN

AUC 0.86–0.94

Kirienko et al.46

2018

Diagnosis

Differentiation between primary and metastatic lung cancer

534

PET

Linear discriminant analysis (radiomics)

AUC 0.92

Wang et al.47

2023

Diagnosis

Diagnosis of malignant pleural effusion

918

CT

CNN

AUC 0.842

Perez-Johnston et al.49

2022

Diagnosis

Predict pathologic subtypes

219

CT

K-means clustering (radiomics)

N/A

Coudray et al.55

2018

Diagnosis

Subtype classification of NSCLC, driver mutation prediction

1,634

Whole-slide images

CNN

AUC 0.970

Rossi et al.51

2021

Diagnosis

EGFR mutation prediction

109

CT

Support-vector machine (radiomics)

AUC 0.850

Yamamoto et al.52

2014

Diagnosis

ALK mutation prediction

172

CT

Modified Random Forest (radiomics)

Accuracy 78.8%

Wu et al.60

2022

Diagnosis

PD-L1 expression assessment

173

Whole-slide images

CNN

Strong consistency between AI and pathologists (R = 0.9429–0.9458).

Chen et al.53

2023

Diagnosis

PD-L1 expression assessment

194

Contrast-enhanced CT

Linear Regression with FDR control; Elastic Net Regularization (radiomics)

AUC 0.70–0.72

Sun et al.54

2018

Diagnosis

CD8+ T cell assessment

135

CT

Elastic net regression (radiomics)

AUC 0.67

Park et al.61

2022

Diagnosis

Tumor-infiltrating lymphocytes assessment

923

Whole-slide images

Lunit SCOPE IO (self-developed analytical tool)

AUC 0.9715

Zhao et al.68

2018

Prognosis

Predict invasiveness

523

CT

CNN

AUC 0.880

Hosny et al.73

2018

Prognosis

Prognostic prediction

1,194

CT

CNN

AUC 0.70

Lu et al.74

2020

Prognosis

Prognostic prediction

1,057

Whole-slide images

CNN

AUC 0.63

Zhong et al.75

2022

Treatment

Predict lymph node metastasis

3,096

CT

CNN

AUC 0.82

Das et al.76

2023

Treatment

Interpretation of pulmonary function tests

24

Pulmonary function test

Self-developed AI software

Accuracy increased by 10.4%

Kadomatsu et al.79

2022

Treatment

Intraoperative air leak sites detection

110

Endoscopic images

CNN

sensitivity and specificity of 81.3% and 68.9%

Choi et al.81

2024

Treatment

Predict cardiac toxicity after radiotherapy

209

PET/CT

Tree-based Pipeline Optimization Tool (radiomics)

93% predictive accuracy

Dercle et al.84

2023

Treatment

Predict nivolumab response

758

CT

Random Forest (radiomics)

Sensitivity and specificity for predicting 3-month OS were 86% and 77.8%,

Saad et al.88

2023

Treatment

Predicting response to immune checkpoint inhibitors

976

CT

CNN

C-index 0.75

Arbour et al.102

2021

Monitoring

RECIST evaluation

453

Text reports

Fully Connected Deep Learning Model

AUC 0.9

Tran et al.103

2024

Monitoring

Identify patients with increased risk of relapse

85

CT and ctDNA

Cox regression model

AUROC 0.682