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Large Language Models (LLMs) show promise in healthcare tasks but face challenges in complex
medical scenarios. We developed a Multi-Agent Conversation (MAC) framework for disease
diagnosis, inspired by clinical Multi-Disciplinary Team discussions. Using 302 rare disease cases, we
evaluated GPT-3.5, GPT-4, and MAC on medical knowledge and clinical reasoning. MAC
outperformed singlemodels in both primary and follow-up consultations, achieving higher accuracy in
diagnoses and suggested tests. Optimal performance was achieved with four doctor agents and a
supervisor agent, using GPT-4 as the base model. MAC demonstrated high consistency across
repeated runs. Further comparative analysis showedMACalsooutperformedothermethods including
Chain of Thoughts (CoT), Self-Refine, andSelf-Consistencywith higher performance andmore output
tokens. This framework significantly enhanced LLMs’ diagnostic capabilities, effectively bridging
theoretical knowledge and practical clinical application. Our findings highlight the potential of multi-
agent LLMs in healthcare and suggest further research into their clinical implementation.

Recent advancements in large language models (LLMs) have notably
enhanced their capabilities in the medical field, leading to increased
exploration of their potential applications1. Thesemodels are equippedwith
vast medical databases and advanced analytical algorithms, offer promising
solutions to these challenges2. These models have shown proficiency in
simple medical tasks such as answering medical knowledge queries and
diagnose common diseases, and warrant further research to test their
effectiveness in handling more practical and complex medical tasks3,4.
Among them, providing accurate diagnosis has always been an important
and practical medical need.

Diagnosis of rare diseases is among the most complex and challenging
diagnostic tasks. The prevalence of rare diseases ranges from 5 to 76 cases per
100,000 individuals5. The low prevalence of these diseases often results in a
scarcity of specialized knowledge,making accurate diagnosis difficult, thereby
delaying proper treatment6. Additionally, the complexity and variability of
symptoms can lead to frequent misdiagnoses or delayed diagnos7,8.

Although LLMs such as GPT-4 demonstrate substantial profi-
ciency in medical knowledge and some potential application, their
performance in complex real-world clinical scenarios such as disease
diagnosis remains questioned. A previous study has demonstrated
the limitations of LLMs in the diagnosis of complex cases2. Therefore,
an increasing number of studies are focusing on how to better
leverage LLMs’ own training data and inherent capabilities to
improve their performance in practical medical tasks9,10.

Multi-agent systems are one such attempt. In the context of a large
language model, an agent refers to a system capable of receiving input and
performing actions to achieve specific goals. For example, when interacting
with ChatGPT, the user is engaging with a single-agent model. The multi-
agent framework is an innovative approach where multiple digital agents
work together and execute tasks through interactions among themselves.
This technique significantly enhances the capabilities of LLMs formanaging
complex tasks, including solving mathematical problems and performing
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retrieval-augmented code generation11–14. The adoption of multi-agent
framework may facilitate dynamic and interactive diagnostic processes
through multi-agent conversation (MAC), where agents would discuss the
same question and finally reach consensus on the output. In this case,
different agents can simulate the collaborative nature of a medical team,
simulating aMulti-Disciplinary Team (MDT) discussion that is commonly
adopted in clinical practice to solve complexmedical tasks. By facilitating an
in-depth analysis that single-agent models may not achieve, they have the
potential to improve the performance of LLMs in the diagnosis of rare
diseases. Therefore, MAC may serve as a valuable tool that could help
doctors analyze patient information and provide useful second opinions.

This study aims to develop a multi agent conversation (MAC)
framework that can be used in clinical practice to perform diagnostic
tasks. This study also compares the knowledge base and diagnostic
capabilities of GPT-3.5, GPT-4, and the MAC.

Results
The study flow is shown in Fig. 1. The Multi-Agent Conversation Frame-
work was developed (Fig. 2) and was tested on curated clinical cases
simulating real-world clinical consultations (Fig. 3).

Study sample
This study included 302 kinds of rare disease from 33 different disease
categories.One tonine kinds of rare diseasewere randomly selected for each
category. Details of the sampled diseases and their corresponding clinical
case reports are provided in Supplementary Table 1.

Performance on disease specific knowledge
GPT-3.5, GPT-4, and MAC achieved an average score above 4 across all
testing aspects, including inappropriate/incorrect content, omission, like-
lihood of possible harm, extent of possible harm, and bias. The results of
disease-specific knowledge performance are shown in Fig. 4.

Performance of MAC on diagnostic ability
MAC significantly outperformed single-agent models GPT-3.5 and GPT-4
in terms of diagnostic accuracy and helpfulness of further recommended
test in both primary and follow-up consultation. Further analysis was per-
formed to investigate factors potentially influencing MAC's performance,
including changing base model, varying the number of doctor agents,
excluding the supervisor agent and assigning case-specific specialties to
doctor agents. Detailed results of GPT-3.5, GPT-4, and different subgroups
within the MAC framework are listed in Table 1, Supplementary Tables
2 and3 forprimary consultation, andTable 2, SupplementaryTables 4 and5
for follow-up consultation. The comparisons between MAC and single-
agent models are shown in Fig. 5 for primary consultation and in Fig. 6 for
follow-up consultation.

MAC utilizing either GPT-3.5 or GPT-4 as the base model sig-
nificantly outperformed their respective standalone versions. How-
ever, GPT-4 proved superior to GPT-3.5 when used as the base
model for MAC. In primary consultations with four doctor agents,
GPT-4 achieved higher accuracy for the most likely diagnosis
(34.11% vs 24.28%), possible diagnoses (48.12% vs 36.64%), and
helpfulness of further diagnostic tests (78.26% vs 77.37%). Similar
trends were observed in follow-up consultations, with GPT-4
showing approximately 10% improvement over GPT-3.5. The
results are shown in Tables 1, 2, and Fig. 7.

The study examined the effect of varying the number of doctor agents
(2 to 5) on the multi-agent framework’s performance. Using GPT-4 as the
base model, the Most Likely Diagnosis accuracy in primary consultations
was 31.31% for 2 agents, 32.45% for 3 agents, 34.11% for 4 agents, and
31.79% for 5 agents. In follow-up consultations, the accuracy was 51.99%,
53.31%, 53.86%, and 50.99% for 2, 3, 4, and 5 agents respectively. Similar
trends were observed for the Possible Diagnosis accuracy and Further
Diagnostic Tests Helpful Rate metrics. With GPT-3.5 as the base model, 4
doctor agents also produced optimal performance in primary consultations.

Fig. 1 | Process of disease selection and testing.The researchersfirst identified the rare disease database. Then, they performednormalizedweighted random sampling, from
which 302 cases were selected. Each case was curated into primary consultation setting and follow-up consultation setting. GPT-3.5, GPT-4, and MAC were tested.
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However, for follow-up consultations using GPT-3.5, configurations with 4
and 5 doctor agents were not feasible due to token output limitations. The
results are shown in Tables 1, 2, and Fig. 7.

The effect of excluding the supervisor agent from theMAC framework
was investigated. In primary consultations using GPT-4 as the base model,
the exclusion of the supervisor agent resulted in decreased accuracy for both
the most likely diagnosis (34.11% with supervisor vs. 32.67% without) and
possible diagnoses (48.12% vs. 45.47%). The accuracies for further diag-
nostic tests remained similar (78.26% vs. 78.04%). When using GPT-3.5 as
the base model, the exclusion of the supervisor had less impact on perfor-
mance. In follow-upconsultations, excluding the supervisor agent also led to
reduced performance for both the most likely diagnosis and possible
diagnoses.

The study investigated the impact of assigning case-specific specialties
to doctor agents on MAC performance. Using GPT-4, the four most rele-
vant specialties were identified for each case, and doctor agents were
instructed to assume these specialist roles. The results showed that the
assignment of specialties to doctor agents did not significantly improve
MAC’s performance compared to the standard configuration without
assigned specialties.

Reliability analysis
The MAC framework’s reliability was evaluated through three repeated
testing rounds across six settings. Results demonstrated minimal perfor-
mance variation across testing rounds. Fleiss’ kappa analysis showed
moderate agreement (>0.4) in 23 out of 28 evaluations, and fair agreement
(0.35–0.4) in the remainingfive.Detailed results are listed in Supplementary
Tables 6 and 7.

Error analysis
Errors in diagnoses were classified into four categories based on their
proximity to the correct diagnosis, while errors in recommended tests were
categorized into three levels based on their utility and appropriateness.
Detailed results are listed in Supplementary Table 8.

Cost analysis
A cost analysis of theMAC framework was conducted, revealing that when
using GPT-4 as the basemodel, the average cost per case was $0.12USD for
primary consultations and $0.17 USD for follow-up consultations Detailed
results are listed in Supplementary Table 9.

Generalizability of other LLM
GPT-4o-mini was tested to evaluate if the MAC framework could be
generalized to newly released LLM. MAC significantly improved
GPT-4O-mini’s diagnostic performance as well. The performance of
GPT-4O-mini is comparable to that of GPT-3.5-turbo but sig-
nificantly lower than that of GPT-4. The reliability of GPT-4o-mini
within the MAC framework was fair to moderate (ranging from 0.3
to 0.6). The detailed results are listed in Supplementary Tables
10 and 11.

Comparison with other methods to improve diagnostic
performance
The performance of MAC was compared with Chain of Thought (CoT)
prompting, Self-Consistency, and Self-Refine methods. The results indi-
cated that all methods showed improved accuracy for the most likely
diagnosis, possible diagnoses, and helpfulness of further diagnostic tests in
both the primary and follow-up consultations.MAC consistently produced
the highest average output tokens, followedby Self-Consistency, Self-Refine,
andCoTPrompting.Overall,MACoutperformed the othermethods across
all evaluation metrics, while Self-Refine and Self-Consistency showed
improvements but did not reach MAC’s performance. CoT Prompting
yielded more modest gains. The results were listed in Supplementary
Table 12.

Influence of output token on model performance
The impact of output token scaling across all methods were evaluated. For
CoT prompting, increasing the output token count improved performance
in both the primary and follow-up consultations, particularly in most likely

Fig. 2 | The multi-agent conversation (MAC) framework. The admin agent pro-
vides the patient’s information. The supervisor agent initiates and supervises the
joint conversation. The three doctor agents jointly discuss the patient’s condition.

The final output is provided either when consensus is reached or after amaximumof
thirteen rounds of conversation.
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diagnosis accuracy, possible diagnosis accuracy, and the helpfulness of
further diagnostic tests. For self-refine, increasing the number of refinement
rounds from 2 to 4 enhanced performance, particularly in most likely
diagnosis andhelpfulness of further diagnostic test, although further rounds
(10) led to a slight decline in performance. Self-consistency showed
improved performance when increasing reasoning paths from 5 to 10, but a
small decline was also observed when increasing reasoning paths to 20. For
MAC, increasing the conversation rounds to 13 and 25 raised output token
counts but did not yield significant performance improvements. Detailed
results are provided in Fig. 8 and Supplementary Table 13.

Discussion
Despite GPT-3.5, GPT-4, and MAC demonstrating comparable levels
of satisfactory knowledge, the diagnostic outcomes for GPT-3.5 and
GPT-4 were notably less effective in real-world cases. These findings
demonstrate the gap between having an extensive knowledge base
and effectively applying it in clinical practice.

On the other hand, the implementation of MAC substantially
enhanced the diagnostic capabilities of LLMs in comparison with single-
agent models. Further investigation into the Multi-Agent Collaboration
(MAC) framework yielded several important insights. A more powerful
base model (GPT-4) led to better overall performance compared to con-
figurations usingGPT-3.5. The optimal number of doctor agents was found
to be four, with three agents producing comparable results. The presence of
a supervisor agent significantly enhanced the framework’s effectiveness.
Further comparison with other methods, including CoT, self-refine, and

self-consistency, showed that MAC outperformed these techniques in
diagnostic performance, generating significantly more output tokens. The
increased output facilitated the exploration of diverse reasoning paths and
enabled the reflection and revision of previous outputs. This allowed for
more in-depthanalysis, potentiallyuncoveringunderlying causesofdiseases
that may have been overlooked. As such, MAC represents a promising
approach to bridging the gap between knowledge bases and clinical cap-
abilities in disease diagnosis.

In this study, a gap was identified between the extensive
knowledge base and clinical diagnostic capabilities of LLMs. This
disparity could be attributed to several factors. First, a robust medical
reasoning capability is required for LLMs to make diagnoses based on
patient conditions. However, recent studies have raised questions
regarding the reasoning abilities of these models, suggesting potential
limitations in their application to complex reasoning scenarios15.
Second, the training materials for LLMs are primarily structured in a
question-and-answer format, with a focus on imparting general
medical knowledge16–18. However, this approach fails to provide
training in specialized domains and does not sufficiently incorporate
actual clinical practice. Given the vast number of these diseases, their
low incidence rates, and the limited reporting of cases19,20, the crea-
tion of a comprehensive database for training LLMs in the man-
agement of rare diseases remains challenging.

In this study, the MAC framework significantly outperformed the
single-agent models across all metrics. One previous study tested the cap-
ability of GPT-3.5 and GPT-4 in rare disease diagnosis with ten cases, the

Fig. 3 | Clinical case curation. a Primary consultation represents the initial information acquired from patient in primary care; b Follow-up consultation represents the
complete information of patients after relevant diagnostic tests have been performed.
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reported accuracy was 23% and 40%, respectively21. In this study, GPT-3.5
andGPT-4 are capable of diagnosingdiseases basedon apparent symptoms,
such as identifying pericarditis and epilepsy through clinical presentation.
However, they lack in-depth exploration of the underlying causes of these
conditions. In contrast, the MAC framework, through more in-depth
analysis via joint conversation, can determine that pericarditis in a specific
case is caused by Bardet-Biedl Syndrome. Representative examples of
comparison between single-agent model and MAC are listed in Table 3.

Comparative analysis showed MAC outperformed other meth-
ods, including CoT, self-refine, and self-consistency22,23. The reason
might be that the multi-agent systems allowed significantly more
output token, the increased output allowed exploration of diverse
reasoning paths and enabled the reflection and revision of previous
outputs. This multi-agent structure enables complex, multi-
directional interactions between different reasoning paths, allowing
for immediate integration of diverse perspectives. One case example,
as shown in Supplementary note 1, illustrated how doctor agents

present varied opinions on diagnostic approaches and tests, with the
supervisor agent synthesizing viewpoints and guiding discussions.

Further analysis was conducted to investigate the role of output
tokens in model performance across all methods used in this study.
Our results suggest that increasing the number of output tokens can
lead to performance improvements. However, for Self-Refine, Self-
Consistency, and MAC, this performance increase reaches a thresh-
old, beyond which further increases in output tokens do not yield
additional improvements. In contrast, for CoT, we observed that as
the output token count increased, model performance continued to
improve. These findings align with previous research, which shows
that while increasing the number of LLM calls and thus output
tokens can enhance performance, the extent of this improvement is
limited by task type and the refinement methods employed24.

Our investigation into the Multi-Agent Collaboration (MAC) frame-
work revealed several key factors that influenced its performance. The
choiceof basemodel significantly impacted the system’s effectiveness.While

Fig. 4 | Performance on generating disease-specific knowledge. a Inappropriate and incorrect content; b Omission; c Likelihood of possible harm; d Extent of possible
harm; e Bias. The bars represent mean values. Error bars indicate standard deviation.
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the MAC framework utilizing GPT-3.5 outperformed standalone GPT-3.5
and GPT-4 models, it still fell short of the MAC framework employing
GPT-4. This suggests that more advanced language models can
enhance the overall performance of multi-agent systems, the finding
is in consistent with one previous study25. The number of doctor
agents plays a crucial role in the framework’s performance. Config-
urations with four agents consistently produced the best outcomes,

closely followed by those with three agents. The presence of a
supervisor agent proved to be another critical factor. This agent was
instrumental in moderating discussions and eliciting diverse opi-
nions. Its exclusion led to a notable decrease in MAC’s overall per-
formance, highlighting the importance of a coordinating entity in
multi-agent systems. Lastly, assigning specialties to doctor agents did
not yield a significant performance improvement; this may stem from
the inherent capabilities of the base model. This observation is
consistent with prior research indicating that although agents can
assume specific roles, their fundamental abilities may be insufficient
in the domain-specific knowledge and skills require to function
optimally as clinical specialists in complex clinical task26,27. This
finding underscores the need for further research aimed at enhancing
the specialized capabilities of AI agents for healthcare applications.

Recent advancements in multi-agent systems have shown pro-
mising results in medical decision-making and diagnosis. Several
notable frameworks have emerged, each with unique approaches to
leveraging large language models (LLMs) for clinical tasks25,28,29. For
example, MEDAGENTS is an innovative multi-disciplinary colla-
boration framework that enhances large language models’ perfor-
mance in zero-shot medical question answering25. There are several
distinct features among different multi-agent systems. While the
majority of the frameworks focus on general medical question
answering25,28, our framework is focused on diagnostic tasks. It
encourages multiple agents to analyze the same clinical context,
engage in interactive discussions, and provide open-ended diagnostic
suggestions. With regard to the setting of agents, the MAC frame-
work includes several doctor agents and a supervisor agent, while
other frameworks adopted settings such as creating agents for
questions and answers separately. Regarding consensus determina-
tion, these frameworks differ in their approaches. In MedAgents’
iterative revision process, the answer is refined until all experts
approve. In contrast, our framework employs a supervisor agent who
determines when doctor agents have reached a sufficient level of
agreement. While various multi-agent systems exhibit distinct con-
figurations and objectives, their collective potential for application in
the medical domain appears promising. Further research may be

Table 1 | Accuracy in primary consultation

Single model

Base model Number of agents Most likely diagnosis accuracy Possible diagnosis accuracy Further diagnostic tests helpful rate

GPT-3.5 NA 16.23% 27.92% 47.68%

GPT-4 NA 19.65% 34.55% 58.17%

Multi-agent conversation framework

Base model Number of agents Most likely diagnosis accuracy Possible diagnosis accuracy Further diagnostic tests helpful rate

GPT-3.5 2 23.18% 36.09% 73.84%

GPT-3.5 3 24.17% 35.43% 79.14%

GPT-3.5 4 24.28% 36.64% 77.59%

GPT-3.5 5 22.85% 36.09% 79.47%

GPT-4 2 31.13% 45.03% 73.51%

GPT-4 3 32.45% 46.36% 76.82%

GPT-4 4 34.11% 48.12% 78.26%

GPT-4 5 31.79% 46.36% 81.46%

Subgroup analysis: exclude supervisor agent

Base model Number of agents Most Likely diagnosis accuracy Possible diagnosis accuracy Further diagnostic tests helpful rate

GPT-3.5 4 24.50% 36.20% 74.28%

GPT-4 4 32.67% 45.47% 78.04%

Subgroup analysis: assign doctor agents with different specialties dynamically

Base model Number of agents Most Likely diagnosis accuracy Possible diagnosis accuracy Further diagnostic tests helpful rate

GPT-3.5 4 24.84% 36.64% 78.03%

GPT-4 4 34.32% 48.23% 80.02%

Table 2 | Accuracy in follow-up consultation

Single model

Base model Number of
agents

Most likely diagnosis
accuracy

Possible diagnosis
accuracy

GPT-3.5 NA 29.36% 46.91%

GPT-4 NA 37.86% 59.71%

Multi-agent conversation framework

Base model Number of
agents

Most likely diagnosis
accuracy

Possible diagnosis
accuracy

GPT-3.5 2 41.06% 56.62%

GPT-3.5 3 42.83% 57.29%

GPT-4 2 51.99% 65.56%

GPT-4 3 53.31% 67.88%

GPT-4 4 53.86% 67.88%

GPT-4 5 50.99% 66.56%

Subgroup analysis: exclude supervisor agent

Base model Number of
agents

Most likely diagnosis
accuracy

Possible diagnosis
accuracy

GPT-3.5 3 41.72% 54.75%

GPT-4 4 51.66% 65.78%

Subgroup analysis: assign doctor agents with different specialties dynamically

Base model Number of
agents

Most likely diagnosis
accuracy

Possible diagnosis
accuracy

GPT-3.5 3 43.59% 58.61%

GPT-4 4 53.75% 67.88%
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warranted to fully explore and evaluate the capabilities of such sys-
tems in healthcare settings.

Multiple studies have evaluated the diagnostic capabilities of large
language models (LLMs). One study examined GPT-4’s performance in
diagnosing complex cases using published case records, finding that the
model’s top diagnosismatched the final diagnosis in 39% of cases2. Another
study demonstrated that while LLMs show potential for clinical decision-
making, they currently underperform compared to human clinicians in
diagnosing common conditions such as appendicitis, cholecystitis, diverti-
culitis, and pancreatitis. The study also revealed that LLMs struggle with
guideline adherence and require substantial supervision.However, it should
be noted that this study used older models such as Llama-2, which may

perform less optimally than more advanced models like GPT-430. In a
separate investigation, researchers evaluated the differential diagnosis cap-
abilities ofOpenAI’sGPT-3.5 andGPT-4models across 75 consecutive real-
world clinical cases. The results indicated that GPT-4 demonstrated
superior diagnostic accuracy compared to GPT-3.5, with its differential
diagnosis lists more closely aligning with those generated by human
experts31.

Recent advancements in generative artificial intelligence have the
potential to enhance the diagnostic capabilities of large language
models (LLMs), with techniques such as prompt-based learning and
fine-tuning playing crucial roles32. Chain-of-thought (CoT) prompt-
ing has been used to decompose complex diagnostic tasks into linear

Fig. 5 | Diagnostic performance in primary consultation. a Accuracy of the most
likely diagnosis; b Accuracy of the possible diagnoses; c Helpfulness of further
diagnostic tests; d Score for the most likely diagnosis; e Score of the possible

diagnoses score; f Score of further diagnostic tests. In (a–c), the bars represent
percentages. In (d–f), the bars represent mean values and the error bars indicate
standard deviation. Statistical values are listed in Supplementary Tables 2 and 3.

Fig. 6 | Diagnostic performance in follow-up consultation. aAccuracy of themost
likely diagnosis; b Accuracy of the possible diagnoses; c Score for the most likely
diagnosis; d Score of the possible diagnoses score. In (a, b), the bars represent

percentages. In (c, d), the bars represent mean values and the error bars indicate
standard deviation. Statistical values are listed in Supplementary Tables 4 and 5.
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steps, which aids in integrating context and delivering comprehensive
diagnostic reasoning33. Fine-tuning methods, especially supervised
fine-tuning (SFT) and reinforcement learning from human feedback
(RLHF), are employed to align LLMs with domain-specific knowl-
edge and user expectations. Studies have demonstrated that fine-
tuning enhances the diagnostic precision of models through task-
specific data and domain-specific knowledge34,35. Additionally, one
study showed that RLHF can improve model responses to be more
accurate and aligned with human-like diagnostic reasoning36. How-
ever, even with these technological advancements, LLMs still face
significant challenges when diagnosing complex and rare diseases,
and their effectiveness lacks validation in real clinical applications.

Diagnosing rare diseases remains a global challenge, one that even
human experts struggle with, and it is unlikely that LLMs will surpass
human capabilities in domains requiring extensive medical knowledge and

sophisticated analytical skills in the short term. Therefore, even with the
advent of more advanced models, it is reasonable to deduce that the multi-
agent collaboration model will continue to offer significant advantages in
solving complex medical tasks. Although existing benchmarks offered
comprehensive evaluation of LLMs’medical knowledge, challenges remain
in assessing their application in clinical senarios1,37. Our study tried to
address this issue by obtaining a collection of standardized rare disease data,
manually curated by professional physicians to meet the need in clinical
practice. This dataset can also serve as a benchmark for future research.

Timely diagnosis of rare diseases has always been challenged by
a lack of high-quality medical resources in many regions of the
world, and delays in diagnosis lead to delays in treatment and poor
prognosis7,8. MAC provides valuable diagnosis suggestions and
recommend further diagnostic tests during different stages of clinical
consultation, and is applicable to all types of rare diseases. It may

Fig. 7 | Influence of base model and number of doctor agents on multi-agent
conversation (MAC). a Accuracy of most likely diagnosis in primary consultation;
bAccuracy of possible diagnoses in primary consultation; c Accuracy of most likely
diagnosis in further diagnostic test; dAccuracy of most likely diagnosis in follow-up

consultation; e Accuracy of possible diagnoses in follow-up consultation. For MAC
using GPT-3.5 as the base model, settings with more than 2 doctor agents were not
feasible due to token output limitation. The lines indicate percentage.
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serve as a valuable second opinion tool when doctors face challenging
cases. The framework also holds the potential to be generalized to
other medical challenges, which warrants further exploration.

Given the vast number of rare diseases, the sample size in this
study was relatively small, representing only a preliminary explora-
tion. However, normalized random sampling was employed to
enhance the representativeness of the selected cases. The primary
consultation was manually extracted from the patient information to
simulate the initial patient consultation. Although this was per-
formed by medical professionals, the extraction was subjective and
may not always accurately reflect the actual consultation. The
rationale for this design was to reflect varying diagnostic needs at
different stages of patient care. Future studies should aim to expand

the sample size and incorporate a wider range of diseases to further
validate and refine the MAC framework’s performance in diverse
clinical settings.

MAC provided insights into how the models performed medical
reasoning and handled different opinions during multi-agent con-
versations, which may serve as interpretation on how LLMs reasoned
through the task. However, it should be noted that mere output
explanations do not fully capture the model’s inherent interpret-
ability. Previous study has indicated that models may sometimes
provide incorrect explanations alongside correct answers, or vice
versa38. Conversely, techniques such as Chain-of-Thought (CoT)
enable models to generate more extensive outputs detailing their
reasoning processes. In most cases, this enhancement can improve

Fig. 8 | Influence of output token on performance across each method. a Effect of
output token on most likely diagnosis accuracy in primary consultation; b Effect of
output token on possible diagnosis accuracy in primary consultation; c Effect of

output token on further diagnostic test helpfulness in primary consultation; d Effect
of output token onmost likely diagnosis accuracy in primary consultation; eEffect of
output token on possible diagnosis accuracy in follow-up consultation.

Table 3 | Representative examples

Disease Presentation GPT-3.5 GPT-4 MAC
Most likely diagnosis Most likely diagnosis Most likely diagnosis

Bardet-Biedl Syndrome Primary consultation Behçet’s syndrome (BS) Recurrent Pericarditis Recurrent pericarditis in the context of Bardet-Biedl syndrome.

Bardet-Biedl Syndrome Follow-up consultation Pericarditis Recurrent pericarditis Bardet-Biedl Syndrome (BBS) and recurrent pericarditis

Sotos Syndrome Primary consultation Epilepsy Refractory Epilepsy Focal epilepsy

Sotos Syndrome Follow-up consultation Temporal lobe epilepsy Temporal Lobe Epilepsy Sotos syndrome

Representative examples of the diagnostic differences amongMAC,GPT-3.5 andGPT-4. In the two examples, single-agentmodels are capable of diagnosing apparent symptoms, such as epilepsy, while
MAC was able to identify the underlying cause of the apparent symptoms, such as Sotos Syndrome.
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model performance39,40. The reasoning process can thus be con-
sidered an explanation, offering valuable insights into how the model
arrives at its answers. In general, the limitations of explanations
provided by large language models (LLMs) in their outputs should be
noted, as the issue of explainability remains a persistent challenge
that necessitates ongoing research41. The MAC system should be seen
as a supportive tool for clinicians, rather than a replacement for
clinicians.

To provide insights for future researchers conducting similar studies, it
is important to understand the role of human effort involved in this research.
In this study, human effort was involved in two tasks: case acquisition and
curation, and evaluation of output results. Case acquisition required
manually screening published case reports from the PubMed database to
ensure accurate and relevant data for rare diseases. Curation involved clinical
expertise to organize the data according to the patient’s condition during
different consultation stages. The evaluation process also relied on physicians
to assess the reliability of LLM evaluations. However, more complex tasks,
such as analyzing diagnostic dialogue, required human involvement due to
the advanced medical reasoning needed. As LLM technology continues to
advance, we expect the scope of tasks they can autonomously handle to
expand, thereby reducing the need for human input in the future.

This study revealed that Multi-Agent Conversation (MAC) fra-
mework significantly enhanced the diagnostic capabilities of Large
Language Models (LLMs) in clinical settings. While single-agent
models like GPT-3.5 and GPT-4 possess extensive knowledge, they
show limitations in applying this knowledge to real-world medical
cases. The MAC framework substantially improved diagnostic out-
comes, effectively bridging the gap between theoretical knowledge
and practical clinical application. These results underscore the value
of multi-agent LLMs in healthcare and warrant further investigation
into their implementation and refinement for clinical use.

Methods
Study design
In this study, we first developed a Multi Agent Conversation (MAC) fra-
mework based on GPT-4, utilizing the structure provided by Autogen11.
This framework facilitates consensual oriented discussion among one
supervisor agent and three doctor agents. Subsequently, we assessed the
knowledge and diagnostic capabilities ofGPT-3.5, GPT-4, and theMAC for
302 rare diseases using real-world clinical case reports sourced from the
Medline database. Different settings within the MAC framework were also
investigated to see how they would influence MAC’s performance. Relia-
bility analysis and cost analysis were also performed. This study utilized
published literature to curate the test dataset, and no actual human parti-
cipants were involved. Therefore, the need for institutional approval was
waived.

To evaluate the clinical effectiveness of these models, two scenarios
were designed for each case. The first scenario simulates a primary con-
sultation where only basic patient information is available, testing the
models’ clinical ability with limited data to provide suggestions for further
diagnostic workup. The second scenario represents a follow-up consulta-
tion, where patients have undergone all diagnostic tests. This scenario aims
to assess whether the LLMs can reach correct diagnosis with complete
patient information. The disease selection and testing process is shown in
Fig. 1.

Data acquirement
This study involved 302 rare diseases selected from a pool of over
7000 across 33 types in the Orphanet Database, a comprehensive rare
disease database co-funded by the European Commission42. Owing to
the varied distribution of rare diseases among different types, a
normalized weighted random sampling method was used for selec-
tion to ensure a balanced representation. The sampling weights were
adjusted based on the disease count in each type and moderated by
natural logarithm transformation43,44.

After the diseases were selected for investigation, clinical case reports
published after January 2022 were identified from the Medline database.
The search was conducted by one investigator and reviewed by another
investigator.

Clinical case reports were included if they 1) presented a complete
clinical picture of a real patient diagnosed with a rare disease, including
demographics, symptoms, medical history, and diagnostic tests performed.
2) were published in English. Case reports were excluded if they 1) lacked
information required tomake a diagnosis, 2) were not published in English,
3) were animal studies, 4) contained factual errors that would influence the
diagnosis, and 5) reported diseases other than those in the intended litera-
ture search.

Two specialist doctors independently screened the search results using
defined criteria. The first investigator selected case reports for the test,
followed by repeated screening by the second investigator. Any disagree-
ments were resolved through a group discussion.

For each disease, the search results were screened until an eligible case
report was identified. If no suitable reports were identified, new random
sampling within the same disease category was conducted to select a dif-
ferent disease.

Data extraction
One investigator manually extracted data from each clinical case report,
which was subsequently reviewed by a specialist doctor for extraction
accuracy. The extracted information includes patient demographics, clinical
presentation, medical history, physical examination results, and outcomes
of tests (e.g., genetic tests, biopsies, radiographic examinations), along with
the final diagnosis.

Final and possible differential diagnoses from the original texts were
extracted for evaluation purposes.

Data curation
The primary goal of data curation is to employ the data in simulating
various stages of the clinical consultation process, thereby evaluating
the practical utility of Large Language Models (LLMs) in clinical
settings. Two clinical scenarios were created for each case, primary
consultation and follow-up consultation. The primary consultation
tests if the LLM would be helpful in the patient’s first clinical
encounter where there is only limited information available. It
simulates a situation in which a patient first seeks help at a primary
healthcare facility and is attended to by a primary care physician.
(Fig. 2a). The follow-up consultation tests if the LLM would provide
correct diagnosis with the patient’s complete picture, including any
results from advanced diagnostic tests, were given. It simulates a fully
informed diagnostic scenario, aiming to evaluate the capacity of the
LLM to perform medical reasoning and reach a final diagnosis with
comprehensive data (Fig. 2b).

Multi-agent conversation framework
GPT-3.5-turbo and GPT-4 are commonly tested for medical purposes and
were selected as the base model for the Multi-Agent Conversation Frame-
work (MAC). The MAC framework, aimed at diagnosing and generating
knowledge about rare diseases (Fig. 3), was developed under AutoGen’s
structure11. This setup simulated a medical team consultation with doctor
agents and a supervising agent.

To initiate the multi-agent conversation, the admin agent first
presents the patient’s information and tasks to the conversational
agents. This conversation utilizes a consensual framework without a
predetermined speaking order. Each agent fulfills its designated roles
while responding to the input from previous agents. The tasks for
doctor agents include:1) Providing diagnostic reasoning and recom-
mendations based on expertise. 2)Evaluating and commenting on
other agents’ opinions with reasoned arguments. 3)Addressing
comments from other agents and improving output accordingly. The
tasks of the supervisor include: 1) Overseeing and evaluating
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suggestions and decisions made by doctor agents. 2) Challenging
diagnoses and proposed tests, identifying any critical points missed.
3) Facilitating discussion between doctor agents, helping them refine
their answers. 4) Driving consensus among doctor agents, focusing
solely on diagnosis and diagnostic tests. 5) Terminating the con-
versation when consensus has been reached. The dialogue continues
until the agents reach a consensus or the maximum number of
conversation rounds is met, which, in this study, was set at thirteen.

Generating disease specific knowledge
GPT-3.5, GPT-4, and MAC were assessed for their knowledge of each
rare disease covered in the study. Each model is tasked to generate
disease specific knowledge including disease definition, epidemiology,
clinical description, etiology, diagnostic methods, differential diag-
nosis, antenatal diagnosis, genetic counseling, management and
treatment, and prognosis.

Generating diagnosis and recommended tests
For the primary consultation, the LLMs were tasked with generating
one most likely diagnosis, several possible diagnoses, and further
diagnostic tests. For follow-up consultations, the LLMs were tasked
with generating one most likely diagnosis and several possible
diagnoses. Mirroring real-world diagnostic procedures, no specific
numerical constraints were placed on the potential diagnoses and
diagnostic tests recommended.

Subgroup analysis within MAC
Subgroup analyses were performed within the MAC framework,
including comparing MAC’s performance when using GPT-4 versus
GPT-3.5 as the base model to assess the impact of the base model;
examining the effect of varying the number of doctor agents (ranging
from 2 to 5) involved in the framework; evaluating whether excluding
the supervisor agent would negatively impact MAC’s performance;
and investigating whether assigning case-specific clinical specialties
to each doctor agent would influence performance outcomes. The
specialties are listed in Supplementary Table 14. During imple-
mentation, GPT-4 analyzes patient cases to identify the most relevant
specialties. Specific prompts were then employed to instruct each
doctor agent to assume the role of the corresponding specialist and
engage in discussion.

Performance evaluation
The performance of GPT-3.5, GPT-4, and MAC were evaluated across
several tasks including performance in generating knowledge, generating
most likely diagnosis, possible diagnoses and further diagnostic tests.

Disease specific knowledge was evaluated using Likert Scale. The Likert
scale is a psychometric scale commonly used in questionnaires to measure
attitudes or opinions. The evaluation metrics covered five aspects, which
included: inaccurate or inappropriate content, omissions, likelihood of pos-
sible harm, extent of possible harm, and bias, which are shown in Table 437.

Diagnostic performance was evaluated using accuracy and rating scales.
For the most likely diagnosis and possible diagnoses, the answer was con-
sideredaccurate if it included theexact correctdiagnosis. For furtherdiagnostic
test recommendations, the answer was deemed accurate if it was helpful in
reaching the correct diagnosis. For the rating scales, the most likely diagnosis
and possible diagnoses were evaluated using a five-point scale described by
Bond et al. 45, which is shown in Table 5. The further diagnostic test recom-
mendations were evaluated using a Likert scale, which is shown in Table 6.

Table 4 | Evaluation metric for disease specific knowledge

Category Question Criteria

Inaccurate or inappropriate content Does the answer contain any incorrect or inappropriate content? 1:Completely incorrect or highly inappropriate with great clinical significance
2:Mostly incorrect or inappropriate with noticeable clinical significance
3:Partially incorrect or somewhat inappropriate with some clinical significance
4:Minimally incorrect or slightly inappropriate with little clinical significance
5:Fully correct and completely appropriate

Omissions Does the answer omit any answers it shouldn’t? 1:Substantial omission with great clinical significance:
2:Significant omission with noticeable clinical implications:
3:Moderate omission with some clinical implications:
4:Minor omission with little clinical significance:
5:No omission or the omission was of no clinical significance

Likelihood of possible harm What is the likelihood of possible harm 1:Extremely likely to cause harm
2:Likely to cause harm
3:Somewhat likely to cause minor harm
4:Unlikely to cause harm
5:No chance of causing harm

Extent of possible harm What is the extent of possible harm 1:Harm is extensive and severe
2:Harm is considerable
3:Harm is moderate
4:Harm is minor
5:Harm is negligible or nonexistent

Bias Does the answer contain any information that is inapplicable or
inaccurate for particular medical demographics?

1:Completely inapplicable or inaccurate for particular medical demographics
2:Largely inapplicable or inaccurate for particular medical demographics
3:Somewhat inapplicable or inaccurate for particular medical demographics
4:Slightly inapplicable or inaccurate for particular medical demographics
5:Completely applicable and accurate for any medical demographics

Table 5 | Evaluation metric for diagnosis

Criteria Score

The actual diagnosis was suggested 5

The suggestions included something very close, but not exact 4

The suggestions included something closely related that might have been
helpful

3

The suggestions included something related, but unlikely to be helpful 2

No suggestions close 0

Table 6 | Evaluation metric for further diagnostic tests

Criteria Score

Strongly agree that the tests are helpful 5

Agree that the tests are helpful 4

Neutral 3

Disagree that the tests are helpful 2

Strongly disagree that the tests are helpful 1
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Considering the number of outputs to be evaluated exceeded
thirty-five thousand, evaluation was performed using a large language
model (GPT-4o) with the correct answer provided, to investigate
whether GPT-4o was able to perform accurate and reliable evalua-
tion. Human evaluation was performed for 302 cases, and the con-
sistency between human and LLM evaluation was analyzed. Human
evaluation was conducted through panel discussions among three
physicians who were blinded to the model conditions and reviewed
the content in a randomized order. The physicians discussed each
case and reached a consensus score. GPT-4o showed high consistency
with human evaluation, as shown in Table 7.

Reliability analysis
The reliability of the MAC framework was evaluated, which involved
three repeated rounds of testing across six distinct settings, assessing
MAC’s performance consistency with different base models, with and
without the supervisor agent, and with and without specialty
assignments to doctor agents. To quantify the inter-run agreement,
Fleiss’ kappa, a statistical measure for assessing reliability among
multiple tests, was employed. Fleiss’ Kappa values were interpreted as
follows: <0.00 indicates no agreement, 0.00–0.20 slight, 0.21–0.40
fair, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–1.00 almost
perfect agreement46. Kappa values were calculated for the accuracies
of most likely diagnosis, possible diagnoses, and recommended tests
in primary consultation, and for most likely diagnosis and possible
diagnoses in follow-up consultation.

Error analysis
Error analysis was performed by categorizing and analyzing inci-
dences of inaccurate answers. For the most likely diagnosis and
possible diagnoses, we have classified errors into four categories: 1)
Very close to the correct diagnosis, but not exact, 2) Closely related
to the correct diagnosis and potentially helpful, 3) Related to the
correct diagnosis, but unlikely to be helpful, 4) No suggestions close
to the correct diagnosis. Regarding errors in recommended tests, we
have further categorized them as follows: 1) Questionable utility of
the suggested tests, 2) Disagreement with the helpfulness of the
suggested tests, 3) Strong disagreement with the appropriateness of
the suggested tests.

Cost analysis
Cost analysis was performed to calculate the average cost to run a casewhen
using GPT-4 and GPT-3.5 as the base model.

Comparison with other methods to improve diagnostic
performance
The effect of Input/Output (I/O) Prompting, Chain of Thought
(CoT) prompting, Self-Consistency, and Self-Refine methods were
evaluated. The detailed CoT prompts are provided in the Supple-
mentary Note 2. For self-consistency, following established literature,
we implemented a framework with 10 distinct reasoning paths and
set the temperature parameter to 0.723. The self-refine approach was
configured with four iterative refinement rounds at a temperature of
0.7, as adopted in prior research22. Each refinement cycle consisted of
three steps: first, the LLM generated an initial answer; second, it
produced self-feedback by assigning a score (0-50) to the answer and

providing specific improvement suggestions; and third, it revised the
answer according to these suggestions. This process repeated for four
rounds, with each revised answer receiving a new score. The final
output was selected based on the highest-scoring version among all
iterations.

Influence of output token on model performance
The effect of output token scaling on all methods used in this study was
evaluated by varying the output token count for each method to assess its
impact onmodel performance. ForCoTprompting, the output token count
was increased bymodifying the standard prompt to include: “Please allocate
additional time and effort to provide a comprehensive and detailed rea-
soning process for this task.” Conversely, the token count was reduced by
adding: “Please reduce the time and effort to provide a short reasoning
process for this task.” For Self-Refine, the model’s output token length was
controlled by varying thenumber of refinement rounds,with configurations
of 2, 4, and 10 rounds. For Self-Consistency, the output token length was
adjusted by varying the number of reasoning paths, testing 5, 10, and 20
paths. For MAC, the agents’ configuration was modified to continue
the conversation until a predetermined number of conversation
rounds was reached, with settings of 13 and 25 rounds. Output
tokens were recorded for each method, and performance was sub-
sequently evaluated.

Statistical analysis
Statistical analyses were performed using SPSS version 25 (IBM, Armonk,
NY, USA) and GraphPad Prism version 8 (GraphPad Software, San Diego,
CA,USA). The results fromhuman evaluation frameworkwere recorded as
continuous variables and they are presented as means and standard
deviations. The Shapiro–Wilk test was used to check if the data followed a
normal distribution. Depending on the distribution, an ANOVA, or
Kruskal–Wallis test, was applied to test for difference in performance
among themodels. The accuracy ofmost likely diagnosis, possible diagnoses
and the helpfulness of diagnostic tests were recorded as incidence and rate.
For these discontinuous data, chi-square test was used to test for differences
among the models. Flessi-Kappa was used to assess the consistency of
model’ outputs among multiple runs.

Data availability
Dataset is openly available at the following link for non-commercial purpose:
https://github.com/geteff1/Multi-agent-conversation-for-disease-diagnosis.

Code availability
Code is openly available at the following link for non-commercial purpose:
https://github.com/geteff1/Multi-agent-conversation-for-disease-
diagnosis.
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