Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Unlocking aquifer sustainability through irrigator-driven groundwater conservation

Abstract

Aquifer depletion due to intensive irrigation threatens global economies, food security and ecosystems. This Perspective examines the hydrological, social and economic complexities of managing groundwater resources, focusing on the Sheridan 6 Local Enhanced Management Area in the US High Plains aquifer. Here irrigator-led conservation efforts reduced groundwater use by 25% and slowed aquifer depletion by 65% while maintaining farmers’ incomes. This success resulted from a hybrid integration of bottom-up rule development with top-down enforcement, providing flexible multi-year water allocations and aligning management with local conditions. From this, we identify transferable governance tenets for sustainable groundwater management in similar regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Depletion in the High Plains aquifer and study area.
Fig. 2: Hydrological impacts of the SD-6 LEMA.
Fig. 3: Economic benefits from SD-6 LEMA’s groundwater-use reduction.
Fig. 4: Tenets for effective groundwater governance.

Similar content being viewed by others

References

  1. Alley, W. M. & Alley, R. High and Dry: Meeting the Challenges of the World’s Growing Dependence on Groundwater (Yale Univ. Press, 2017).

  2. Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5, 853–861 (2012).

    Article  CAS  Google Scholar 

  3. Hoekstra, A. Y. & Chapagain, A. K. in Integrated Assessment of Water Resources and Global Change: A North-South Analysis (eds Craswell, E. et al.) 35–48 (Springer, 2007); https://doi.org/10.1007/978-1-4020-5591-1_3

  4. Butler, J. J., Whittemore, D. O., Wilson, B. B. & Bohling, G. C. Sustainability of aquifers supporting irrigated agriculture: a case study of the High Plains aquifer in Kansas. Water Int. 43, 815–828 (2018).

    Article  Google Scholar 

  5. Huggins, X. et al. Hotspots for social and ecological impacts from freshwater stress and storage loss. Nat. Commun. 13, 439 (2022).

    Article  CAS  Google Scholar 

  6. Zipper, S. et al. Quantifying streamflow depletion from groundwater pumping: a practical review of past and emerging approaches for water management. J. Am. Water Resour. Assoc. 58, 289–312 (2022).

    Article  Google Scholar 

  7. Jakeman, A. J. et al. in Integrated Groundwater Management: Concepts, Approaches and Challenges (eds Jakeman, A. J. et al.) 3–20 (Springer, 2016); https://doi.org/10.1007/978-3-319-23576-9_1

  8. Allen, J. J. & Smith, S. M. Market-oriented solutions for groundwater commons through collective-action. Environ. Res. Lett. 18, 045006 (2023).

    Article  Google Scholar 

  9. Sanderson, M. R. & Hughes, V. Race to the bottom (of the well): groundwater in an agricultural production treadmill. Soc. Probl. 66, 392–410 (2019).

    Article  Google Scholar 

  10. Butler, J. J. & Johnson, C. K. Groundwater depletion: a global challenge for intergenerational equity. Interpretation 78, 7–18 (2024).

    Article  Google Scholar 

  11. Gibson, J. W. & Gray, B. J. (eds) in The Economics of Ecology, Exchange, and Adaptation: Anthropological Explorations Vol. 36, 3–32 (Emerald Group, 2016).

  12. Pfeiffer, L. & Lin, C.-Y. C. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. J. Environ. Econ. Manage. 67, 189–208 (2014).

    Article  Google Scholar 

  13. Ibor, C. S. et al. Advancing co-governance through framing processes: insights from action-research in the Requena-Utiel aquifer (eastern Spain). ICJ 17, 347–362 (2023).

    Google Scholar 

  14. Marston, L. T. et al. The importance of fit in groundwater self-governance. Environ. Res. Lett. 17, 111001 (2022).

    Article  Google Scholar 

  15. Wang, T., Park, S. C. & Jin, H. Will farmers save water? A theoretical analysis of groundwater conservation policies. Water Resour. Econ. 12, 27–39 (2015).

    Article  Google Scholar 

  16. Ostrom, E., Janssen, M. A. & Anderies, J. M. Going beyond panaceas. Proc. Natl Acad. Sci. USA 104, 15176–15178 (2007).

    Article  CAS  Google Scholar 

  17. Molle, F. & Closas, A. Comanagement of groundwater: a review. WIREs Water 7, e1394 (2020).

    Article  Google Scholar 

  18. Rouillard, J., Babbitt, C., Pulido-Velazquez, M. & Rinaudo, J.-D. Transitioning out of open access: a closer look at institutions for management of groundwater rights in France, California, and Spain. Water Resour. Res. 57, e2020WR028951 (2021).

    Article  Google Scholar 

  19. Griggs, B. W., Sanderson, M. R. & Miller-Klugesherz, J. A. Farmers are depleting the Ogallala aquifer because the government pays them to do it. ABA https://www.americanbar.org/groups/environment_energy_resources/resources/trends/2022/farmers-depleting-ogallala-aquifer-because-government-pays-them-do-it/ (2022).

  20. Butler, J. J., Bohling, G. C., Whittemore, D. O. & Wilson, B. B. Charting pathways toward sustainability for aquifers supporting irrigated agriculture. Water Resour. Res. 56, e2020WR027961 (2020).

    Article  Google Scholar 

  21. Perez-Quesada, G. & Hendricks, N. P. Lessons from local governance and collective action efforts to manage irrigation withdrawals in Kansas. Agric. Water Manage. 247, 106736 (2021).

    Article  Google Scholar 

  22. Drysdale, K. M. & Hendricks, N. P. Effects of Collective Action Water Policy on Kansas Farmers’ Irrigation Decisions: The Case of the Sheridan County 6 LEMA (ACCC, 2016).

  23. Whittemore, D. O., Butler, J. J., Bohling, G. C. & Wilson, B. B. Are we saving water? Simple methods for assessing the effectiveness of groundwater conservation measures. Agric. Water Manage. 287, 108408 (2023).

    Article  Google Scholar 

  24. Whittemore, D. O., Butler, J. J. & Wilson, B. B. Status of the High Plains Aquifer in Kansas (KGS, 2023); https://www.kgs.ku.edu/Publications/Bulletins/TS22/

  25. Griggs, B. Reaching consensus about conservation: High Plains lessons for California’s Sustainable Groundwater Management Act. U. Pac. L. Rev. 52, 495–547 (2021).

  26. Water Information Management and Analysis System (WIMAS) (KDA DWR, accessed 1 September 2024); https://geohydro.kgs.ku.edu/geohydro/wimas/

  27. Order of Designation Regarding the Sheridan 6 Local Enhanced Management Plan Within Groundwater Management District No. 4 (KDA, 2013).

  28. Deines, J. M., Kendall, A. D., Butler, J. J. & Hyndman, D. W. Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains aquifer. Environ. Res. Lett. 14, 044014 (2019).

    Article  Google Scholar 

  29. Drysdale, K. M. & Hendricks, N. P. Adaptation to an irrigation water restriction imposed through local governance. J. Environ. Econ. Manage. 91, 150–165 (2018).

    Article  Google Scholar 

  30. Golden, B. Monitoring the Impacts of Sheridan County 6 Local Enhanced Management Area (LEMA, 2018).

  31. Steiner, J. L. et al. Policy, technology, and management options for water conservation in the Ogallala aquifer in Kansas, USA. Water 13, 3406 (2021).

    Article  Google Scholar 

  32. Lauer, S. & Sanderson, M. ‘We’re Civilized People Out Here’: Managing Groundwater Together in Western Kansas (CSU Water Centre, 2017).

  33. Deines, J. M. et al. Transitions from irrigated to dryland agriculture in the Ogallala aquifer: land use suitability and regional economic impacts. Agric. Water Manage. 233, 106061 (2020).

    Article  Google Scholar 

  34. Smith, S. & Gebben, A. Is saving water enough? The economic sustainability of a groundwater fee. In Proc. AGU Fall Meeting H12C-06 (AGU, 2021).

  35. Deines, J. M., Kendall, A. D., Butler, J. J., Basso, B. & Hyndman, D. W. Combining remote sensing and crop models to assess the sustainability of stakeholder-driven groundwater management in the US High Plains aquifer. Water Resour. Res. 57, e2020WR027756 (2021).

    Article  Google Scholar 

  36. Perez-Quesada, G., Hendricks, N. P. & Steward, D. R. The economic cost of groundwater depletion in the High Plains aquifer. J. Assoc. Environ. Resour. Econ. https://doi.org/10.1086/726156 (2023).

    Article  Google Scholar 

  37. Glose, T. J. et al. Quantifying the impact of lagged hydrological responses on the effectiveness of groundwater conservation. Water Resour. Res. 58, e2022WR032295 (2022).

    Article  Google Scholar 

  38. Shipan, C. R. & Volden, C. Policy diffusion: seven lessons for scholars and practitioners. Public Adm. Rev. 72, 788–796 (2012).

    Article  Google Scholar 

  39. Lauer, S. & Sanderson, M. R. Producer attitudes toward groundwater conservation in the US Ogallala–High Plains. Groundwater 58, 674–680 (2020).

    Article  CAS  Google Scholar 

  40. Griggs, B. W. The allocation of groundwater: from superstition to science. Environ. Sci. https://doi.org/10.1093/acrefore/9780199389414.013.638 (2024).

  41. Smidt, S. J. et al. Complex water management in modern agriculture: trends in the water–energy–food nexus over the High Plains aquifer. Sci. Total Environ. 566–567, 988–1001 (2016).

    Article  Google Scholar 

  42. Zwickle, A., Feltman, B. C., Brady, A. J., Kendall, A. D. & Hyndman, D. W. Sustainable irrigation through local collaborative governance: evidence for a structural fix in Kansas. Environ. Sci. Policy 124, 517–526 (2021).

    Article  Google Scholar 

  43. Young, R., Foster, T., Mieno, T., Valocchi, A. & Brozović, N. Hydrologic–economic trade-offs in groundwater allocation policy design. Water Resour. Res. 57, e2020WR027941 (2021).

    Article  Google Scholar 

  44. Guilfoos, T., Khanna, N. & Peterson, J. M. Efficiency of viable groundwater management policies. Land Econ. 92, 618–640 (2016).

    Article  Google Scholar 

  45. Good Farming Practices Protect Your Investment in Crop Insurance (USDA RMA, 2011).

  46. Zipper, S. et al. Water Management Challenges and Potential Solutions Related to the US Federal Crop Insurance Program (KGS, 2024); https://www.kgs.ku.edu/Publications/OFR/2024/OFR2024-11.pdf

  47. Bostic, D., Mendez-Barrientos, L., Pauloo, R., Dobbin, K. & MacClements, V. Thousands of domestic and public supply wells face failure despite groundwater sustainability reform in California’s Central Valley. Sci. Rep. 13, 14797 (2023).

    Article  CAS  Google Scholar 

  48. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action. (Cambridge Univ. Press, 1990); https://doi.org/10.1017/CBO9780511807763

  49. Baggio, J. A. et al. Explaining success and failure in the commons: the configural nature of Ostrom’s institutional design principles. IJC 10, 417 (2016).

    Google Scholar 

  50. Mansbridge, J. The role of the state in governing the commons. Environ. Sci. Policy 36, 8–10 (2014).

    Article  Google Scholar 

  51. Shin, H. C. et al. How do resource mobility and group size affect institutional arrangements for rule enforcement? A qualitative comparative analysis of fishing groups in South Korea. Ecol. Econ. 174, 106657 (2020).

    Article  Google Scholar 

  52. Schipanski, M. E. et al. Moving from measurement to governance of shared groundwater resources. Nat. Water 1, 30–36 (2023).

    Article  Google Scholar 

  53. Lin, C.-Y., Orduna Alegria, M. E., Dhakal, S., Zipper, S. & Marston, L. PyCHAMP: a crop-hydrological-agent modeling platform for groundwater management. Environ. Model. Softw. 181, 106187 (2024).

    Article  Google Scholar 

  54. Bohling, G. C., Butler, J. J., Whittemore, D. O. & Wilson, B. B. Evaluation of data needs for assessments of aquifers supporting irrigated agriculture. Water Resour. Res. 57, e2020WR028320 (2021).

    Article  Google Scholar 

  55. Brookfield, A. E., Zipper, S., Kendall, A. D., Ajami, H. & Deines, J. M. Estimating groundwater pumping for irrigation: a method comparison. Groundwater 62, 15–33 (2023).

    Article  Google Scholar 

  56. White, D. D. et al. Co‐producing interdisciplinary knowledge and action for sustainable water governance: lessons from the development of a water resources decision support system in Pernambuco, Brazil. Glob. Chall. 3, 1800012 (2018).

    Article  Google Scholar 

  57. Sanderson, M. R. & Frey, R. S. Structural impediments to sustainable groundwater management in the High Plains aquifer of western Kansas. Agric. Hum. Values 32, 401–417 (2015).

    Article  Google Scholar 

  58. Deines, J. M. et al. Mapping three decades of annual irrigation across the US High Plains aquifer using Landsat and Google Earth Engine. Remote Sens. Environ. 233, 111400 (2019).

    Article  Google Scholar 

  59. Haacker, E. M. K., Kendall, A. D. & Hyndman, D. W. Water level declines in the High Plains aquifer: predevelopment to resource senescence. Groundwater 54, 231–242 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) grant no. RISE-2108196 (‘DISES: Toward resilient and adaptive community-driven management of groundwater-dependent agricultural systems’), National Aeronautics and Space Administration (NASA) grant no. 80NSSC22K1276 (‘Managing Temporal Trade-Offs through Irrigation and Yield Forecasting to Advance Groundwater Conservation’) and the Foundation for Food and Agriculture Research (FFAR) grant no. FF-NIA19-0000000084 (‘Achieving sustainable groundwater management through innovative governance and optimal agricultural water use under conflicting objectives’). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF, NASA or FFAR. We also thank S. Kenyon, Northwest Groundwater Management District 4 Manager, and J. Tollefson for their useful comments on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Contributions

M.E.O.A, S.Z. and J.J.B. developed the manuscript concept and led the writing. M.E.O.A, D.O.W. and B.B.W. prepared figures. All authors contributed to paper development and revision in their specific areas of expertise: social aspects: M.E.O.A, H.C.S., D.J.Y., B.W.G., S.L., M.R.S. and L.T.M.; hydrological aspects: M.E.O.A, S.Z., J.J.B, J.M.D., D.O.W., B.B.W., G.C.B. and C.-Y.L.; economic aspects: M.E.O.A, N.P.H., B.G., S.M.S., J.J.A. and Q.C.Y.

Corresponding authors

Correspondence to Maria Elena Orduña Alegría or Sam Zipper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Mohammad Faiz Alam, Manuel Pulido-Velazquez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orduña Alegría, M.E., Zipper, S., Shin, H.C. et al. Unlocking aquifer sustainability through irrigator-driven groundwater conservation. Nat Sustain 7, 1574–1583 (2024). https://doi.org/10.1038/s41893-024-01437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01437-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene