Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advancing membrane technology in organic liquids towards a sustainable future

Abstract

Membrane technology holds enormous potential for reducing the energy consumption of various separation processes. It is of particular importance for energy-intensive industrial separation processes in organic liquids, such as crude oil fractionation. Most recent developments have focused on identifying ground-breaking materials that provide outstanding stability and rapid separation. However, the sustainability implications of such performance optimizations remain unclear. This Review aims to highlight how membrane technology can drive sustainability and steer industries towards a sustainable future. In particular, it provides perspectives on promising materials, manufacturing processes and industrial applications with respect to energy saving, process intensification and environmental impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Six SDGs for the membrane industry, cross-referenced to the 17 SDGs from the United Nations.
Fig. 2: The strategy of materials developments for precise separation.
Fig. 3: Representative examples of developing advanced membrane processes for various applications at different TRLs that can reduce energy consumption compared with conventional technologies.
Fig. 4: The overall flow to achieve sustainable membrane industry from material design to resource circulation.
Fig. 5: Future perspective of six SDGs for membrane separation.

Similar content being viewed by others

References

  1. Burke, D. W., Jiang, Z., Livingston, A. G. & Dichtel, W. R. 2D covalent organic framework membranes for liquid-phase molecular separations: state of the field, common pitfalls, and future opportunities. Adv. Mater. 36, 2300525 (2024).

    Article  CAS  Google Scholar 

  2. Huang, T. et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat. Commun. 11, 5882 (2020).

    Article  CAS  Google Scholar 

  3. Li, X. et al. Metal–organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 46, 7124–7144 (2017).

    Article  CAS  Google Scholar 

  4. Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).

    Article  CAS  Google Scholar 

  5. Zhang, C. & Koros, W. J. Zeolitic imidazolate framework-enabled membranes: challenges and opportunities. J. Phys. Chem. Lett. 6, 3841–3849 (2015).

    Article  CAS  Google Scholar 

  6. Zhang, C., Wu, B. H., Ma, M. Q., Wang, Z. & Xu, Z. K. Ultrathin metal/covalent-organic framework membranes towards ultimate separation. Chem. Soc. Rev. 48, 3811–3841 (2019).

    Article  CAS  Google Scholar 

  7. Comesaña-Gándara, B. et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 12, 2733–2740 (2019).

    Article  Google Scholar 

  8. Kim, S. & Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015).

    Article  CAS  Google Scholar 

  9. Thompson, K. A. et al. N-aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369, 310–315 (2020).

    Article  CAS  Google Scholar 

  10. Chisca, S. et al. Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science 376, 1105–1110 (2022).

    Article  CAS  Google Scholar 

  11. Jiang, Z. et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 609, 58–64 (2022).

    Article  CAS  Google Scholar 

  12. He, A. et al. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022).

    Article  CAS  Google Scholar 

  13. Li, S. et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 377, 1555–1561 (2022).

    Article  CAS  Google Scholar 

  14. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    Article  CAS  Google Scholar 

  15. Clarke, C. J., Tu, W. C., Levers, O., Brohl, A. & Hallett, J. P. Green and sustainable solvents in chemical processes. Chem. Rev. 118, 747–800 (2018).

    Article  CAS  Google Scholar 

  16. Nguyen Thi, H. Y. et al. Closing the sustainable life cycle loop of membrane technology via a cellulose biomass platform. ACS Sustain. Chem. Eng. 10, 2532–2544 (2022).

    Article  CAS  Google Scholar 

  17. Razali, M. et al. Sustainable wastewater treatment and recycling in membrane manufacturing. Green. Chem. 17, 5196–5205 (2015).

    Article  CAS  Google Scholar 

  18. Hardian, R., Alammar, A., Holtzl, T. & Szekely, G. Fabrication of sustainable organic solvent nanofiltration membranes using cellulose–chitosan biopolymer blends. J. Membr. Sci. 658, 120743 (2022).

    Article  CAS  Google Scholar 

  19. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  20. Sola, I., Zarzo, D. & Sánchez-Lizaso, J. L. Evaluating environmental requirements for the management of brine discharges in Spain. Desalination 471, 114132 (2019).

    Article  CAS  Google Scholar 

  21. Sola, I. et al. Review of the management of brine discharges in Spain. Ocean Coast. Manage. 196, 105301 (2020).

    Article  Google Scholar 

  22. da Silva Burgal, J., Peeva, L. & Livingston, A. Negligible ageing in poly(ether–ether–ketone) membranes widens application range for solvent processing. J. Membr. Sci. 525, 48–56 (2017).

    Article  Google Scholar 

  23. Sultan, Z. et al. Membrane fractionation of liquors from lignin-first biorefining. ChemSusChem 12, 1203–1212 (2019).

    Article  CAS  Google Scholar 

  24. Koros, W. J. & Lively, R. P. Water and beyond: expanding the spectrum of large-scale energy efficient separation processes. AIChE J. 58, 2624–2633 (2012).

    Article  CAS  Google Scholar 

  25. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  Google Scholar 

  26. Lin, S. Energy efficiency of desalination: fundamental insights from intuitive interpretation. Environ. Sci. Technol. 54, 76–84 (2020).

    Article  CAS  Google Scholar 

  27. Fathizadeh, M., Xu, W. W. L., Zhou, F. L., Yoon, Y. & Yu, M. Graphene oxide: a novel 2-dimensional material in membrane separation for water purification. Adv. Mater. Interfaces 4, 1600918 (2017).

    Article  Google Scholar 

  28. Tang, C. Y., Zhao, Y., Wang, R., Hélix-Nielsen, C. & Fane, A. G. Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308, 34–40 (2013).

    Article  CAS  Google Scholar 

  29. Thompson, K. A., Mathias, R., Lively, R. P. & Finn, M. G. Structure–function relationships in membrane-based hydrocarbon separations using N-Aryl-linked spirocyclic polymers. Chem. Mater. 35, 3464–3469 (2023).

    Article  CAS  Google Scholar 

  30. Li, X. et al. Polycage membranes for precise molecular separation and catalysis. Nat. Commun. 14, 3112 (2023).

    Article  CAS  Google Scholar 

  31. Sanders, D. E. et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761 (2013).

    Article  CAS  Google Scholar 

  32. Galizia, M. et al. Polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50, 7809–7843 (2017).

    Article  CAS  Google Scholar 

  33. Abdulhamid, M. A. & Szekely, G. Organic solvent nanofiltration membranes based on polymers of intrinsic microporosity. Curr. Opin. Chem. Eng. 36, 100804 (2022).

    Article  Google Scholar 

  34. Olsson, J. S., Pham, T. H. & Jannasch, P. Poly(arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability, and conductivity. Adv. Funct. Mater. 28, 1702758 (2017).

    Article  Google Scholar 

  35. Chen, N. et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat. Commun. 12, 2367 (2021).

    Article  CAS  Google Scholar 

  36. Huang, C. J., Yang, B. M., Chen, K. S., Chang, C. C. & Kao, C. M. Application of membrane technology on semiconductor wastewater reclamation: a pilot-scale study. Desalination 278, 203–210 (2011).

    Article  CAS  Google Scholar 

  37. Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S. & Leckie, J. O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ. Sci. Technol. 40, 7343–7349 (2006).

    Article  CAS  Google Scholar 

  38. Kisszekelyi, P. et al. Selective electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran: from mechanistic investigations to catalyst recovery. ChemSusChem 13, 3127–3136 (2020).

    Article  CAS  Google Scholar 

  39. Peeva, L., Burgal, J. D., Vartak, S. & Livingston, A. G. Experimental strategies for increasing the catalyst turnover number in a continuous Heck coupling reaction. J. Catal. 306, 190–201 (2013).

    Article  CAS  Google Scholar 

  40. Peeva, L., Burgal, J. D., Valtcheva, I. & Livingston, A. G. Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade. Chem. Eng. Sci. 116, 183–194 (2014).

    Article  CAS  Google Scholar 

  41. Yeo, J. et al. Liquid phase peptide synthesis via one-pot nanostar sieving (PEPSTAR). Angew. Chem. Int. Ed. 60, 7786–7795 (2021).

    Article  CAS  Google Scholar 

  42. Frederick, M. O. et al. Kilogram-scale GMP manufacture of tirzepatide using a hybrid SPPS/LPPS approach with continuous manufacturing. Org. Process Res. Dev. 25, 1628–1636 (2021).

    Article  CAS  Google Scholar 

  43. Aristizábal, S. L., Lively, R. P. & Nunes, S. P. Solvent and thermally stable polymeric membranes for liquid molecular separations: recent advances, challenges, and perspectives. J. Membr. Sci. 685, 121972 (2023).

    Article  Google Scholar 

  44. Szekely, G., Jimenez-Solomon, M. F., Marchetti, P., Kim, J. F. & Livingston, A. G. Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green. Chem. 16, 4440–4473 (2014).

    Article  CAS  Google Scholar 

  45. Kim, J. F., Székely, G., Valtcheva, I. B. & Livingston, A. G. Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study. Green. Chem. 16, 133–145 (2014).

    Article  Google Scholar 

  46. Kim, J. F. et al. Organic solvent nanofiltration (OSN): a new technology platform for liquid-phase oligonucleotide synthesis (LPOS). Org. Process Res. Dev. 20, 1439–1452 (2016).

    Article  CAS  Google Scholar 

  47. Kim, J. F. et al. In situ solvent recovery by organic solvent nanofiltration. ACS Sustain. Chem. Eng. 2, 2371–2379 (2014).

    Article  CAS  Google Scholar 

  48. Peeva, L. et al. Continuous consecutive reactions with inter-reaction solvent exchange by membrane separation. Angew. Chem. Int. Ed. 55, 13576–13579 (2016).

    Article  CAS  Google Scholar 

  49. White, L. S. & Nitsch, A. R. Solvent recovery from lube oil filtrates with a polyimide membrane. J. Membr. Sci. 179, 267–274 (2000).

    Article  CAS  Google Scholar 

  50. Gould, R. M., White, L. S. & Wildemuth, C. R. Membrane separation in solvent lube dewaxing. Environ. Prog. 20, 12–16 (2004).

    Article  Google Scholar 

  51. White, L. S. Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes. J. Membr. Sci. 286, 26–35 (2006).

    Article  CAS  Google Scholar 

  52. Lin, L. G., Zhang, Y. Z. & Kong, Y. Recent advances in sulfur removal from gasoline by pervaporation. Fuel 88, 1799–1809 (2009).

    Article  CAS  Google Scholar 

  53. White, L. S. & Wildemuth, C. R. Aromatics enrichment in refinery streams using hyperfiltration. Ind. Eng. Chem. Res. 45, 9136–9143 (2006).

    Article  CAS  Google Scholar 

  54. Buekenhoudt, A. et al. Solvent based membrane nanofiltration for process intensification. Chem. Ing. Tech. 85, 1243–1247 (2013).

    Article  CAS  Google Scholar 

  55. Kim, J. H. et al. Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction. Energy Environ. Sci. 13, 4862–4871 (2020).

    Article  CAS  Google Scholar 

  56. Beke, A. K. & Szekely, G. Enantioselective nanofiltration using predictive process modeling: bridging the gap between materials development and process requirements. J. Membr. Sci. 663, 121020 (2022).

    Article  CAS  Google Scholar 

  57. Kim, J. F., Freitas da Silva, A. M., Valtcheva, I. B. & Livingston, A. G. When the membrane is not enough: a simplified membrane cascade using organic solvent nanofiltration (OSN). Sep. Purif. Technol. 116, 277–286 (2013).

    Article  CAS  Google Scholar 

  58. Siew, W. E., Livingston, A. G., Ates, C. & Merschaert, A. Molecular separation with an organic solvent nanofiltration cascade—augmenting membrane selectivity with process engineering. Chem. Eng. Sci. 90, 299–310 (2013).

    Article  CAS  Google Scholar 

  59. Siew, W. E., Livingston, A. G., Ates, C. & Merschaert, A. Continuous solute fractionation with membrane cascades—a high productivity alternative to diafiltration. Sep. Purif. Technol. 102, 1–14 (2013).

    Article  CAS  Google Scholar 

  60. Dong, R. et al. Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving. Nat. Chem. 11, 136–145 (2019).

    Article  CAS  Google Scholar 

  61. Lin, J. C. T. & Livingston, A. G. Nanofiltration membrane cascade for continuous solvent exchange. Chem. Eng. Sci. 62, 2728–2736 (2007).

    Article  CAS  Google Scholar 

  62. Drioli, E., Stankiewicz, A. I. & Macedonio, F. Membrane engineering in process intensification—an overview. J. Membr. Sci. 380, 1–8 (2011).

    Article  CAS  Google Scholar 

  63. Abdulsalam Ebrahim, M., Karan, S. & Livingston, A. G. On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination. J. Membr. Sci. 594, 117339 (2020).

    Article  CAS  Google Scholar 

  64. Peeva, L. G. et al. Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration. J. Membr. Sci. 236, 121–136 (2004).

    Article  CAS  Google Scholar 

  65. Shi, B., Marchetti, P., Peshev, D., Zhang, S. & Livingston, A. G. Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. J. Membr. Sci. 525, 35–47 (2017).

    Article  CAS  Google Scholar 

  66. Koops, G. Separation of linear hydrocarbons and carboxylic acids from ethanol and hexane solutions by reverse osmosis. J. Membr. Sci. 189, 241–254 (2001).

    Article  CAS  Google Scholar 

  67. See Toh, Y. H., Loh, X. X., Li, K., Bismarck, A. & Livingston, A. G. In search of a standard method for the characterisation of organic solvent nanofiltration membranes. J. Membr. Sci. 291, 120–125 (2007).

    Article  Google Scholar 

  68. Postel, S., Spalding, G., Chirnside, M. & Wessling, M. On negative retentions in organic solvent nanofiltration. J. Membr. Sci. 447, 57–65 (2013).

    Article  CAS  Google Scholar 

  69. Davey, C. J., Low, Z. X., Wirawan, R. H. & Patterson, D. A. Molecular weight cut-off determination of organic solvent nanofiltration membranes using poly(propylene glycol). J. Membr. Sci. 526, 221–228 (2017).

    Article  CAS  Google Scholar 

  70. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    Article  CAS  Google Scholar 

  71. Le Phuong, H. A., Blanford, C. F. & Szekely, G. Reporting the unreported: the reliability and comparability of the literature on organic solvent nanofiltration. Green. Chem. 22, 3397–3409 (2020).

    Article  Google Scholar 

  72. Cath, T. Y. et al. Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination 312, 31–38 (2013).

    Article  CAS  Google Scholar 

  73. Garland, N., Benjamin, T. & Kopasz, J. DOE fuel cell program: durability technical targets and testing protocols. ECS Trans. 11, 923–931 (2007).

    Article  CAS  Google Scholar 

  74. Kim, J. H. et al. A robust thin film composite membrane incorporating thermally rearranged polymer support for organic solvent nanofiltration and pressure retarded osmosis. J. Membr. Sci. 550, 322–331 (2018).

    Article  CAS  Google Scholar 

  75. Lee, M. J. et al. Highly lithium-ion conductive battery separators from thermally rearranged polybenzoxazole. Chem. Commun. 51, 2068–2071 (2015).

    Article  CAS  Google Scholar 

  76. Oxley, A. & Livingston, A. G. Anti-fouling membranes for organic solvent nanofiltration (OSN) and organic solvent ultrafiltration (OSU): graft modified polybenzimidazole (PBI). J. Membr. Sci. 662, 120977 (2022).

    Article  CAS  Google Scholar 

  77. Kim, J. H. et al. A compact and scalable fabrication method for robust thin film composite membranes. Green. Chem. 20, 1887–1898 (2018).

    Article  CAS  Google Scholar 

  78. Park, S. J. et al. A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating. J. Mater. Chem. A 5, 6648–6655 (2017).

    Article  CAS  Google Scholar 

  79. Wang, H. H. et al. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Membr. Sci. 574, 44–54 (2019).

    Article  Google Scholar 

  80. Dargo, G. et al. MeSesamol, a bio-based and versatile polar aprotic solvent for organic synthesis and depolymerization. Chem. Eng. J. 471, 144365 (2023).

    Article  CAS  Google Scholar 

  81. Hassankiadeh, N. T. et al. Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J. Membr. Sci. 479, 204–212 (2015).

    Article  CAS  Google Scholar 

  82. Hassankiadeh, N. T. et al. PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J. Membr. Sci. 471, 237–246 (2014).

    Article  CAS  Google Scholar 

  83. Kim, S. et al. Sustainable fabrication of solvent resistant biodegradable cellulose membranes using green solvents. Chem. Eng. J. 494, 153201 (2024).

    Article  CAS  Google Scholar 

  84. Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article  Google Scholar 

  85. Sayyed, A. J., Deshmukh, N. A. & Pinjari, D. V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940 (2019).

    Article  CAS  Google Scholar 

  86. Puspasari, T., Yu, H. & Peinemann, K. V. Charge- and size-selective molecular separation using ultrathin cellulose membranes. ChemSusChem 9, 2908–2911 (2016).

    Article  CAS  Google Scholar 

  87. Puspasari, T., Huang, T. F., Sutisna, B. & Peinemann, K. V. Cellulose–polyethyleneimine blend membranes with anomalous nanofiltration performance. J. Membr. Sci. 564, 97–105 (2018).

    Article  CAS  Google Scholar 

  88. Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    Article  CAS  Google Scholar 

  89. Choi, S. Y. et al. Sustainable production and degradation of plastics using microbes. Nat. Microbiol. 8, 2253–2276 (2023).

    Article  CAS  Google Scholar 

  90. Coutinho de Paula, E. & Santos Amaral, M. C. Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion. J. Clean. Prod. 194, 85–93 (2018).

    Article  CAS  Google Scholar 

  91. Senán-Salinas, J., García-Pacheco, R., Landaburu-Aguirre, J. & García-Calvo, E. Recycling of end-of-life reverse osmosis membranes: comparative LCA and cost-effectiveness analysis at pilot scale. Resour. Conserv. Recycl. 150, 104423 (2019).

    Article  Google Scholar 

  92. Liang, L., Veksha, A., Mohamed Amrad, M. Z. B., Snyder, S. A. & Lisak, G. Upcycling of exhausted reverse osmosis membranes into value-added pyrolysis products and carbon dots. J. Hazard. Mater. 419, 126472 (2021).

    Article  CAS  Google Scholar 

  93. Lejarazu-Larrañaga, A., Molina, S., Ortiz, J. M., Navarro, R. & García-Calvo, E. Circular economy in membrane technology: using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis. J. Membr. Sci. 593, 117423 (2020).

    Article  Google Scholar 

  94. Haussler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  Google Scholar 

  95. Dai, R. B. et al. Fouling is the beginning: upcycling biopolymer-fouled substrates for fabricating high-permeance thin-film composite polyamide membranes. Green. Chem. 23, 1013–1025 (2021).

    Article  CAS  Google Scholar 

  96. Dai, R. B. et al. Cleaning–healing–interfacial polymerization strategy for upcycling real end-of-life polyvinylidene fluoride microfiltration membranes. ACS Sustain. Chem. Eng. 9, 10352–10360 (2021).

    Article  CAS  Google Scholar 

  97. Cavalcante, J., Hardian, R. & Szekely, G. Antipathogenic upcycling of face mask waste into separation materials using green solvents. Sustain. Mater. Technol. 32, e00448 (2022).

    CAS  Google Scholar 

  98. Torkashvand, J. et al. Preparation of a cellulose acetate membrane using cigarette butt recycling and investigation of its efficiency in removing heavy metals from aqueous solution. Sci. Rep. 12, 20336 (2022).

    Article  CAS  Google Scholar 

  99. Naser, A. Z., Deiab, I. & Darras, B. M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv. 11, 17151–17196 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.K. and J.F.K. were supported by the Research Projects RS-2022-NR068679 and 2022M3J5A1059161 of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) in the Republic of Korea. Z.J. acknowledges support from UK Research and Innovation Future Leaders Fellowship [MR/W009382/1]. A.G.L. was supported by the European Research Council ERC Advanced Grant number 786398.

Author information

Authors and Affiliations

Authors

Contributions

J.K., J.F.K. and Z.J. designed the initial structure of this paper with substantial discussion and feedback from A.G.L. J.K. led the writing of the initial version of this paper, preparing drafts of figures with J.F.K. and Z.J. All authors contributed to the writing, revising and reviewing of this paper.

Corresponding author

Correspondence to Andrew G. Livingston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Michael Guiver, Jeffrey McCutcheon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, J.F., Jiang, Z. et al. Advancing membrane technology in organic liquids towards a sustainable future. Nat Sustain 8, 594–605 (2025). https://doi.org/10.1038/s41893-025-01570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-025-01570-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing