Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards sustainable aquaculture in the Amazon

Abstract

Aquaculture in the Amazon holds the potential to meet increasing food demands while offering economic opportunities in a region facing deforestation and biodiversity loss. However, expanding aquaculture in this biodiverse region comes with complex environmental and social trade-offs. This Review explores how aquaculture can support sustainable development by minimizing its environmental impact, promoting equitable livelihoods and enhancing food security. It also highlights key challenges, such as greenhouse gas emissions and land-use changes, that need to be addressed for aquaculture to thrive sustainably in the Amazon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aquaculture is the fastest-growing animal-sourced food system across the five Amazonian countries.
Fig. 2: Aquaculture in the Amazon fits two typologies: extensive, which tends to be developed in subsistence and small-scale systems, and semi-intensive, developed in medium- and large-scale systems.
Fig. 3: Life-cycle assessment suggests aquaculture generally has lower GHG emissions and requires less land compared with traditional livestock, suggesting a smaller environmental footprint for farmed fish species.
Fig. 4: Satellite images from 2013 and 2022 from three sites with constructed fish ponds in Rondônia reveal myriad land-use transitions associated with expanding aquaculture, which need to be integrated into land-use and GHG accounting.
Fig. 5: Ratio of freshwater aquaculture production to cattle production by weight in various Amazon Brazilian states and countries, highlighting the scale and trend of aquaculture compared with traditional cattle farming.

Similar content being viewed by others

References

  1. FAOSTAT (FAO, 2023).

  2. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation (FAO, 2022).

  3. Halpern, B. S. et al. The environmental footprint of global food production. Nat. Sustain. 5, 1027 (2022).

    Article  Google Scholar 

  4. Troell, M. et al. Perspectives on aquaculture’s contribution to the sustainable development goals for improved human and planetary health. J. World Aquac. Soc. 54, 251–342 (2023).

    Article  Google Scholar 

  5. Heilpern, S. A. et al. Biodiversity underpins fisheries resilience to exploitation in the Amazon river basin. Proc. R. Soc. B 289, 20220726 (2022).

    Article  Google Scholar 

  6. Skidmore, M. E. et al. Cattle ranchers and deforestation in the Brazilian Amazon: production, ___location, and policies. Glob. Environ. Change 68, 102280 (2021).

    Article  Google Scholar 

  7. Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360 (2021).

    Article  CAS  Google Scholar 

  8. McGrath, D. et al. Policy Brief: Can Fish Drive Development of the Amazon Bioeconomy? (Earth Innovation Institute, 2020).

  9. Heilpern, S. A. et al. Nutritional challenges of substituting farmed animals for wild fish in human diets. Environ. Res. Lett. 18, 114030 (2023).

    Article  Google Scholar 

  10. Fiorella, K. J., Okronipa, H., Baker, K. & Heilpern, S. Contemporary aquaculture: implications for human nutrition. Curr. Opin. Biotechnol. 70, 83–90 (2021).

    Article  CAS  Google Scholar 

  11. Erickson, C. L. An artificial landscape-scale fishery in the Bolivian Amazon. Nature 408, 190–193 (2000).

    Article  CAS  Google Scholar 

  12. Prestes-Carneiro, G., Béarez, P., Shock, M. P., Prümers, H. & Betancourt, C. J. Pre-Hispanic fishing practices in interfluvial Amazonia: zooarchaeological evidence from managed landscapes on the Llanos de Mojos savanna. PLoS ONE 14, e0214638 (2019).

    Article  CAS  Google Scholar 

  13. d Santos, G. M. & Pereira, A. M. R. F. Aquicultura no Brasil e Peru, com ênfase na Amazônia; Estresse antropogênico nos maiores rios do mundo: o caso amazônico (Editora INPA, 2021).

  14. Sánchez, A. M., Vayas, T., Mayorga, F. & Freire, C. Pesca y acuicultura en Ecuador (Universidad Técnica de Ambato, 2019).

  15. Sistema IBGE de Recuperação Automática—SIDRA (Brazilian Institute of Geography and Statistics, 2022).

  16. Hilsdorf, A. W. S. et al. The farming and husbandry of Colossoma macropomum: from Amazonian waters to sustainable production. Rev. Aquac. 14, 993–1027 (2022).

    Article  Google Scholar 

  17. Oliveira, M. O. D. S., Luiz, D. D. B., Verdolin Dos Santos, V. R., Silva De Oliveira, E. H. & De Souza Martins, G. A. Aspectos de qualidade e segurança do tambaqui (Colossoma macropomum) e pintado da amazônia (Pseudoplatystoma reticulatum × Leiarius marmoratus). DESAFIOS 6, 10–16 (2019).

    Google Scholar 

  18. Val, A. L. & de Oliveira, A. M. Colossoma macropomum—a tropical fish model for biology and aquaculture. J. Exp. Zool. A 335, 761–770 (2021).

    Article  CAS  Google Scholar 

  19. Alves, A. L., Varela, E. S., Moro, G. V. & Kirschnik, L. N. G. Riscos Genéticos da Produção de Híbridos de Peixes Nativos (Embrapa Fisheries and Aquaculture, 2014).

  20. Anuario Estadístico Pesquero y Acuícola 2021 (Ministerio de la Producción, 2022).

  21. Calle Yunis, C. R. et al. Land suitability for sustainable aquaculture of rainbow trout (Oncorhynchus mykiss) in Molinopampa (Peru) based on RS, GIS, and AHP. ISPRS Int. J. Geoinf. 9, 28 (2020).

    Article  Google Scholar 

  22. Ramírez-Gastón, J., Sandoval, N. & Vicente, K. Programa Nacional de Innovación en Pesca y Acuicultura. Fundamentos y Propuesta 2017–2022 (PNIPA, 2018).

  23. Carrera-Quintana, S. C., Gentile, P. & Girón-Hernández, J. An overview on the aquaculture development in Colombia: current status, opportunities and challenges. Aquaculture 561, 738583 (2022).

    Article  Google Scholar 

  24. Santafe-Troncoso, V. & Loring, P. A. Traditional food or biocultural threat? Concerns about the use of tilapia fish in Indigenous cuisine in the Amazonia of Ecuador. People Nat. 3, 887–900 (2021).

    Article  Google Scholar 

  25. Willer, D. F. & Aldridge, D. C. Sustainable bivalve farming can deliver food security in the tropics. Nat. Food 1, 384–388 (2020).

    Article  Google Scholar 

  26. Kosten, S. et al. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Sci. Total Environ. 748, 141247 (2020).

    Article  CAS  Google Scholar 

  27. MacLeod, M. J., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 10, 11679 (2020).

    Article  CAS  Google Scholar 

  28. Zhang, W. et al. Aquaculture will continue to depend more on land than sea. Nature 603, E2–E4 (2022).

    Article  CAS  Google Scholar 

  29. Doria, C. R. D. C. et al. The silent threat of non-native fish in the Amazon: ANNF database and review. Front. Ecol. Evol. 9, 646702 (2021).

    Article  Google Scholar 

  30. Kang, Y., Kim, H.-J. & Moon, C.-H. Eutrophication driven by aquaculture fish farms controls phytoplankton and dinoflagellate cyst abundance in the southern coastal waters of Korea. J. Mar. Sci. Eng. 9, 362 (2021).

    Article  Google Scholar 

  31. Neill, C. & Macedo, M. N. in Into the Twenty-First Century (eds Gutmann, M. C. & Lesser, J.) 167–186 (Univ. California Press, 2016).

  32. Huang, Y. Y. et al. The shift of phosphorus transfers in global fisheries and aquaculture. Nat. Commun. https://doi.org/10.1038/s41467-019-14242-7 (2020).

  33. Rutegwa, M. et al. Diffusive methane emissions from temperate semi-intensive carp ponds. Aquac. Environ. Interact. 11, 19–30 (2019).

    Article  Google Scholar 

  34. Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).

    Article  CAS  Google Scholar 

  35. Vroom, R. J. E. et al. Widespread dominance of methane ebullition over diffusion in freshwater aquaculture ponds. Front. Water 5, 1256799 (2023).

    Article  Google Scholar 

  36. Aben, R. C. H. et al. Cross continental increase in methane ebullition under climate change. Nat. Commun. 8, 1682 (2017).

    Article  Google Scholar 

  37. Avadi, A. et al. Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 435, 52–66 (2015).

    Article  Google Scholar 

  38. Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).

    Article  CAS  Google Scholar 

  39. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215 (2019).

    Article  CAS  Google Scholar 

  40. Freitas, C. E. et al. Death by a thousand cuts: small local dams can produce large regional impacts in the Brazilian Legal Amazon. Environ. Sci. Policy 136, 447–452 (2022).

    Article  Google Scholar 

  41. Burns, M. D. M. et al. Evidence of habitat fragmentation affecting fish movement between the Patos and Mirim coastal lagoons in southern Brazil. Neotrop. Ichthyol. 4, 69–72 (2006).

    Article  Google Scholar 

  42. Gualtieri, C., Abdi, R., Ianniruberto, M., Filizola, N. & Endreny, T. A. A 3D analysis of spatial habitat metrics about the confluence of Negro and Solimōes rivers, Brazil. Ecohydrology https://doi.org/10.1002/eco.2166 (2020).

  43. Doria, C. R. C., Catâneo, D., Torrente-Vilara, G. & Vitule, J. R. S. Is there a future for artisanal fishing in the Amazon? The case of Arapaima gigas. Manage. Biol. Invasion. 11, 1–8 (2020).

    Article  Google Scholar 

  44. Canonico, G. C., Arthington, A., McCrary, J. K. & Thieme, M. L. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 463–483 (2005).

    Article  Google Scholar 

  45. Shuai, F., Li, J. & Lek, S. Nile tilapia (Oreochromis niloticus) invasion impacts trophic position and resource use of commercially harvested piscivorous fishes in a large subtropical river. Ecol. Process. https://doi.org/10.1186/s13717-023-00430-3 (2023).

  46. Peterson, M. S., Slack, W. T. & Woodley, C. M. The occurrence of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent. Wetlands 25, 112–121 (2005).

    Article  Google Scholar 

  47. van der Waal, B. C. W. & Bills, R. Oreochromis niloticus (Teleostei: Cichlidae) now in the Limpopo River system. S. Afr. J. Sci. 96, 47–48 (2000).

    Google Scholar 

  48. Garcia, D. A. Z. et al. The same old mistakes in aquaculture: the newly-available striped catfish Pangasianodon hypophthalmus is on its way to putting Brazilian freshwater ecosystems at risk. Biodivers. Conserv. 27, 3545–3558 (2018).

    Article  Google Scholar 

  49. Barthem, R. B. et al. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles. Sci. Rep. 7, 41784 (2017).

    Article  CAS  Google Scholar 

  50. Castello, L., Viana, J. P., Watkins, G., Pinedo-Vasquez, M. & Luzadis, V. A. Lessons from integrating fishers of Arapaima in small-scale fisheries management at the Mamirauá Reserve, Amazon. Environ. Manage. 43, 197–209 (2009).

    Article  Google Scholar 

  51. Burgos-Morán, R. Proposal for a fisheries management plan for the responsible and sustainable use of Arapaima in the Ecuadorian Amazon. Bioamazon Newsl. 16, 1–16 (2021).

    Google Scholar 

  52. Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Article  CAS  Google Scholar 

  53. Hora, M. D. A. G. M. D. & Legey, L. F. L. Water resource conflict in the Amazon Region: the case of hydropower generation and multiple water uses in the Tocantins and Araguaia River Basins. Glob. J. Res. Eng. 15, 41–47 (2015).

    Google Scholar 

  54. Valenti, W. C., Barros, H. P., Moraes-Valenti, P., Bueno, G. W. & Cavalli, R. O. Aquaculture in Brazil: past, present and future. Aquac. Rep. https://doi.org/10.1016/j.aqrep.2021.100611 (2021).

  55. Gonçalves, A. P. A., Zuffo, C. E., Goveia, G. R. T. & Santos, O. O. D. Outorgas de recursos hídricos na bacia hidrográfica do Rio Jaru em Rondônia: Amazônia meridional. Rev. Iberoam. de Ciencias Ambientais 12, 279–291 (2021).

    Google Scholar 

  56. Wang, Q. L. et al. Sustainable intensification of small-scale aquaculture production in Myanmar through diversification and better management practices. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/acab16 (2023).

  57. Hishamunda, N., Ridler, N. & Martone, E. Policy and Governance in Aquaculture: Lessons Learned and Way Forward (FAO, 2014).

  58. Gilson, F., Rodrigues, L. A., New, M. B., Bueno, G. W. & Valenti, W. C. A description of the culture of tambatinga (Colossoma macropomum × Piaractus brachypomus) in a South American tropical region and the interaction of farm size with value chains. Aquac. Rep. 34, 101888 (2024).

    Article  Google Scholar 

  59. Abramovay, R. et al. in Amazon Assessment Report Ch. 30 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).

  60. Uddin, M. T., Goswami, A., Rahman, M. S. & Dhar, A. R. How can governance improve efficiency and effectiveness of value chains? An analysis of pangas and tilapia stakeholders in Bangladesh. Aquaculture 510, 206–215 (2019).

    Article  Google Scholar 

  61. Gilson, F., New, M. B., Rodrigues, L. A. & Valenti, W. C. Effect of fish downstream supply chain on wealth creation: the case of tambatinga in the Brazilian Midnorth. Aquac. Int. 31, 1401–1421 (2023).

    Article  Google Scholar 

  62. Garrett, R. et al. Supporting Socio-bioeconomies of Healthy Standing Forests and Flowing Rivers in the Amazon (Science Panel for the Amazon, 2023).

  63. Filipski, M. & Belton, B. Give a man a fishpond: modeling the impacts of aquaculture in the rural economy. World Dev. 110, 205–223 (2018).

    Article  Google Scholar 

  64. Naylor, R., Fang, S. F. R. & Fanzo, J. A global view of aquaculture policy. Food Policy https://doi.org/10.1016/j.foodpol.2023.102422 (2023).

  65. Heilpern, S. A. et al. Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon. Nat. Food 2, 192–197 (2021).

    Article  Google Scholar 

  66. Barbosa, L. M. C. & Scarpassa, V. M. Bionomics and population dynamics of anopheline larvae from an area dominated by fish farming tanks in northern Brazilian Amazon. PLoS ONE https://doi.org/10.1371/journal.pone.0288983 (2023).

  67. dos Reis, I. C. et al. Epidemic and endemic malaria transmission related to fish farming ponds in the Amazon frontier. PLoS ONE 10, e0137521 (2015).

    Article  Google Scholar 

  68. da Silva Júnior, F. M. R. & Dos Santos, M. Haff’s disease in Brazil—the need for scientific follow-up and case notification. Lancet Reg. Health Am. 5, 100100 (2022).

    Google Scholar 

  69. Limbu, S. M., Chen, L. Q., Zhang, M. L. & Du, Z. Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: a review. Rev. Aquac. 13, 1015–1059 (2021).

    Article  Google Scholar 

  70. Izel-Silva, J., Ono, E. A., de Queiroz, M. N., dos Santos, R. B. & Affonso, E. G. Aeration strategy in the intensive culture of Ttambaqui, Colossoma macropomum, in the tropics. Aquaculture https://doi.org/10.1016/j.aquaculture.2020.735644 (2020).

  71. Sumaila, U. R. et al. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).

    Article  CAS  Google Scholar 

  72. Goto, G. M., Corwin, E., Farthing, A., Lubis, A. R. & Klinger, D. H. A nature-based solutions approach to managing shrimp aquaculture effluent. PLoS Sustain. Transform. 2, e0000076 (2023).

    Article  Google Scholar 

  73. Baralon, J. et al. Conservation Finance 2021: An Unfolding Opportunity (Coalition for Private Investment in Conservation, 2021).

  74. Sumaila, U. R. et al. WTO must ban harmful fisheries subsidies. Science 374, 544 (2021).

    Article  CAS  Google Scholar 

  75. Anuário 2022 da Piscicultura (PeixeBR, 2022).

  76. Cacho, J. Q. et al. Anuario Estadístico Oesquero y Acuícola 2021 (Ministerio de La Producción, 2022).

  77. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987 (2018).

    Article  CAS  Google Scholar 

  78. Cederberg, C., Meyer, D. & Flysjö, A. Life Cycle Inventory of Greenhouse Gas Emissions and Use of Land and Energy in Brazilian Beef Production (SIK Institutet för livsmedel och bioteknik, 2009).

  79. Santos, A. A. O., Aubin, J., Corson, M. S., Valenti, W. C. & Camargo, A. F. M. Comparing environmental impacts of native and introduced freshwater prawn farming in Brazil and the influence of better effluent management using LCA. Aquaculture 444, 151–159 (2015).

    Article  Google Scholar 

  80. Medeiros, M. V., Aubin, J. & Camargo, A. F. M. Life cycle assessment of fish and prawn production: comparison of monoculture and polyculture freshwater systems in Brazil. J. Clean. Prod. 156, 528–537 (2017).

    Article  Google Scholar 

  81. Vogel, E. et al. Production of exotic fish and Brazilian hybrids in similar conditions: are there considerable differences of environmental performance? Aquaculture https://doi.org/10.1016/j.aquaculture.2019.734422 (2019).

  82. Dick, M. et al. Environmental impacts of Brazilian beef cattle production in the Amazon, Cerrado, Pampa, and Pantanal biomes. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.127750 (2021).

  83. Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    Article  CAS  Google Scholar 

  84. Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Change 11, 1027–1034 (2021).

    Article  Google Scholar 

  85. Lefebvre, D. et al. Assessing the carbon capture potential of a reforestation project. Sci. Rep. 11, 19907 (2021).

    Article  CAS  Google Scholar 

  86. Colombia Resolúcion n 22887 of December 2, 2015 Por la Cual se Declaran Unas Especies de Peces como Domesticadas para el Desarrollo de la Acuicultura y se Dictan Otras Disposiciones (Autoridad Nacional de Acuicultura y Pesca, 2015).

  87. Padial, A. A. et al. The ‘Tilapia Law’ encouraging non-native fish threatens Amazonian River basins. Biodivers. Conserv 26, 243–246 (2017).

    Article  Google Scholar 

  88. Pelicice, F. M., Vitule, J. R. S., Lima, D. P., Orsi, M. L. & Agostinho, A. A. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conserv Lett. 7, 55–60 (2014).

    Article  Google Scholar 

  89. El-Sayed, A.-F. M. Tilapia culture (CABI, 2006).

  90. Little, D. & Edwards, P. Integrated Livestock Fish Farming Systems (FAO, 2003).

  91. Heilpern, S. A. et al. Species trait diversity sustains multiple dietary nutrients supplied by freshwater fisheries. Ecol. Lett. 26, 1887–1897 (2023).

    Article  Google Scholar 

  92. Tregidgo, D. J., Barlow, J., Pompeu, P. S., Rocha, M. D. & Parry, L. Rainforest metropolis casts 1,000 km defaunation shadow. Proc, Natl Acad. Sci. USA 114, 8655–8659 (2017).

    Article  CAS  Google Scholar 

  93. Valderrama, D. & Anderson, J. L. Market interactions between aquaculture and common-property fisheries: recent evidence from the Bristol Bay sockeye salmon fishery in Alaska. J. Environ. Econ. Manage. 59, 115–128 (2010).

    Article  Google Scholar 

  94. Longo, S. B., Clark, B., York, R. & Jorgenson, A. K. Aquaculture and the displacement of fisheries captures. Conserv. Biol. 33, 832–841 (2019).

    Article  Google Scholar 

  95. Nahuelhual, L. et al. Is there a blue transition underway? Fish Fish. 20, 584–595 (2019).

    Article  Google Scholar 

  96. Cottrell, R. S., Ferraro, D. M., Blasco, G. D., Halpern, B. S. & Froehlich, H. E. The search for blue transitions in aquaculture-dominant countries. Fish Fish. 22, 1006–1023 (2021).

    Article  Google Scholar 

  97. Froehlich, H. E. et al. Biological life-history and farming scenarios of marine aquaculture to help reduce wild marine fishing pressure. Fish Fish. 24, 1034–1047 (2023).

    Article  Google Scholar 

  98. Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food https://doi.org/10.1038/s43016-020-0078-x (2020).

  99. Roberts, S., Jacquet, J., Majluf, P. & Hayek, M. N. Feeding global aquaculture. Sci. Adv. 10, eadn9698 (2024).

    Article  Google Scholar 

  100. Asche, F., Eggert, H., Oglend, A., Roheim, C. A. & Smith, M. D. Aquaculture: externalities and policy options. Rev. Environ. Econ. Policy 16, 282–305 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Schmidt Sciences via Eric and Wendy Schmidt AI in Science Postdoctoral Fellowships to F.S.P. and S.A.H. and AI2050 Senior Fellowship to C.P.G.; the Cornell Atkinson Center for Sustainability (Academic Venture Fund to A.S.F., K.J.F., C.P.G., S.A.S. and X.X.); the Air Force Office of Scientific Research (AFOSR) (awards FA9550-23-1-0322, FA9550-23-1-0569 to C.P.G.); the National Science Foundation (NSF) and National Institute of Food and Agriculture (USDA-NIFA) (AI-CLIMATE, award 2023-67021-39829 to C.P.G.); Minas Gerais State Agency for Research and Development (awards APQ-02.629-21, APQ-02946-23 to N.O.B.); Brazil’s National Council for Scientific and Technological Development (CNPq) (award 316265/2021-7 to N.O.B. and research productivity award 304501/2023-9 to C.D.); the Large-Scale Biosphere-Atmosphere Research Program in the Amazon (LBA Program) (award to B.R.F.); and the São Paulo Research Foundation (FAPESP), the Rondônia Research Foundation (FAPERO) and the Tocantins Research Foundation (FAPT) (Amazon+10 Initiative, awards 2022/10443-6, 0012.067737/2022-97 to F.S.P., S.A.H., R.M.A., S.A.S., M.M., N.O.B., J.C., C.C., C.R.D., B.R.F., D.M., J.P.H.B.O., A.T., M.E.U. and A.S.F.).

Author information

Authors and Affiliations

Authors

Contributions

F.S.P., S.A.H., R.M.A., S.A.S., M.M., N.R. and A.S.F. conceptualized the study. F.S.P. collated information with support from C.D. and S.A.H. F.S.P. wrote the original draft and designed the figures with substantial input from S.A.H., R.M.A., S.A.S., M.M., N.R. and A.S.F. N.O.B., J.C., C.C., C.R.D., J.F., K.J.F., B.R.F., M.G., L.G., M.H., D.M., P.B.M., P.M.-V., I.O., J.P.H.B.O., F.R., A.T., M.E.U., W.C.V., X.X. and C.P.G. provided input and reviewed the manuscript.

Corresponding author

Correspondence to Felipe S. Pacheco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Richard Cottrell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Table 1 and references.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, F.S., Heilpern, S.A., DiLeo, C. et al. Towards sustainable aquaculture in the Amazon. Nat Sustain 8, 234–244 (2025). https://doi.org/10.1038/s41893-024-01500-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01500-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene