Abstract
Aquaculture in the Amazon holds the potential to meet increasing food demands while offering economic opportunities in a region facing deforestation and biodiversity loss. However, expanding aquaculture in this biodiverse region comes with complex environmental and social trade-offs. This Review explores how aquaculture can support sustainable development by minimizing its environmental impact, promoting equitable livelihoods and enhancing food security. It also highlights key challenges, such as greenhouse gas emissions and land-use changes, that need to be addressed for aquaculture to thrive sustainably in the Amazon.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
FAOSTAT (FAO, 2023).
The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation (FAO, 2022).
Halpern, B. S. et al. The environmental footprint of global food production. Nat. Sustain. 5, 1027 (2022).
Troell, M. et al. Perspectives on aquaculture’s contribution to the sustainable development goals for improved human and planetary health. J. World Aquac. Soc. 54, 251–342 (2023).
Heilpern, S. A. et al. Biodiversity underpins fisheries resilience to exploitation in the Amazon river basin. Proc. R. Soc. B 289, 20220726 (2022).
Skidmore, M. E. et al. Cattle ranchers and deforestation in the Brazilian Amazon: production, ___location, and policies. Glob. Environ. Change 68, 102280 (2021).
Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360 (2021).
McGrath, D. et al. Policy Brief: Can Fish Drive Development of the Amazon Bioeconomy? (Earth Innovation Institute, 2020).
Heilpern, S. A. et al. Nutritional challenges of substituting farmed animals for wild fish in human diets. Environ. Res. Lett. 18, 114030 (2023).
Fiorella, K. J., Okronipa, H., Baker, K. & Heilpern, S. Contemporary aquaculture: implications for human nutrition. Curr. Opin. Biotechnol. 70, 83–90 (2021).
Erickson, C. L. An artificial landscape-scale fishery in the Bolivian Amazon. Nature 408, 190–193 (2000).
Prestes-Carneiro, G., Béarez, P., Shock, M. P., Prümers, H. & Betancourt, C. J. Pre-Hispanic fishing practices in interfluvial Amazonia: zooarchaeological evidence from managed landscapes on the Llanos de Mojos savanna. PLoS ONE 14, e0214638 (2019).
d Santos, G. M. & Pereira, A. M. R. F. Aquicultura no Brasil e Peru, com ênfase na Amazônia; Estresse antropogênico nos maiores rios do mundo: o caso amazônico (Editora INPA, 2021).
Sánchez, A. M., Vayas, T., Mayorga, F. & Freire, C. Pesca y acuicultura en Ecuador (Universidad Técnica de Ambato, 2019).
Sistema IBGE de Recuperação Automática—SIDRA (Brazilian Institute of Geography and Statistics, 2022).
Hilsdorf, A. W. S. et al. The farming and husbandry of Colossoma macropomum: from Amazonian waters to sustainable production. Rev. Aquac. 14, 993–1027 (2022).
Oliveira, M. O. D. S., Luiz, D. D. B., Verdolin Dos Santos, V. R., Silva De Oliveira, E. H. & De Souza Martins, G. A. Aspectos de qualidade e segurança do tambaqui (Colossoma macropomum) e pintado da amazônia (Pseudoplatystoma reticulatum × Leiarius marmoratus). DESAFIOS 6, 10–16 (2019).
Val, A. L. & de Oliveira, A. M. Colossoma macropomum—a tropical fish model for biology and aquaculture. J. Exp. Zool. A 335, 761–770 (2021).
Alves, A. L., Varela, E. S., Moro, G. V. & Kirschnik, L. N. G. Riscos Genéticos da Produção de Híbridos de Peixes Nativos (Embrapa Fisheries and Aquaculture, 2014).
Anuario Estadístico Pesquero y Acuícola 2021 (Ministerio de la Producción, 2022).
Calle Yunis, C. R. et al. Land suitability for sustainable aquaculture of rainbow trout (Oncorhynchus mykiss) in Molinopampa (Peru) based on RS, GIS, and AHP. ISPRS Int. J. Geoinf. 9, 28 (2020).
Ramírez-Gastón, J., Sandoval, N. & Vicente, K. Programa Nacional de Innovación en Pesca y Acuicultura. Fundamentos y Propuesta 2017–2022 (PNIPA, 2018).
Carrera-Quintana, S. C., Gentile, P. & Girón-Hernández, J. An overview on the aquaculture development in Colombia: current status, opportunities and challenges. Aquaculture 561, 738583 (2022).
Santafe-Troncoso, V. & Loring, P. A. Traditional food or biocultural threat? Concerns about the use of tilapia fish in Indigenous cuisine in the Amazonia of Ecuador. People Nat. 3, 887–900 (2021).
Willer, D. F. & Aldridge, D. C. Sustainable bivalve farming can deliver food security in the tropics. Nat. Food 1, 384–388 (2020).
Kosten, S. et al. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Sci. Total Environ. 748, 141247 (2020).
MacLeod, M. J., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 10, 11679 (2020).
Zhang, W. et al. Aquaculture will continue to depend more on land than sea. Nature 603, E2–E4 (2022).
Doria, C. R. D. C. et al. The silent threat of non-native fish in the Amazon: ANNF database and review. Front. Ecol. Evol. 9, 646702 (2021).
Kang, Y., Kim, H.-J. & Moon, C.-H. Eutrophication driven by aquaculture fish farms controls phytoplankton and dinoflagellate cyst abundance in the southern coastal waters of Korea. J. Mar. Sci. Eng. 9, 362 (2021).
Neill, C. & Macedo, M. N. in Into the Twenty-First Century (eds Gutmann, M. C. & Lesser, J.) 167–186 (Univ. California Press, 2016).
Huang, Y. Y. et al. The shift of phosphorus transfers in global fisheries and aquaculture. Nat. Commun. https://doi.org/10.1038/s41467-019-14242-7 (2020).
Rutegwa, M. et al. Diffusive methane emissions from temperate semi-intensive carp ponds. Aquac. Environ. Interact. 11, 19–30 (2019).
Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).
Vroom, R. J. E. et al. Widespread dominance of methane ebullition over diffusion in freshwater aquaculture ponds. Front. Water 5, 1256799 (2023).
Aben, R. C. H. et al. Cross continental increase in methane ebullition under climate change. Nat. Commun. 8, 1682 (2017).
Avadi, A. et al. Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 435, 52–66 (2015).
Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215 (2019).
Freitas, C. E. et al. Death by a thousand cuts: small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environ. Sci. Policy 136, 447–452 (2022).
Burns, M. D. M. et al. Evidence of habitat fragmentation affecting fish movement between the Patos and Mirim coastal lagoons in southern Brazil. Neotrop. Ichthyol. 4, 69–72 (2006).
Gualtieri, C., Abdi, R., Ianniruberto, M., Filizola, N. & Endreny, T. A. A 3D analysis of spatial habitat metrics about the confluence of Negro and Solimōes rivers, Brazil. Ecohydrology https://doi.org/10.1002/eco.2166 (2020).
Doria, C. R. C., Catâneo, D., Torrente-Vilara, G. & Vitule, J. R. S. Is there a future for artisanal fishing in the Amazon? The case of Arapaima gigas. Manage. Biol. Invasion. 11, 1–8 (2020).
Canonico, G. C., Arthington, A., McCrary, J. K. & Thieme, M. L. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 463–483 (2005).
Shuai, F., Li, J. & Lek, S. Nile tilapia (Oreochromis niloticus) invasion impacts trophic position and resource use of commercially harvested piscivorous fishes in a large subtropical river. Ecol. Process. https://doi.org/10.1186/s13717-023-00430-3 (2023).
Peterson, M. S., Slack, W. T. & Woodley, C. M. The occurrence of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent. Wetlands 25, 112–121 (2005).
van der Waal, B. C. W. & Bills, R. Oreochromis niloticus (Teleostei: Cichlidae) now in the Limpopo River system. S. Afr. J. Sci. 96, 47–48 (2000).
Garcia, D. A. Z. et al. The same old mistakes in aquaculture: the newly-available striped catfish Pangasianodon hypophthalmus is on its way to putting Brazilian freshwater ecosystems at risk. Biodivers. Conserv. 27, 3545–3558 (2018).
Barthem, R. B. et al. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles. Sci. Rep. 7, 41784 (2017).
Castello, L., Viana, J. P., Watkins, G., Pinedo-Vasquez, M. & Luzadis, V. A. Lessons from integrating fishers of Arapaima in small-scale fisheries management at the Mamirauá Reserve, Amazon. Environ. Manage. 43, 197–209 (2009).
Burgos-Morán, R. Proposal for a fisheries management plan for the responsible and sustainable use of Arapaima in the Ecuadorian Amazon. Bioamazon Newsl. 16, 1–16 (2021).
Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).
Hora, M. D. A. G. M. D. & Legey, L. F. L. Water resource conflict in the Amazon Region: the case of hydropower generation and multiple water uses in the Tocantins and Araguaia River Basins. Glob. J. Res. Eng. 15, 41–47 (2015).
Valenti, W. C., Barros, H. P., Moraes-Valenti, P., Bueno, G. W. & Cavalli, R. O. Aquaculture in Brazil: past, present and future. Aquac. Rep. https://doi.org/10.1016/j.aqrep.2021.100611 (2021).
Gonçalves, A. P. A., Zuffo, C. E., Goveia, G. R. T. & Santos, O. O. D. Outorgas de recursos hídricos na bacia hidrográfica do Rio Jaru em Rondônia: Amazônia meridional. Rev. Iberoam. de Ciencias Ambientais 12, 279–291 (2021).
Wang, Q. L. et al. Sustainable intensification of small-scale aquaculture production in Myanmar through diversification and better management practices. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/acab16 (2023).
Hishamunda, N., Ridler, N. & Martone, E. Policy and Governance in Aquaculture: Lessons Learned and Way Forward (FAO, 2014).
Gilson, F., Rodrigues, L. A., New, M. B., Bueno, G. W. & Valenti, W. C. A description of the culture of tambatinga (Colossoma macropomum × Piaractus brachypomus) in a South American tropical region and the interaction of farm size with value chains. Aquac. Rep. 34, 101888 (2024).
Abramovay, R. et al. in Amazon Assessment Report Ch. 30 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).
Uddin, M. T., Goswami, A., Rahman, M. S. & Dhar, A. R. How can governance improve efficiency and effectiveness of value chains? An analysis of pangas and tilapia stakeholders in Bangladesh. Aquaculture 510, 206–215 (2019).
Gilson, F., New, M. B., Rodrigues, L. A. & Valenti, W. C. Effect of fish downstream supply chain on wealth creation: the case of tambatinga in the Brazilian Midnorth. Aquac. Int. 31, 1401–1421 (2023).
Garrett, R. et al. Supporting Socio-bioeconomies of Healthy Standing Forests and Flowing Rivers in the Amazon (Science Panel for the Amazon, 2023).
Filipski, M. & Belton, B. Give a man a fishpond: modeling the impacts of aquaculture in the rural economy. World Dev. 110, 205–223 (2018).
Naylor, R., Fang, S. F. R. & Fanzo, J. A global view of aquaculture policy. Food Policy https://doi.org/10.1016/j.foodpol.2023.102422 (2023).
Heilpern, S. A. et al. Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon. Nat. Food 2, 192–197 (2021).
Barbosa, L. M. C. & Scarpassa, V. M. Bionomics and population dynamics of anopheline larvae from an area dominated by fish farming tanks in northern Brazilian Amazon. PLoS ONE https://doi.org/10.1371/journal.pone.0288983 (2023).
dos Reis, I. C. et al. Epidemic and endemic malaria transmission related to fish farming ponds in the Amazon frontier. PLoS ONE 10, e0137521 (2015).
da Silva Júnior, F. M. R. & Dos Santos, M. Haff’s disease in Brazil—the need for scientific follow-up and case notification. Lancet Reg. Health Am. 5, 100100 (2022).
Limbu, S. M., Chen, L. Q., Zhang, M. L. & Du, Z. Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: a review. Rev. Aquac. 13, 1015–1059 (2021).
Izel-Silva, J., Ono, E. A., de Queiroz, M. N., dos Santos, R. B. & Affonso, E. G. Aeration strategy in the intensive culture of Ttambaqui, Colossoma macropomum, in the tropics. Aquaculture https://doi.org/10.1016/j.aquaculture.2020.735644 (2020).
Sumaila, U. R. et al. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).
Goto, G. M., Corwin, E., Farthing, A., Lubis, A. R. & Klinger, D. H. A nature-based solutions approach to managing shrimp aquaculture effluent. PLoS Sustain. Transform. 2, e0000076 (2023).
Baralon, J. et al. Conservation Finance 2021: An Unfolding Opportunity (Coalition for Private Investment in Conservation, 2021).
Sumaila, U. R. et al. WTO must ban harmful fisheries subsidies. Science 374, 544 (2021).
Anuário 2022 da Piscicultura (PeixeBR, 2022).
Cacho, J. Q. et al. Anuario Estadístico Oesquero y Acuícola 2021 (Ministerio de La Producción, 2022).
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987 (2018).
Cederberg, C., Meyer, D. & Flysjö, A. Life Cycle Inventory of Greenhouse Gas Emissions and Use of Land and Energy in Brazilian Beef Production (SIK Institutet för livsmedel och bioteknik, 2009).
Santos, A. A. O., Aubin, J., Corson, M. S., Valenti, W. C. & Camargo, A. F. M. Comparing environmental impacts of native and introduced freshwater prawn farming in Brazil and the influence of better effluent management using LCA. Aquaculture 444, 151–159 (2015).
Medeiros, M. V., Aubin, J. & Camargo, A. F. M. Life cycle assessment of fish and prawn production: comparison of monoculture and polyculture freshwater systems in Brazil. J. Clean. Prod. 156, 528–537 (2017).
Vogel, E. et al. Production of exotic fish and Brazilian hybrids in similar conditions: are there considerable differences of environmental performance? Aquaculture https://doi.org/10.1016/j.aquaculture.2019.734422 (2019).
Dick, M. et al. Environmental impacts of Brazilian beef cattle production in the Amazon, Cerrado, Pampa, and Pantanal biomes. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.127750 (2021).
Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).
Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Change 11, 1027–1034 (2021).
Lefebvre, D. et al. Assessing the carbon capture potential of a reforestation project. Sci. Rep. 11, 19907 (2021).
Colombia Resolúcion n 22887 of December 2, 2015 Por la Cual se Declaran Unas Especies de Peces como Domesticadas para el Desarrollo de la Acuicultura y se Dictan Otras Disposiciones (Autoridad Nacional de Acuicultura y Pesca, 2015).
Padial, A. A. et al. The ‘Tilapia Law’ encouraging non-native fish threatens Amazonian River basins. Biodivers. Conserv 26, 243–246 (2017).
Pelicice, F. M., Vitule, J. R. S., Lima, D. P., Orsi, M. L. & Agostinho, A. A. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conserv Lett. 7, 55–60 (2014).
El-Sayed, A.-F. M. Tilapia culture (CABI, 2006).
Little, D. & Edwards, P. Integrated Livestock Fish Farming Systems (FAO, 2003).
Heilpern, S. A. et al. Species trait diversity sustains multiple dietary nutrients supplied by freshwater fisheries. Ecol. Lett. 26, 1887–1897 (2023).
Tregidgo, D. J., Barlow, J., Pompeu, P. S., Rocha, M. D. & Parry, L. Rainforest metropolis casts 1,000 km defaunation shadow. Proc, Natl Acad. Sci. USA 114, 8655–8659 (2017).
Valderrama, D. & Anderson, J. L. Market interactions between aquaculture and common-property fisheries: recent evidence from the Bristol Bay sockeye salmon fishery in Alaska. J. Environ. Econ. Manage. 59, 115–128 (2010).
Longo, S. B., Clark, B., York, R. & Jorgenson, A. K. Aquaculture and the displacement of fisheries captures. Conserv. Biol. 33, 832–841 (2019).
Nahuelhual, L. et al. Is there a blue transition underway? Fish Fish. 20, 584–595 (2019).
Cottrell, R. S., Ferraro, D. M., Blasco, G. D., Halpern, B. S. & Froehlich, H. E. The search for blue transitions in aquaculture-dominant countries. Fish Fish. 22, 1006–1023 (2021).
Froehlich, H. E. et al. Biological life-history and farming scenarios of marine aquaculture to help reduce wild marine fishing pressure. Fish Fish. 24, 1034–1047 (2023).
Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food https://doi.org/10.1038/s43016-020-0078-x (2020).
Roberts, S., Jacquet, J., Majluf, P. & Hayek, M. N. Feeding global aquaculture. Sci. Adv. 10, eadn9698 (2024).
Asche, F., Eggert, H., Oglend, A., Roheim, C. A. & Smith, M. D. Aquaculture: externalities and policy options. Rev. Environ. Econ. Policy 16, 282–305 (2022).
Acknowledgements
This work was supported by Schmidt Sciences via Eric and Wendy Schmidt AI in Science Postdoctoral Fellowships to F.S.P. and S.A.H. and AI2050 Senior Fellowship to C.P.G.; the Cornell Atkinson Center for Sustainability (Academic Venture Fund to A.S.F., K.J.F., C.P.G., S.A.S. and X.X.); the Air Force Office of Scientific Research (AFOSR) (awards FA9550-23-1-0322, FA9550-23-1-0569 to C.P.G.); the National Science Foundation (NSF) and National Institute of Food and Agriculture (USDA-NIFA) (AI-CLIMATE, award 2023-67021-39829 to C.P.G.); Minas Gerais State Agency for Research and Development (awards APQ-02.629-21, APQ-02946-23 to N.O.B.); Brazil’s National Council for Scientific and Technological Development (CNPq) (award 316265/2021-7 to N.O.B. and research productivity award 304501/2023-9 to C.D.); the Large-Scale Biosphere-Atmosphere Research Program in the Amazon (LBA Program) (award to B.R.F.); and the São Paulo Research Foundation (FAPESP), the Rondônia Research Foundation (FAPERO) and the Tocantins Research Foundation (FAPT) (Amazon+10 Initiative, awards 2022/10443-6, 0012.067737/2022-97 to F.S.P., S.A.H., R.M.A., S.A.S., M.M., N.O.B., J.C., C.C., C.R.D., B.R.F., D.M., J.P.H.B.O., A.T., M.E.U. and A.S.F.).
Author information
Authors and Affiliations
Contributions
F.S.P., S.A.H., R.M.A., S.A.S., M.M., N.R. and A.S.F. conceptualized the study. F.S.P. collated information with support from C.D. and S.A.H. F.S.P. wrote the original draft and designed the figures with substantial input from S.A.H., R.M.A., S.A.S., M.M., N.R. and A.S.F. N.O.B., J.C., C.C., C.R.D., J.F., K.J.F., B.R.F., M.G., L.G., M.H., D.M., P.B.M., P.M.-V., I.O., J.P.H.B.O., F.R., A.T., M.E.U., W.C.V., X.X. and C.P.G. provided input and reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Sustainability thanks Richard Cottrell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2, Table 1 and references.
Source data
Source Data Fig. 1
Source data for Fig. 1.
Source Data Fig. 3
Source data for Fig. 3.
Source Data Fig. 5
Source data for Fig. 5.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pacheco, F.S., Heilpern, S.A., DiLeo, C. et al. Towards sustainable aquaculture in the Amazon. Nat Sustain 8, 234–244 (2025). https://doi.org/10.1038/s41893-024-01500-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41893-024-01500-w
This article is cited by
-
Assessing the sustainability of pond-based tilapia farming in a subtropical region
Aquaculture International (2025)