Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Viability and desirability of financing conservation in Africa through fire management

Abstract

Adopting early dry season fires in African conservation areas has been proposed as ecologically desired and a means of generating sufficient carbon revenues for their management. We interrogate available peer-reviewed information on the ecology and biogeochemistry of fire in Africa to offer an informed perspective on the full implications of the proposal. We conclude that there is insufficient evidence that a shift to early dry season fires will reduce greenhouse gas emissions, that resultant biodiversity and ecosystem service outcomes may not be desired, and that adopting a single burning regime limits the use of fire to achieve a diverse range of goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tear, T. H. et al. Savanna fire management can generate enough carbon revenue to help restore Africa’s rangelands and fill protected area funding gaps. One Earth 4, 1776–1791 (2021).

    Article  Google Scholar 

  2. Russell-Smith, J., Whitehead, P. & Cooke, P. Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the Wurrk Tradition (CSIRO Publishing, 2009).

  3. Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Environ. 11, e55–e63 (2013).

    Article  Google Scholar 

  4. Lipsett-Moore, G. J., Wolff, N. H. & Game, E. T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 9, 2247 (2018).

    Article  Google Scholar 

  5. Edwards, A. et al. Transforming fire management in northern Australia through successful implementation of savanna burning emissions reductions projects. J. Environ. Manag. 290, 112568 (2021).

    Article  Google Scholar 

  6. Laris, P. On the problems and promises of savanna fire regime change. Nat. Commun. 12, 4891 (2021).

    Article  CAS  Google Scholar 

  7. Russell-Smith, J. et al. Opportunities and challenges for savanna burning emissions abatement in southern Africa. J. Environ. Manag. 288, 112414 (2021).

    Article  CAS  Google Scholar 

  8. Pausas, J. G. & Bond, W. J. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35, 767–775 (2020).

    Article  Google Scholar 

  9. IPCC 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 1 (eds Calvo Buendia, E. et al.) (IPCC, 2019).

  10. Vernooij, R. et al. Dynamic savanna burning emission factors based on satellite data using a machine learning approach. Earth Syst. Dynam. 14, 1039–1064 (2023).

    Article  Google Scholar 

  11. Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 15, 955–966 (2001).

    Article  CAS  Google Scholar 

  12. Korontzi, S. Seasonal patterns in biomass burning emissions from southern African vegetation fires for the year 2000. Glob. Change Biol. 11, 1680–1700 (2005).

    Article  Google Scholar 

  13. Chidumayo, E. N. Above-ground woody biomass structure and productivity in a Zambezian woodland. For. Ecol. Manag. 36, 33–46 (1990).

    Article  Google Scholar 

  14. Ryan, C. M. & Williams, M. How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecol. Appl. 21, 48–60 (2011).

    Article  Google Scholar 

  15. Archibald, S. Managing the human component of fire regimes: lessons from Africa. Phil. Trans. R. Soc. B 371, 20150346 (2016).

    Article  Google Scholar 

  16. Smit, I. P. & Archibald, S. Herbivore culling influences spatio-temporal patterns of fire in a semiarid savanna. J. Appl. Ecol. 56, 711–721 (2019).

    Article  Google Scholar 

  17. Wooster, M. J. et al. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs. Atmos. Chem. Phys. 11, 11591–11615 (2011).

    Article  CAS  Google Scholar 

  18. Holdo, R. M. Stem mortality following fire in Kalahari sand vegetation: effects of frost, prior damage, and tree neighbourhoods. Plant Ecol. 180, 77–86 (2005).

    Article  Google Scholar 

  19. Mlambo, D. & Mapaure, I. Post-fire resprouting of Colophospermum mopane saplings in a southern African savanna. J. Trop. Ecol. 22, 231–234 (2006).

    Article  Google Scholar 

  20. Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article  CAS  Google Scholar 

  21. Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  CAS  Google Scholar 

  22. Lupala, Z. J., Lusambo, L. P. & Ngaga, Y. M. Management, growth, and carbon storage in miombo woodlands of Tanzania. Int. J. For. Res. 2014, 629317 (2014).

    Google Scholar 

  23. Gomes, A. L. et al. Suffrutex grasslands in south-central Angola: belowground biomass, root structure, soil characteristics and vegetation dynamics of the ‘underground forests of Africa’. J. Trop. Ecol. 37, 136–146 (2021).

    Article  Google Scholar 

  24. Handavu, F., Syampungani, S., Sileshi, G. W. & Chirwa, P. W. Aboveground and belowground tree biomass and carbon stocks in the miombo woodlands of the Copperbelt in Zambia. Carbon Manag. 12, 307–321 (2021).

    Article  CAS  Google Scholar 

  25. Zhou, Y. et al. Limited increases in savanna carbon stocks over decades of fire suppression. Nature 603, 445–449 (2022).

    Article  CAS  Google Scholar 

  26. Huang, Y. et al. A global synthesis of biochar’s sustainability in climate-smart agriculture—evidence from field and laboratory experiments. Renew. Sustain. Energy Rev. 172, 113042 (2023).

    Article  CAS  Google Scholar 

  27. Findlay, N. et al. Long-term frequent fires do not decrease topsoil carbon and nitrogen in an Afromontane grassland. Afr. J. Range Forage Sci. 39, 44–55 (2022).

    Article  Google Scholar 

  28. Awuah, J., Smith, S. W., Speed, J. D. & Graae, B. J. Can seasonal fire management reduce the risk of carbon loss from wildfires in a protected Guinea savanna? Ecosphere 13, e4283 (2022).

    Article  Google Scholar 

  29. Manson, A. D., Jewitt, D. & Short, A. D. Effects of season and frequency of burning on soils and landscape functioning in a moist montane grassland. Afr. J. Range Forage Sci. 24, 9–18 (2007).

    Article  Google Scholar 

  30. Fynn, R. W. S., Haynes, R. J. & O’Connor, T. G. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biol. Biochem. 35, 677–687 (2003).

    Article  CAS  Google Scholar 

  31. Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).

    Article  Google Scholar 

  32. Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T. & Wall, D. H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002).

    Article  CAS  Google Scholar 

  33. Mureva, A., Ward, D., Pillay, T., Chivenge, P. & Cramer, M. Soil organic carbon increases in semi-arid regions while it decreases in humid regions due to woody-plant encroachment of grasslands in South Africa. Sci. Rep. 8, 15506 (2018).

    Article  Google Scholar 

  34. Pellegrini, A. F. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022).

    Article  CAS  Google Scholar 

  35. Hannerz, F. & Lotsch, A. Assessment of remotely sensed and statistical inventories of African agricultural fields. Int. J. Remote Sens. 29, 3787–3804 (2008).

    Article  Google Scholar 

  36. Mapiye, C., Mwale, M., Chikumba, N. & Chimonyo, M. Fire as a rangeland management tool in the savannas of southern Africa: a review. Trop. Subtrop. Agroecosyst. 8, 115–124 (2008).

    Google Scholar 

  37. Mentis, M. T. & Tainton, N. M. in Ecological Effects of Fire in South African Ecosystems (eds Booysen, P. V. & Tainton, N. M.) 245–254 (Springer, 1984).

  38. Scott, J. Pros and cons of eliminating veld burning. Proc. Annu. Congresses Grassl. Soc. South. Afr. 5, 23–26 (1970).

    Google Scholar 

  39. Koffi, K. F. et al. Effect of fire regime on the grass community of the humid savanna of Lamto, Ivory Coast. J. Trop. Ecol. 35, 1–7 (2019).

    Article  Google Scholar 

  40. Trollope, W. S. W. Effect of season of burning on grass recovery in the false thornveld of the Eastern Cape. J. Grassl. Soc. South. Afr. 4, 74–77 (1987).

    Article  Google Scholar 

  41. Strydom, T. et al. The effect of experimental fires on soil hydrology and nutrients in an African savanna. Geoderma 345, 114–122 (2019).

    Article  CAS  Google Scholar 

  42. Chambers, B. Q. & Samways, M. J. Grasshopper response to a 40-year experimental burning and mowing regime, with recommendations for invertebrate conservation management. Biodivers. Conserv. 7, 985–1012 (1998).

    Article  Google Scholar 

  43. Uys, C. & Hamer, M. The effect of long-term fire treatments on invertebrates: results from experimental plots at Cathedral Peak, South Africa. Afr. J. Range Forage Sci. 24, 1–7 (2007).

    Article  Google Scholar 

  44. Smit, I. P. & Prins, H. H. Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLoS ONE 10, e0137857 (2015).

    Article  Google Scholar 

  45. Hassan, S. N. & Rija, A. A. Fire history and management as determinant of patch selection by foraging herbivores in western Serengeti, Tanzania. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 122–133 (2011).

    Article  Google Scholar 

  46. Donaldson, J. E. et al. Ecological engineering through fire–herbivory feedbacks drives the formation of savanna grazing lawns. J. Appl. Ecol. 55, 225–235 (2018).

    Article  Google Scholar 

  47. Morris, C. & Fynn, R. The Ukulinga long-term grassland trials: reaping the fruits of meticulous, patient research. Bull. Grassl. Soc. South. Afr. 11, 7–22 (2001).

    Google Scholar 

  48. Morris, C. D., Everson, C. S., Everson, T. M. & Gordijn, P. J. Frequent burning maintained a stable grassland over four decades in the Drakensberg, South Africa. Afr. J. Range Forage Sci. 38, 39–52 (2021).

    Article  Google Scholar 

  49. Tainton, N. M., Groves, R. H. & Nash, R. Time of mowing and burning veld: short term effects on production and tiller development. Proc. Annu. Congresses Grassl. Soc. South. Afr. 12, 59–64 (1977).

    Google Scholar 

  50. Meller, P., Frazão, R., Lages, F., Jürgens, N. & Finckh, M. Tipping the scales: how fire controls the balance among functional groups in Angolan grasslands. Afr. J. Range Forage Sci. 39, 56–69 (2022).

    Article  Google Scholar 

  51. Louppe, D., N’klo, O. & Coulibaly, A. The effects of brush fires on vegetation: the Aubréville fire plots after 60 years. Commonw. For. Rev. 74, 288–292 (1995).

    Google Scholar 

  52. Trapnell, C. G. Ecological results of woodland and burning experiments in northern Rhodesia. J. Ecol. 47, 129–168 (1959).

    Article  Google Scholar 

  53. Blaum, N., Seymour, C., Rossmanith, E., Schwager, M. & Jeltsch, F. Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers. Conserv. 18, 1187–1199 (2009).

    Article  Google Scholar 

  54. Sirami, C., Seymour, C., Midgley, G. & Barnard, P. The impact of shrub encroachment on savanna bird diversity from local to regional scale. Divers. Distrib. 15, 948–957 (2009).

    Article  Google Scholar 

  55. Wieczorkowski, J. D. et al. Fire facilitates ground layer plant diversity in a Miombo ecosystem. Ann. Bot. 133, 743–756 (2024).

    Article  Google Scholar 

  56. Beale, C. M. et al. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecol. Lett. 21, 557–567 (2018).

    Article  Google Scholar 

  57. Turpie, J. Towards a Policy on Indigenous Bush Encroachment in South Africa (Department of Environmental Affairs, 2019).

  58. van Wilgen, B. W., Strydom, T., Simms, C. & Smit, I. P. Research, monitoring, and reflection as a guide to the management of complex ecosystems: the case of fire in the Kruger National Park, South Africa. Conserv. Sci. Pract. 4, e12658 (2022).

    Article  Google Scholar 

  59. Jeffery, K. J. et al. Fire management in a changing landscape: a case study from Lopé National Park, Gabon. Int. J. Protected Areas Conserv. 20, 39–52 (2014).

    Google Scholar 

  60. Van Wilgen, B. W., Govender, N. & MacFadyen, S. An assessment of the implementation and outcomes of recent changes to fire management in the Kruger National Park. Koedoe Afr. Protected Area Conserv. Sci. 50, 22–31 (2008).

    Google Scholar 

  61. Probert, J. R. et al. Anthropogenic modifications to fire regimes in the wider Serengeti–Mara ecosystem. Glob. Change Biol. 25, 3406–3423 (2019).

    Article  Google Scholar 

  62. Humphrey, G. J., Gillson, L. & Ziervogel, G. How changing fire management policies affect fire seasonality and livelihoods. Ambio 50, 475–491 (2021).

    Article  Google Scholar 

  63. Ribeiro, N. et al. The influence of fire frequency on the structure and botanical composition of savanna ecosystems. Ecol. Evol. 9, 8253–8264 (2019).

    Article  Google Scholar 

  64. van Wilgen, B. W., Govender, N., Smit, I. P. & MacFadyen, S. The ongoing development of a pragmatic and adaptive fire management policy in a large African savanna protected area. J. Environ. Manag. 132, 358–368 (2014).

    Article  Google Scholar 

  65. Laris, P. Burning the seasonal mosaic: preventative burning strategies in the wooded savanna of southern Mali. Hum. Ecol. 30, 155–186 (2002).

    Article  Google Scholar 

  66. Laris, P., Dadashi, S., Jo, A. & Wechsler, S. Buffering the savanna: fire regimes and disequilibrium ecology in West Africa. Plant Ecol. 217, 583–596 (2016).

    Article  Google Scholar 

  67. Clarke, H. et al. A flexible framework for cost-effective fire management. Glob. Environ. Change 82, 102722 (2023).

    Article  Google Scholar 

  68. Pooley, S. A historical perspective on fire research in East and southern African grasslands and savannas. Afr. J. Range Forage Sci. 39, 1–15 (2022).

    Article  Google Scholar 

  69. Bond, W. J. & Archibald, S. Confronting complexity: fire policy choices in South African savanna parks. Int. J. Wildland Fire 12, 381–389 (2003).

    Article  Google Scholar 

  70. Laris, P., Jacobs, R., Koné, M., Dembélé, F. & Rodrigue, C. M. Determinants of fire intensity in working landscapes of an African savanna. Fire Ecol. 16, 27 (2020).

    Article  Google Scholar 

  71. Alvarado, S. T., Silva, T. S. F. & Archibald, S. Management impacts on fire occurrence: a comparison of fire regimes of African and South American tropical savannas in different protected areas. J. Environ. Manag. 218, 79–87 (2018).

    Article  Google Scholar 

  72. Schutz, A. E. N., Bond, W. J. & Cramer, M. D. Defoliation depletes the carbohydrate reserves of resprouting Acacia saplings in an African savanna. Plant Ecol. 212, 2047–2055 (2011).

    Article  Google Scholar 

  73. Chidumayo, E. N. A re-assessment of effects of fire on miombo regeneration in the Zambian Copperbelt. J. Trop. Ecol. 4, 361–372 (1988).

    Article  Google Scholar 

  74. Ward, D. S. et al. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857–10886 (2012).

    Article  CAS  Google Scholar 

  75. Fisher, R., Vigilante, T., Yates, C. & Russell-Smith, J. Patterns of landscape fire and predicted vegetation response in the north Kimberley region of Western Australia. Int. J. Wildland Fire 12, 369 (2003).

    Article  Google Scholar 

  76. Lawes, M. J. et al. Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. Int. J. Wildland Fire 24, 712 (2015).

    Article  Google Scholar 

  77. Le Page, Y., Oom, D., Silva, J. M. N., Jönsson, P. & Pereira, J. M. C. Seasonality of vegetation fires as modified by human action: observing the deviation from eco‐climatic fire regimes. Glob. Ecol. Biogeogr. 19, 575–588 (2010).

    Article  Google Scholar 

  78. Sawadogo, L., Tiveau, D. & Nygård, R. Influence of selective tree cutting, livestock and prescribed fire on herbaceous biomass in the savannah woodlands of Burkina Faso, West Africa. Agric. Ecosyst. Environ. 105, 335–345 (2005).

    Article  Google Scholar 

  79. Trollope, W. S. W. Role of fire in preventing bush encroachment in the Eastern Cape. Proc. Annu. Congresses Grassl. Soc. South. Afr. 9, 67–72 (1974).

    Google Scholar 

  80. Parr, C. L. & Brockett, B. H. Patch-mosaic burning: a new paradigm for savanna fire management in protected areas? Koedoe 42, 177–130 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge that N.S. receives funding from the Trapnell Fund (University of Oxford); S.A. from the OGRC Future Ecosystems for Africa Program; G.H. from UKRI Biotechnology and Biological Sciences Research Council Grant (number BB/V004484/1), USAID/NAS Partnerships for Enhanced Engagement in Research (Sub-Grant 2000004946, Cycle 3) and National Research Foundation South Africa (numbers 114974, 115998 and 118847); J.D. from USDA National Institute of Food and Agriculture Ecology and Evolution of Infectious Grant (number 2021-67015-33407); P.L. from the National Science Foundation (US) number 1313820; and G.J.H. from International Development Research Centre (IDRC), Ottawa, Canada. The views expressed herein do not necessarily represent those of IDRC or its Board of Governors. We thank C. Parry for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.K., N.S. and S.A. conceptualized the idea. T.K., N.S., E.E.A., M.A., C. Barbosa, C. Beale, W.B., E.C., C.C.-M., K.D., A.D., J.D., L.D., N.G., G.H., G.J.H., D.K., P.L., A.B.N., C.L.P., J.P., G.R., I.S., T.S., S.S. and S.A. contributed to the drafting and revision of the paper, and have approved the final draft thereof.

Corresponding authors

Correspondence to Tony Knowles or Nicola Stevens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowles, T., Stevens, N., Amoako, E.E. et al. Viability and desirability of financing conservation in Africa through fire management. Nat Sustain 8, 226–233 (2025). https://doi.org/10.1038/s41893-024-01490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01490-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing