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Ageing and degeneration analysis using ageing-related
dynamic attention on lateral cephalometric radiographs
Zhiyong Zhang1,2,3,8, Ningtao Liu 4,5,8, Zhang Guo 6, Licheng Jiao4, Aaron Fenster5, Wenfan Jin7, Yuxiang Zhang2, Jie Chen2,
Chunxia Yan2✉ and Shuiping Gou4✉

With the increase of the ageing in the world’s population, the ageing and degeneration studies of physiological characteristics in
human skin, bones, and muscles become important topics. Research on the ageing of bones, especially the skull, are paid much
attention in recent years. In this study, a novel deep learning method representing the ageing-related dynamic attention (ARDA) is
proposed. The proposed method can quantitatively display the ageing salience of the bones and their change patterns with age on
lateral cephalometric radiographs images (LCR) images containing the craniofacial and cervical spine. An age estimation-based
deep learning model based on 14142 LCR images from 4 to 40 years old individuals is trained to extract ageing-related features,
and based on these features the ageing salience maps are generated by the Grad-CAM method. All ageing salience maps with the
same age are merged as an ARDA map corresponding to that age. Ageing salience maps show that ARDA is mainly concentrated in
three regions in LCR images: the teeth, craniofacial, and cervical spine regions. Furthermore, the dynamic distribution of ARDA at
different ages and instances in LCR images is quantitatively analyzed. The experimental results on 3014 cases show that ARDA can
accurately reflect the development and degeneration patterns in LCR images.
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INTRODUCTION
In the past few decades, the world’s population has been ageing
dramatically as countries have a rising life expectancy resulting
from improved healthcare. This trend emerged first in developed
countries but is now also common in developing countries. The
aged population is currently at its highest level in human history,
and according to the United Nations’world population ageing
report, the number of people over the age of 60 years in the world
will climb to 1.4 billion by 2030.
Population ageing does raise some formidable new challenges

in the cost of social security, health care, and the well-being of the
elderly1. The increase in the total number and the elderly
population proportion results in the decline in the proportion of
the social labor force and rising pension costs2. In addition,
population ageing is also a signal of the advent of a tidal wave of
chronic and non-communicable diseases such as cardiovascular
disease, cancer, diabetes, and chronic respiratory diseases, which
draws the attention of researchers and the government to
understand and cope with the ageing and degeneration of
humans from different perspectives.
Many methods have been applied to the research of human

ageing, such as genomics, where the expression levels of RNAs
were studied as a function of ageing to characterize age-associated
changes in skeletal muscle gene expression of healthy individuals3,
proteomics, where a proteomic ageing clock comprised of proteins
was proposed to predict the human age in the studies of human
proteomics ageing4, and clinical investigations, which focused on
how dietary and pharmacological interventions promote a healthy
lifespan by influencing energy intake and circadian rhythms5.

Compared with genomics, proteomics, and clinical investigation
approaches, radiomics methods have advantages in cost, dataset
scale, and convenience. There have been some radiomics studies
for human ageing, such as analyzing the correlation between
cervical spine alignment and ageing by manually measuring
geometric features6, and evaluating the 3D mandibular dental
changes using the registration of digital models7.
The above-mentioned studies have attempted to understand or

characterize the ageing of humans from different perspectives or
to explore the factors that cause and delay ageing.
Within these studies, it is easy to find that the ageing process of

the human body is highly correlated to age changes. At different
ages, there are obvious age-related changes in various tissues,
while ageing is also a direct manifestation of the increase of age.
In most age estimation tasks, the basis of age estimation comes
from the characteristics of ageing8–10, which inspires us to extract
ageing features by an age estimation task.
With the rapid growth of data scale and computing power,

deep learning methods have been widely used in healthcare.
Gialluisi et al. used a deep neural network to predict mortality and
hospitalization risk with multiple circulating biomarkers11. Lima
et al. used deep neural networks with electrocardiograms to
predict the age of patients and explored the correlation between
the difference between predicted and actual age and death12. In
many medical image analysis tasks, the convolutional neural
networks (CNNs) have achieved promising performances in recent
years, including classification13, detection14, segmentation15,16,
registration17, and general feature characterization18. Deep learn-
ing methods are also widely used for age estimation tasks because
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of the strong representational capabilities and performance far
exceeds that of handcrafted feature extraction methods. Deep
learning methods have been applied to age estimation in various
applications and imaging modalities. For example, specially
designed CNNs were used in the task of estimating age with
shoeprint images that commonly used in forensics19 and masked
3D keen MRI images20. X-ray images of hand-wrist bones and
teeth were also widely used in age estimation tasks with deep
learning models8,21.
The lateral cephalometric radiograph (LCR) image, which is one

of the most commonly used dental X-ray radiographs in dental
clinics, are selected as our research objects. The LCR image can
provide more clinical clues about ageing features since it contains
more regions such as craniofacial bones and the cervical spine
than intraoral periapical radiographs (IPR) images and dental
panoramic radiographs (DPR) images. As a result, an age
estimation deep learning model trained on a large scale LCR
image dataset was used as a promising method for characterizing
ageing-related features in LCR images.
Although it is still difficult to track the complete development

and ageing process of an individual due to the difficulty of
sampling and continuous tracking of a single individual, a large
number of study samples distributed across different ages can be
used to characterize the process of human development and
ageing. In addition, features based on a large number of samples
are more objective and general than those obtained from a single
individual. Therefore, a fully automated radiomics feature learning
method on LCR images is proposed to discover the radiomics
ageing representation and relationship between development/
ageing and age based on a large number of samples distributed
across consecutive ages.
In this study, ageing salience, the numerical form of ageing-

related attention, is used to characterize the degree of correlation
between regions in an image and ageing in an orderly manner,
which can be used to intuitively visualize the drastic degree of
ageing changing in LCR images. The general ageing attention
obtained from the feature extractor is named ageing-related
dynamic attention (ARDA), and the value of ARDA is the average
ageing salience as it represents developmental and ageing
patterns common to a large number of subjects. The proposed
method can show the distribution of average ageing salience and
ageing region and their dynamic changes in the LCR images.
In this study, an automatic human development and ageing

analysis methodology using deep learning on the LCR images is
proposed. Based on this methodology, the quantitative dynamic
distribution of ARDA on LCR images is demonstrated. Three ARDA
concentrated regions including the teeth, craniofacial, and cervical
spine regions are found by the distribution of ARDA. The proposed
method not only validates the findings of previous studies of
human ageing, but also demonstrates the change process of
ageing regions that are not discovered by traditional ageing
research methods. The performance of age estimation for adult
subjects is significantly improved by the proposed ARDA-
constrained model, and the ARDA-guided age estimation model
provides a new perspective and solution for research of clinical
degenerative diseases and forensic practice.

RESULTS
The LCR image
LCR images are the most commonly-used dental X-ray radio-
graphs in dental clinics. All the LCR images in this study were
acquired with a Cranex D digital X-ray unit (Soredex, Tuusula,
Finland) for diagnosis and therapeutic purposes. The exposure
parameters for the LCR images were 73 kV and 7mA, with an
exposure time of 11.7 s. All LCR images are standardized and

archived in the Digital Imaging and Communications in Medicine
(DICOM) format.
The LCR images contained craniofacial bones, teeth, and C1-C5

of the cervical spine, which can provide more information about
the development and ageing than IPR and DPR images. As shown
in Fig. 1a, we labeled several instances in LCR images according to
the anatomical structure to quantitatively analyze ageing salience.

Ageing representation using ARDA in LCR images
The quantified ARDA of each instance in LCR images is shown in
Fig. 1b. Only regions with average ageing salience larger than the
threshold were considered to be the ageing-significant regions.
Setting the ageing-significant region threshold can filter out the
ageing irrelevant regions and avoid the influence of instance size
in the quantitative analysis of ARDA. The thresholds of ageing-
significant region for each LCR image were set to the median, 75-
th and 90-th percentile of its corresponding average ageing
salience. For the ARDA at each age, the mean value of average
ageing salience in the ageing-significant region contained in each
instance was calculated as the quantified ARDA of the instance.
According to the quantified ARDA at the instance scale of ARDA,

all the instances in the LCR images are highly correlated to ageing
before the age of 9 years. When the threshold is increased, the
changing patterns of ARDA in the age dimension remained
unchanged, while the sphenoid and temporal bones show more
obvious ageing correlations in the instance dimension as the
distribution of ARDA is more concentrated in these two instances.
From the perspective of the dynamic changes with age, the ARDA
is significant but attenuates rapidly during the rapid development
period. After that, the average ageing salience increases and tends
to change slowly.
As shown in Fig. 1b, c, ARDA is distributed widely in all regions

of LCR images as evident during the growth and development
period, especially from 4 to 9 years old. After that, although ageing
salience and ageing regions grow steadily, they are concentrated
in several partial regions in the LCR image. This shows that the
development process of the human body is widely reflected in
various regions contained in LCR images, while ageing is mainly
concentrated in several local regions. In detail, the ageing salience
and the ageing region in the ARDA maps before the age of 10
years are greater than that after the age of 10 years, but both
decrease until the age of 12 years. The blank regions without any
tissue in the LCR images shrink with the development of the
tissue, resulting in these regions also showing high ageing
salience.
After the age of 12 years, the ARDA concentrates in the

zygomatic, maxilla, and mandibular bones steadily. The common
feature of these instances is that ARDA is evenly and extensively
distributed in them. They still show high ageing salience in the
quantitative average salience analysis, even if there is not
extremely salience spot in them. After the age of 20 years, the
eye socket and sphenoid bone also show ageing salience
occasionally. At later ages, both the area and the salience of the
ageing-significant region increase slowly.
From an instance point of view, before the age of 9 years, the

parietal, frontal, and maxilla bones show a strong ageing
correlation, which is consistent with the development stage of
the skull and maxilla. At the ages of 10 to 13, the zygomatic,
maxilla, and mandibular bones show high ageing salience,
suggesting that there are rapid developments and changes in
the craniofacial bones. Moreover, the regions with obvious
average ageing salience do not appear accidentally, but usually
expand or strengthen from an existing one, which suggests that
ageing is a slow and progressive process relative to develop-
mental processes, and it extends usually from one tissue to the
surrounding region. It is worth noting that there is a particularly
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conspicuous region above the external auditory canal, where the
ARDA is more visible than other regions in the LCR images.

Three ARDA concentrated regions: teeth, craniofacial and
cervical spine
As shown in Fig. 1c, the ageing regions in the ARDA map remain
consistent after the age of 12 years, which can be roughly
divided into three ARDA concentrated regions: the teeth,

craniofacial, and cervical spine as demonstrated in Fig. 6a. One
or two single regions of the three regions were used to train the
baseline network for age estimation. The age estimation
performances in Tables 1, 2, and Fig. 2, show that similar
performance can be achieved as long as one of the three
regions of the teeth, craniofacial, and cervical spine regions are
included when LCR images are used for age estimation in an
uncontrolled environment. The similar performance can relieve

Fig. 1 The ARDA of LCR images. The ARDA is generated from LCR images and a pre-trained deep learning ageing feature extractor.
a Instances in LCR images. The parietal and frontal instances are not labeled because the ARDA is barely distributed on them. b Illustration of
the quantitative distribution of ARDA on instances in LCR images. The three dimensions are age, instance and quantified ARDA. The contours
and position of each instance are shown in a. The quantified ARDA of each instance is the mean value of the average ageing salience of the
ageing-significant regions it contains. From the bottom to the top are the cases in which the threshold of ageing-significant region is set to
the median, 75-th percentile, and 90-th percentile of corresponding ARDA, respectively. In the dimension of instances, Cx V and Cx S represent
the x-th vertebral body and the x-th spinous processes of the cervical spine, respectively. c The ARDA map of LCR images. To visualize the
distribution of ARDA and ageing regions, we mapped the average ageing salience to a color ranging from blue to red. The closer the color of
the pixel in the ARDA map is to red, the larger the average ageing salience of the pixel. We display the LCR image of a randomly selected 28-
year-old subject overlaid with its corresponding ageing salience map to show the relative position between the ARDA map and the LCR
image. Source data are provided as a Source Data file.
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the requirement of age estimation for complete human tissues
in LCR images and provide a new perspective and the clinical
method, especially in the practice of forensic medicine. This
confirms that ARDA can represent well the distribution of real
ageing and development information on LCR images and shows
that the developmental and ageing information in the LCR
images is redundant. See the Supplementary Table 1 for the
pearson correlation coefficient and p-value between real ages
and the predicted ages.
In the comparison of overall age estimation performance, the

teeth region contains more development/ageing information than
the other two regions, while the craniofacial region contains the
least. Specifically, the performance of age estimation using the
teeth region is the best in the 4–25 age group, while the cervical
spine region performs best for the older subjects in the 26–40 age

group. In the 26–40 age group, the accuracy and stability of the
age estimation using the cervical spine region suggest the unique
importance of this region for ageing research of mature adult
subjects.

The dynamic distribution of ARDA in ARDA concentrated
regions
More detailed ARDA maps of the three ARDA concentrated
regions: the teeth, craniofacial, and cervical spine are shown in
Figs. 3, 4, and 5, respectively, and the quantitative analysis at the
instance scale of these regions is illustrated in Fig. 6b, c, d,
respectively. As demonstrated in both the ARDA maps and
quantitative analysis, the common feature of the ARDAs in the
three regions is that their distribution range and average ageing
salience continued to increase with age from 4 to 40 years, unlike

Table 2. Tabulated measurements results of the cumulative score-5 (CS-5) and mean cumulative score-5 (MCS-5) (%).

Metric Age 4–10 11–15 16–20 21–25 26–30 31–35 36–40 4–25 26–40 All

CS-5 BSL 98.01 99.74 99.15 98.90 92.00 86.21 58.70 99.18 86.31 97.68

AC 100.00 99.74 99.85 95.81 94.59 80.72 50.00 99.14 86.94 97.78

RTS 100.00 99.91 99.13 98.02 90.95 77.65 64.86 99.40 84.64 97.78

TR 99.49 100.00 99.13 98.02 90.95 66.28 54.05 99.37 80.48 97.28

CR 100.00 100.00 97.54 94.49 90.00 66.28 21.62 98.43 76.28 95.99

SR 99.23 99.91 97.97 96.04 93.33 70.93 63.89 98.66 84.34 97.08

TR+CR 100.00 99.65 98.84 97.57 90.95 72.29 43.75 99.14 81.85 97.21

TR+SR 100.00 100.00 99.42 97.80 90.95 69.41 43.24 99.48 80.12 97.35

CR+SR 99.49 100.00 98.55 96.70 93.33 66.28 59.46 98.99 82.58 97.18

MCS-5 BSL 88.02 88.92 81.89 74.76 62.37 54.21 30.43 84.57 56.28 81.25

AC 83.07 84.65 77.70 70.64 62.24 46.59 20.31 80.26 54.40 77.37

RTS 87.02 88.13 81.42 70.70 57.86 48.82 31.98 83.30 52.66 79.92

TR 88.04 86.89 78.37 72.72 58.02 36.82 25.68 82.48 48.95 78.77

CR 85.37 85.56 75.10 65.05 54.37 34.88 14.41 79.37 44.89 75.56

SR 84.52 86.89 76.21 68.14 62.38 42.44 36.57 80.62 54.42 77.74

TR+CR 89.45 87.82 77.44 69.50 57.32 43.78 22.40 82.27 50.64 78.73

TR+SR 89.86 87.84 79.15 69.90 56.19 35.69 29.28 82.87 47.94 79.02

CR+SR 84.94 86.84 76.79 70.12 59.76 37.98 32.88 81.15 51.15 77.83

The best CS-5 and MCS-5 in each age group are bolded.
BSL baseline model, AC ARDA-constrained, RTS retest, TR teeth region, CR craniofacial region, SR cervical spine region.

Table 1. Tabulated measurements results of the mean of absolute error (MAE) ± standard deviation of the absolute error (SD) (years).

Age 4–10 11–15 16–20 21–25 26–30 31–35 36–40 4–25 26–40 ALL

BSL 0.88 ± 1.92 0.73 ± 0.76 1.11 ± 1.09 1.55 ± 1.31 2.72 ± 3.54 3.54 ± 4.27 8.10 ± 8.89 1.00 ± 1.22 3.61 ± 5.06 1.30 ± 2.24

AC 1.06 ± 0.85 0.95 ± 0.89 1.35 ± 1.05 1.80 ± 1.52 2.35 ± 1.78 3.52 ± 2.65 7.00 ± 5.44 1.21 ± 1.10 3.08 ± 2.90 1.42 ± 1.54

RTS 0.80 ± 0.68 0.75 ± 0.62 1.14 ± 1.02 1.60 ± 1.26 2.44 ± 1.90 4.71 ± 3.63 7.20 ± 4.30 1.00 ± 0.93 3.55 ± 3.22 1.28 ± 1.59

TR 0.76 ± 0.76 0.83 ± 0.72 1.32 ± 1.20 1.67 ± 1.46 2.66 ± 2.13 4.50 ± 3.50 6.06 ± 4.44 1.09 ± 1.08 3.51 ± 3.10 1.35 ± 1.63

CR 0.89 ± 0.78 0.91 ± 0.73 1.53 ± 1.36 2.15 ± 1.73 2.86 ± 2.01 4.85 ± 3.77 8.16 ± 4.67 1.28 ± 1.23 3.96 ± 3.40 1.57 ± 1.83

SR 0.96 ± 0.93 0.83 ± 0.72 1.48 ± 1.42 1.91 ± 1.55 2.36 ± 2.03 4.06 ± 3.52 5.43 ± 4.71 1.20 ± 1.20 3.14 ± 3.06 1.41 ± 1.64

TR+CR 0.71 ± 0.68 0.79 ± 0.83 1.37 ± 1.21 1.83 ± 1.42 2.61 ± 1.90 3.93 ± 3.17 6.82 ± 5.45 1.10 ± 1.12 3.34 ± 3.05 1.35 ± 1.63

TR+SR 0.68 ± 0.64 0.76 ± 0.62 1.28 ± 1.06 1.86 ± 1.51 2.76 ± 2.14 4.70 ± 3.63 5.78 ± 4.62 1.07 ± 1.04 3.59 ± 3.15 1.34 ± 1.64

CR+SR 0.93 ± 0.89 0.84 ± 0.68 1.43 ± 1.32 1.83 ± 1.55 2.49 ± 1.99 4.80 ± 3.96 5.54 ± 4.49 1.17 ± 1.15 3.43 ± 3.21 1.42 ± 1.68

The constraint of ARDA can improve the stability of age estimation dramatically, especially in the subject of older populations, while it reduces the precision in
the subjects of younger populations. The retest mechanism can maintain the benefits of ARDA constraint for age estimation and offset its adverse effect. The
impact on age estimation is limited for any single ARDA concentrated region being selected or discarded. The teeth and the craniofacial regions have the most
and the least information on development/ageing, respectively. The best performance in each age group is bolded.
BSL baseline model, AC ARDA-constrained, RTS retest, TR teeth region, CR craniofacial region, SR cervical spine region.
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the pattern of its distribution in the LCR images. However, similar
to the distribution of ARDA in LCR images, the most obvious
ageing regions (i.e., the red or dark red regions in the ARDA map)
in these regions change steadily with age.
In the teeth region, as shown in Fig. 6b, the mandibular and

maxilla are the main instances showing ageing salience, which
can be reflected in the ARDA map in Fig. 3 where the upper
teeth and lower teeth are the main regions of the ARDA
distributions. In addition, the ARDA in the lower teeth region is

much more obvious than the upper teeth at age ranges from 4
to 40 years except for the ages before 10 years and after
37 years.
In the craniofacial region, the difference in the quantified ARDA

of each instance is not obvious, while the quantified ARDA of the
eye socket and maxilla bone is slightly greater than that of other
instances. The ARDA map of the craniofacial region in Fig. 4 shows
that the growth of the average ageing salience is flat, and there
are two most obvious ageing regions in the temporal bone. In

Fig. 3 The ARDA map of the teeth region from the ages of 4 to 40 years. The central panel displays the teeth region of a randomly selected
28-year-old subject overlaid with its corresponding ageing salience map to show the relative position between the ARDA map and the teeth
region of the LCR image. Source data are provided as a Source Data file.
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Fig. 5 The ARDA map of the cervical spine region from the ages of 4 to 40 years old. The central panel displays the cervical spine region of
a randomly selected 28-year-old subject overlaid with its corresponding ageing salience map to show the relative position between the ARDA
map and the cervical spine region of the LCR image. Source data are provided as a Source Data file.

Fig. 4 The ARDA map of the craniofacial region from 4 to 40 years old. The central panel displays the craniofacial region of a randomly
selected 28-year-old subject overlaid with its corresponding ageing salience map to show the relative position between the ARDA map and
the craniofacial region of the LCR image. Source data are provided as a Source Data file.
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addition, the two regions that always show ARDA are the frontal
bone and the eye socket.
In the cervical spine region, as shown in Fig. 6d, the average

ageing salience of C2 is obviously higher than that of other
instances before the age of 25 years. After that, ARDA starts to be
evenly distributed across instances. In the age range of 4 to 40
years, the quantified ARDA of the vertebral bodies is higher than
that of the spinous processes, which indicates that the ARDA is
widely distributed in the vertebral bodies.
Furthermore, the effects of increasing the threshold of the

ageing-significant region on the quantitative ARDA in the teeth
region and craniofacial region mainly appear in the sphenoid,
temporal, and mandibular bones in the instance dimension, while
the effect on the pattern of change in the age dimension is not
significant. In the case of the cervical spine region, the pattern of
the quantified ARDA changes moderately with age, while the
increase in the threshold causes fluctuations.

In summary, the distribution of ARDA is basically the same as
the ageing region proposed by existing studies22–26, and there are
several regions with obvious average ageing salience are worthy
of being verified by subsequent studies such as the upper and
lower posterior teeth, maxillary tuberosity in Fig. 3, the frontal
bone and eye socket of in Fig. 4, and the spinous processes of
C2–C5 in Fig. 5.

DISCUSSION
In this study, we propose a human development and ageing
characterizing method using a deep learning model as feature
extractor. The proposed method reveals the distribution of ARDA
in LCR images and dynamic changes in time (ages from 4 to 40
years old) and space (instances in LCR image). Our results
demonstrate that the ARDA changes dynamically with age and
show the changing patterns of ARDA. The age estimation
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with the upper left corner of the LCR images as the origin, the positive direction of the x axis to the right, and the positive direction of the y
axis to the down. b, c, d are the quantified ARDA of each instance of the teeth, craniofacial, and cervical spine regions, respectively. In
b, c, d the three surface plots from bottom to top are the cases in which the ageing-significant region threshold is set to the median, 75-th,
and 90-th percentile of average ageing salience, respectively. Source data are provided as a Source Data file.
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experiments show that ARDA and age information are distributed
mainly in three independent regions. As well, the performance
and stability of age estimation were improved by the
proposed ARDA.
The proposed method can accurately describe the ageing

salience and dynamics of the human craniofacial and cervical
spine with advantages over previous studies in terms of
objectivity, dynamics, and efficiency.
The age estimation method with ARDA constraint was designed

in this study. The constraint of ARDA can significantly improve the
stability of the model for age estimation, which reduces the
overall standard deviation (SD) of the mean absolute error (MAE)
from 2.24 to 1.54 years (31.25% reduction). The SD of the absolute
error in the age estimation for the 26–40 age group decreased
from 5.06 to 2.90 years (42.69% reduction), which shows that the
proposed ARDA can improve the stability for the older sub-
jects’age estimation. In addition, the age estimation accuracy for
subjects of 26–40 years is also improved by ARDA, in which the
MAE decreased from 3.61 to 3.08 years (14.68% reduction). The
age estimation error of younger subjects increased slightly by
the ADRA constraint, compared to the baseline model. Therefore,
the proposed retest method combines the advantages of age
estimation with ARDA constraint and age estimation without
ARDA constraint and obtains the smallest MAE under the premise
of improving stability. In practice, the retest method described in
Section should be a feasible solution. The performance of age
estimation experiments with incomplete images demonstrates the
redundancy of age information in the completed LCR images,
which can provide new perspectives and workflows for age
estimation and forensic practice.
Craniofacial development is a complex and irreversible process,

involving age-related changes in bone and soft tissue. The
developmental process that can be quantified allows researchers
to have a clearer picture of the development of craniofacial bones
and teeth. Previous related ageing and developmental studies
attempted to characterize ageing changes in tissues from the
perspective of geometric measurements, which include measuring
changes in head circumference27 and skull volume28, and
measuring sutural growth displacement of the maxilla29, etc. The
ageing-significant regions revealed by the proposed ARDA map
corresponding developmental period are basically consistent with
the developing regions of craniofacial and teeth proven in
previous related ageing studies.

At the age of 0 to 7 years, the skull is in the most intense period
of growth. Generally, the skull volume of a child can exceed 90%
of that of an adult by the age of 7 years, while the growth after the
age of 10 years is minimal27,28,30. As shown in Fig. 7a, the cranial
region in the ARDA map between the age of 4 to 7 years shows
significant ageing salience, which disappears in the ARDA map
after the age of 10 years. The change in ageing salience is highly
consistent with the findings of the previous studies.
The growth of maxillary length is mainly through bone

deposition with the palatal suture and the maxillary tuberosity
and peaks at the age of 11 years29,31. The growth center is at the
posterior margin of the maxilla32 indicated by the arrow in Fig. 7a,
which shows strong salience, while the salience in this region
disappears consistently after the age of 11 years.
The temporary teeth dentition fully erupts at the age of 2.5

years, and the permanent tooth germs develop before the age of 6
years, after which, the temporary teeth are replaced during the
period from 6 to 14 years of age. Therefore, the ageing salience of
the upper and lower teeth region at this period is associated with
the eruption and replacement of teeth. The wear of teeth appears
after the teeth fully erupt, so the ageing salience in this region after
the age of 15 years is related to tooth wear. As shown in Fig. 7b,
the ageing salience in the upper and lower dentitions regions
gradually increases but is not the most significant after the age of
15 years, while in Fig. 7c the ageing salience is significant. The
difference in ageing salience between the same region on
complete and incomplete LCR images is caused by that the ARDA
represents ageing salience in a relative or ordinal manner. The
ageing salience of a given region is not only related to the absolute
degree of its ageing change but also depends on its relative rate of
change in the image.
In summary, the average ageing salience shown in the ARDA

maps and the quantified ARDA can also be well explained by
findings from studies related to craniomaxillofacial.
In addition, the ageing-significant regions of the teeth and

maxillary sinus ageing shown in the ARDA map during ageing
period are also consistent with the findings of related studies on
tooth wear22,23 and maxillary sinus ageing24–26. Researchers have
conducted in-depth research on the ageing changes of the eye
socket33,34, in which the eye sockets are proven to increase with
age. In the cervical spine region, research shows that structural
changes of the cervical spine begin in middle age, but sometimes
earlier35. Intervertebral disc degeneration begins at adolescence,

a b c

Fig. 7 Examples of regions in ARDA map showing ageing salience that can be cross validated with existing research. a The LCR image and
corresponding ageing salience map of a 7-year-old subject, which represents the ARDA distribution on LCR image in the period from 4 to 7
years of age. The arrows from top to bottom point to the cranial region, and posterior margin of the maxilla, respectively. b The LCR image
and corresponding ageing salience map of an 18-year-old subject, which represents the ARDA distribution on LCR image in the period from 8
to 18 years of age. The arrow points to the upper and lower dentition. c Tooth region of LCR image and corresponding ageing salience map of
a 18-year-old sample, which represents the ARDA distribution on the teeth region of LCR image in the period from 8 to 18 years of age. The
arrow points to the upper and lower dentitions.
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and as it progresses, it can also lead to morphological alterations
of the vertebral bodies, while the cervical lordosis increased with
age36.
Although few related studies that can validate our method in

ageing period, our method is widely validated by the existing
research during the growth and development period. Therefore,
we can reasonably speculate that our proposed ARDA is still
reliable during ageing and that the unidentified significant regions
of ageing/development revealed by our method are also reason-
ably valuable for follow-up studies.
Current research tends to estimate the age based on ageing

changes in the bones. But there are few studies on ageing itself
and its salience as well as regional dynamic changes with age. The
feasibility of our method in representing the development and
ageing of the craniofacial and cervical spine provides a new
perspective and ageing metrics for ageing research.
Our method can capture the distribution of developmental/

ageing quantitative salience on LCR images of healthy individuals
aged 4 to 40 years. The analysis in time (age) and space (instance)
dimensions shows that the ageing salience exhibits regularity,
which is general, objective, and credible based on a large-scale
subject set. Therefore, the regularity of ARDA distribution in
different ages and different instances proposed in this study can
be initially used as a clinical quantitative auxiliary index to detect
whether there is abnormal ageing/development in a subject.
As shown in Fig. 8, which demonstrates the distribution of our

proposed ARDA across instances and ages for all 3014 subjects in
the testing set. The distribution of quantified ARDA is narrower for
each instance, especially when the age is greater than 10 years,
which suggests that the ARDA has the potential as a standard
indication of ageing and development. Assuming that the
distribution of the ARDA follows a normal distribution, the
highlighted point in Fig. 8 indicates that for a healthy subject of
20 years old, the probability that the quantified ARDA
of mandibular bone generated by our method is in the range of
0.059 to 0.119 is 95.45%. The distribution range of ARDA width
decreases with the increase of the threshold of the ageing-
significant region. In this sense, we suggest that the ARDA has
potential as a standard indication of ageing and development.

It should be noted that the feasibility of ARDA as a quantitative
ageing/developmental indicator still needs further validation, such as
the inclusion of gender factors, a wider range of ages, and a larger
data dataset, which will be the focus of our future studies. The index
can only be used as a computer-aided diagnosis but is not a viable
substitute for fully automated diagnosis by physicians due to the size
and age range limitations of the current dataset and the lack of cross-
validation in subsequent ageing and developmental studies.
In addition to validating the findings of existing studies, our

model also finds a few ageing-significant regions that have not
been validated by previous studies. For example, the circumfer-
ential (before the age of 10 years) and punctate (after the age of
10 years) regions above the external auditory canal, are also
shown correspondingly in the ARDA map of the craniofacial
region. However, tissues in LCR images are overlapping, and ARDA
on 2D scale cannot accurately represent the ageing salience of
tissues in 3D space. Feature work on age-related changes in this
area will be carried out on 3D images to eliminate the limitation of
tissue overlap on 2D X-ray images.
Physiological changes in the human can be roughly divided into

two stages, development and ageing. The developmental and
ageing forms of face can reflect the differences between these two
stages37. The age range from 4 to 40 years chosen in this study could
basically cover the development and ageing periods. Children under
the age of 4 years are rarely examined with lateral radiographs, and
X-ray examination cannot be performed on research subjects for
research purposes due to medical ethical reasons. Thus, we chose the
age of 4 years as the lower limit of our study age range. In the related
research on age estimation using traditional manual feature
extraction methods and deep learning8,38, the performance of age
estimation decreases with the age of the subjects during the ageing
period, which is also a challenge for related studies39. In the study of
age estimation using orthopantomogram images and 3D facial
images related to LCR images, the estimated age performance is
significantly worse after the age of 40 years8,40. In addition, the
number of orthodontic patients in northwestern China decreased
rapidly from the age of about 15 years as shown in Table 3, which
also results in poor performance of age estimation and theinability to
obtain accurate and generalized ageing characteristics. Therefore, the
age of 40 years was set as the upper age limit for this study.
Limited by the data we collected, our study covers a partial

ageing period of people aged from 4 to 40 years. However, based
on the verifiability of the ageing and its changing patterns in the
LCR images represented by the proposed ARDA, especially the
consistency with the findings of existing studies during
the development period, future work will extend the ARDA to
the whole life span of humans and more anatomical features in
application scenarios where the scale of the training data allows.
Another limitation of our proposed ARDA is that it characterizes

ageing salience in a relative manner, i.e., highlighting the most
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Fig. 8 The distribution of ARDA across instances and ages. The
threshold of the ageing-significant region is set to the 75-th
percentile. For each instance, the points on the line and the interval
indicate the mean of the ageing salience and the interval of
mean ± standard deviation of the ageing salience, respectively. A
point in the instance of mandibular bone is selected as the example.
This point shows that the mean and standard deviation of the
ageing salience of 3018 subjects are 0.089 and 0.015 for mandibular
bone at the age of 20 years, respectively.

Table 3. The age distribution of the LCR images.

Dataset Gender

Age Total Train Val Test Male Female

4–10 2599 1822 393 384 1264 1335

11–15 7652 5354 1148 1150 3072 4580

16–20 4591 3211 690 690 1713 2878

21–15 3044 2137 454 453 815 2229

26–30 1452 1020 210 222 297 1155

31–35 577 408 86 83 102 475

36–40 259 190 37 32 39 220

All 20,174 14,142 3018 3014 7302 12,872
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ageing-significant regions in LCR images and cannot be used to
establish an accurate mapping relationship with physical quan-
tities such as area, rate of tissue change, etc. Correlating ARDA
with physical quantities of ageing changes and extending it as an
index for aided diagnosis of ageing abnormalities is also a feasible
direction for future work.

METHODS
In this study, an ageing and degeneration analysis method using
ARDA on LCR images is proposed. The overview of the proposed
method is shown in Fig. 10. The method mainly consists of four
modules: (1) a pre-trained deep learning model for ageing feature
extraction, (2) ARDA generation, (3) acquisition of three ARDA
concentrated regions, and (4) quantitative analysis of ageing and
degeneration distribution. Among them, the ageing features
extracted by the pre-trained age estimation model are used to
generate ageing salience maps and obtain the ARDA map. Three
ARDA concentrated regions of the LCR image are divided based
on the ARDA distributions. Finally, the ARDA of both the LRC
image and the ARDA concentrated regions are quantitatively
analyzed at the pixel and the instance scales.

Ethics statement
This study is approved by the Affiliated Stomatological Hospital of
Xi’an Jiaotong University Health Science Center (Approval number:
xjkqll[2022]NO.30). The study was non-interventional and retro-
spective, all participants in the study signed the written informed
consent, and the LCR images used in this data were anonymized.
A sampled and desensitized example dataset was shared in source
code repository.

Study population
We obtained LCR images from the Stomatological Hospital of Xi’an
Jiaotong University Health Science Center, China. The bit depth of
the images in the dataset is 16 bpp, and the size of most images is
2144 × 2304.
The age of the subjects was calculated by subtracting the

imaging date from the date of birth and dividing by 365.25 (due to
leap years) and rounding to the nearest hundredth. 20174 LCR
images were divided into 7 age groups according to age after
screening the unqualified images shown in Fig. 9. The age and
gender distribution of the subjects are shown in Table 3. The size
distribution of the LCR images is shown in Table 4.
The proposed ARDA is robust to low quality images since it is

based on the block-scale, high-dimensional, and abstract features
of the images, and it represents the ageing regions without

Fig. 9 Examples of some typical unqualified images. a The actual age of the subject is less than 4 years or greater than 40 years.
b Incomplete LCR image. c Subject with restorations in the teeth. d Incorrect imaging posture.

Z. Zhang et al.

10

npj Digital Medicine (2022)   151 Published in partnership with Seoul National University Bundang Hospital



emphasizing pixel-scale precision. The manifestation of ARDA is
the representation of the difference between the center of the
ageing region from the surrounding region. Therefore, the impact
on the accuracy of ARDA of the possible low quality image with
blurring, low resolution, and noise is limited.

Ageing feature extraction
In this study, the ageing features of LCR images were extracted by
a pre-trained CNN for age estimation. When the CNN was trained
to estimate age, the smaller the error, the more accurately the
ageing characteristics in the LCR image can be extracted. For the
age estimation tasks using large LCR images (larger than
1500 × 2000), the balance of performance and computing
resource requirements needs to be considered.
EfficientNet-B0 can achieve the best result with the fewest

parameters compared with other CNNs, so it was used as the
baseline age estimation model and ageing feature extractor. The
performance comparison for age estimation and the number of
parameters from the CNN models that perform well on natural
images is shown in Table 5. These models were trained using a
tiny version of the training set for quick comparison.
Efficient-B0 was trained for age estimation on the training set, in

which the pre-processing process of the LCR images included
contrast enhancement, shape fixing, and resizing. In addition,
random affine transformation and random horizontal flip were
also used for data augmentation.
The main block of Efficient-B0 is a mobile inverted bottleneck

(MBConv)41,42, to which the squeeze-and-excitation optimization43

was also added. The structure of Efficient-B0 is shown in Table 6.
See the Supplementary Note 1 for a detailed description of the
EfficientNet model structure.
The loss function for ageing feature extractor was set as L1 loss:

L ¼ 1
N

XN

n¼1

jy0n � ynj (1)

where N is the number of samples, yn and y0n are the age and
predicted age of n-th LCR image.
The training strategy, image augmentation and preprocessing

for the training process are provided in the Supplementary Note 2
and Supplementary Note 3, respectively. The fitted regression
models on the true age and the age predicted by different age
estimation methods are show in Supplementary Figure 1. The p-
values of f-test and t-test between different age estimation
methods are shown in Supplementary Table 2 and Supplementary
Table 3, respectively.

ARDA generation
With the pursuit of the interpretability of deep learning methods,
some methods for gradient visualization of deep CNNs have been
proposed, including CAM44, Grad-CAM45, etc. The gradient
visualization method can be used not only to visualize the

salience region of the model, but also to represent the ageing-
related attention by the ageing feature extractor. The details of
the ARDA generation module are shown in Fig. 10. The global
average of the gradient of the feature map in the pre-trained
model is defined as its weight, and the weight of the k-th feature
map inputted into the fully connected layer is calculated by

wk ¼ 1
Z

X

i

X

j

∂ŷ

∂Fkij
(2)

where, Z is the number of pixels in feature map F, ŷ is the output
of network, and Fkij is the value of pixel (i, j) in the k-th feature map.
The ageing salience map M is obtained by calculating the
weighted sum of all the feature maps:

M ¼ ReLU
X

k

wkF
k

 !
(3)

The ARDA map of age a is generated by:

Aa ¼ 1
Na

XNa

n¼1

Ma;n (4)

where a ∈ {4, 5,…, 39, 40}, Na is the number of samples with age a
in the training set, Ma,n is the ageing salience map corresponding
to n-th LCR image of age a, and ∑ is element-wise summation.
Here, the ageing salience maps are generated by the pre-

trained age estimation network which can extract generic ageing
features from LCR images.
The ARDA is obtained by merging all ageing salience maps of

the same age. The general distribution of the ageing salience on
the LCR images can be displayed, while avoiding the effect of
abnormal samples. The ARDA generated for each age can show
the dynamic changes of ageing salience with age in LCR images.
Age-related changes are not significant in adults. Therefore, it is

difficult to estimate accurately adult age using only LCR images.
Here, we propose a method to apply salience maps as the
attention constraint of the neural network, which can make use of
the knowledge learned by the baseline model on all training data
to all input LCR images and enable the baseline model to focus
more on ageing-relevant elements.
In the training phase of the ARDA-constrained age estimation,

the LCR images older than the selected KA and their correspond-
ing salience maps are used as the input of the baseline model.
Otherwise, only the LCR images are used as the input. This
distinction is acceptable because age labels are available during
the training phase. However, in the testing phase, as the age
labels are not available, we applied a different strategy, i.e., if the
predicted age from the age estimation model is greater than KA,
we concatenate the LCR images and their corresponding ageing
salience map as the input of the network and estimate the age
again. The latter estimation result is regarded as the final
estimated age. Otherwise, the result of the first test is directly
used as the final estimated age. We call this method retest.

Acquisition of three ARDA concentrated regions
From forensic practice, we know that a complete LCR image is
sometimes difficult to obtain, and the ageing salience of the local
region in the LCR images can be achieved by analyzing the
distribution of ARDA on the LCR images. The distribution of ageing
salience on the LCR images represented by the ARDA is shown in
Fig. 1c. These ARDA concentrated regions are the teeth,
craniofacial and cervical spine regions. Under the guidance of
ARDA, each LCR image in our dataset is divided into three
overlapping parts with the same strategy, as the position of each
part in the LCR image is fixed. We mapped the ARDA to color,
ranging from blue to red, to visualize the distribution of ageing
salience and ageing regions, i.e., the closer the color of the pixel is
to red, the larger the ARDA of the pixel. An LCR image of an

Table 4. The size distribution of LCR images.

Width Height Number

1804 2136 5338

2136 2304 2050

2140 304 4000

2144 2304 7179

2148 2304 1524

Others 83

Sum 20174
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Table 5. Age estimation performance comparison of ageing feature extractors.

Model #Para Metric 4–10 11–15 16–20 21–25 26–30 31–35 36–40 All

Res18 12M E.Med −0.13 −0.48 −0.92 −1.07 0.18 1.80 5.26 −0.20

MAE 0.93 1.33 2.03 2.49 2.65 3.76 5.99 2.15

SD 0.76 1.27 1.70 1.90 2.05 3.84 4.77 2.37

IOR 1.15 1.23 2.31 2.9 2.38 4.56 6.32 2.23

Res34 22M E.Med −0.2 −0.08 −0.38 −0.35 −0.18 1.94 3.59 −0.10

MAE 0.92 1.18 1.64 2.34 2.28 2.89 5.65 1.86

SD 0.85 0.96 1.22 1.70 1.78 2.50 5.68 2.01

IOR 1.02 1.12 1.65 2.27 2.16 2.32 5.61 1.96

Res50 26M E.Med −0.31 −0.29 −0.92 −1.43 0.21 2.86 4.18 −0.20

MAE 0.99 1.36 2.15 2.72 2.76 4.04 5.37 2.24

SD 0.84 1.14 1.86 1.97 2.23 3.70 4.28 2.34

IOR 1.00 1.25 2.25 2.14 2.62 4.48 3.82 2.37

Res101 45M E.Med −0.20 −0.13 −0.85 −0.64 1.16 2.71 5.64 0.00

MAE 1.00 1.35 1.96 2.27 2.7 3.87 6.05 2.13

SD 0.89 1.33 1.56 1.89 2.03 3.34 4.37 2.32

IOR 1.01 1.23 2.31 2.62 2.31 4.42 5.03 2.24

SERes101 45M E.Med 0.62 0.33 1.58 0.75 −0.72 −4.78 −8.09 0.17

MAE 1.40 1.75 2.63 2.69 2.59 4.92 7.97 2.59

SD 1.47 1.83 2.09 2.10 2.14 3.24 5.63 2.65

IOR 1.38 1.88 2.74 3.14 3.17 4.75 7.2 2.82

Res152 60M E.Med −0.20 −0.13 −0.66 −1.05 0.31 2.29 5.21 −0.20

MAE 1.03 1.38 1.92 2.35 2.45 3.77 5.76 2.09

SD 1.00 1.17 1.72 1.80 1.56 3.84 4.32 2.31

IOR 1.14 1.35 2.08 2.56 2.39 3.59 5.25 2.22

Dens121 8M E.Med 0.33 0.26 −0.30 −0.53 0.62 2.54 5.47 0.31

MAE 1.02 1.39 2.00 2.06 3.05 3.82 5.72 2.15

SD 0.78 1.24 1.42 1.58 2.29 3.63 4.29 2.25

IOR 1.06 1.47 2.11 2.15 2.74 3.26 4.51 2.21

Dems161 29M E.Med −0.61 −0.30 −0.33 −0.58 1.57 4.28 7.39 0.06

MAE 1.02 1.15 1.85 2.37 2.71 4.91 7.94 2.27

SD 0.80 0.97 1.62 1.92 1.96 3.68 4.53 2.52

IOR 1.13 1.18 1.73 2.65 2.53 4.15 6.24 2.36

IncepV4 43M E.Med −0.27 −0.30 −0.75 −0.37 0.72 2.68 6.71 −0.50

MAE 0.80 1.16 1.82 2.42 2.50 3.53 6.62 2.02

SD 0.68 1.12 1.50 2.00 2.16 3.56 4.00 2.30

IOR 0.77 1.32 1.74 2.74 2.76 3.89 3.92 1.51

IncepRes 29M E.Med 0.22 0.02 0.32 1.14 −0.24 −2.36 −3.58 0.09

MAE 0.82 1.22 1.47 2.36 2.38 2.95 5.79 1.85

SD 0.72 1.16 1.14 1.64 1.85 2.44 6.01 2.07

IOR 0.74 1.06 1.62 2.47 2.5 2.54 6.48 1.97

DaNet 8M E.Med 1.54 3.72 3.21 −0.99 −5.82 −10.69 −15.39 0.19

MAE 3.33 4.44 4.03 3.27 6.16 10.16 15.54 5.11

SD 3.17 3.10 3.04 2.54 3.77 3.60 4.38 4.28

IOR 3.52 4.19 4.05 3.59 5.4 5.48 5.59 5.65

EffiB0 5M E.Med 0.07 0.23 0.17 0.48 -0.33 −0.76 −2.76 0.07

MAE 0.75 1.02 1.39 2.03 2.10 2.33 5.14 1.60

SD 0.68 0.79 1.09 1.76 1.74 2.65 5.62 1.95

IOR 0.68 0.73 1.12 1.55 2.28 3.34 6.26 1.15

All the error metrics are given in years. The best MAE in each age group is bolded.
#Para: the number of model parameters, MAE mean absolute error, SD the standard deviation of MAE, IOR the interquartile range of the absolute error.
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individual of the age of 28 years and its corresponding ageing
salience map are shown overlapping to show the relative position
relationship between the ARDA map and the LCR image in Figs. 3,
4, and 5.
Figure 6 a shows a specific LCR image with a width W and

height H, in which the upper left corner was set as the origin of
the coordinate system, the positive x-axis is in the down direction,
and the positive y-axis is in the right direction. Table 7 summarizes
the coordinate of the upper left corner and the lower right corner
of the three ARDA concentrated regions.

Each ARDA concentrated region of the LCR image is selected or
discarded as the input of the model for comparing the
performance of the age estimation and providing guidance for
forensic practice, The ARDA maps of each region are also
generated as the same way as we obtain the ARDA maps of the
complete LCR images.

Quantitative analysis of ageing and degeneration
In this study, the quantified analysis of ARDA is performed in the
time and space dimensions. In the time dimension, the patterns of
dynamic salience and region of ageing with age in LCR images are
analyzed. In the spatial dimension, the quantitative ageing
salience of LCR images is represented on the pixel scale and the
instance scale.
As shown in Fig. 1a, the size of the instances in the LCR images

varies greatly. To eliminate the effect of size differences on the
quantified ARDA analysis, we only calculate the mean ARDA of the
ageing-significant region within each instance. The quantified
ARDA generation of the instances is detailed in Supplementary
Note 4.
In this study, the ageing-significant region threshold is set to

the median value, the 75-th quantile and the 90-th quantile of the
average ageing salience corresponding to a specific age. In Fig. 6b,
c, d, the three surface plots from the bottom to top are the cases
in which the ageing-significant region threshold was set to the
median, 75-th and 90-th percentile of the average ageing salience,
respectively.

��

� �
��

��

� �
��

Fig. 10 Overview of the method used in this study. The method includes ageing feature extraction, ageing salience map generation and
ARDA generation, three ARDA concentrated regions acquisition and quantitative analysis of ageing distribution modules. The data flow of
ARDA-constrained age estimation is indicated by yellow lines, while the data flow of ARDA-guided age estimation is indicated by red lines.
The feature extractor and fully connected layer of the baseline model in the ARDA Map Generation Model are pre-trained.

Table 6. The structure of Efficient-B0.

Stage Operator Resolution #Channels #Layers

i F̂ i Ĥi ´ Ŵi Ĉi L̂i

1 Conv3 × 3 224 × 224 32 1

2 MBConv1,k3 × 3 112 × 112 16 1

3 MBConv6,k3 × 3 112 × 112 24 2

4 MBConv6,k5 × 5 56 × 56 24 2

5 MBConv6,k3 × 3 28 × 28 80 3

6 MBConv6,k5 × 5 14 × 14 112 3

7 MBConv6,k5 × 5 14 × 14 192 4

8 MBConv6,k3 × 3 7 × 7 320 1

9 Conv1 × 1 & Pooling & FC 7 × 7 1280 1
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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as a Source Data file.
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