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Vapour-deposited high-performance tin 
perovskite transistors
 

Youjin Reo    1, Taoyu Zou    1, Taesu Choi1, Soonhyo Kim1, Ji-Young Go1, 
Taewan Roh1, Hyoungha Ryu1, Yong-Sung Kim    2, Ao Liu    3  ,  
Huihui Zhu    4   & Yong-Young Noh    1 

Solution-processed tin (Sn2+)-halide perovskites can be used to create 
p-channel thin-film transistors (TFTs) with performance levels comparable 
with commercial low-temperature polysilicon technology. However, 
high-quality perovskite film deposition using industry-compatible 
production techniques remains challenging. Here we report the fabrication 
of p-channel Sn2+-halide perovskite TFTs using a thermal evaporation 
approach with inorganic caesium tin iodide (CsSnI3). We use lead chloride 
(PbCl2) as a reaction initiator that triggers solid-state reactions of the 
as-evaporated perovskite compounds. This promotes the conversion of 
dense and uniform perovskite films, and also modulates the intrinsically 
high hole density of the CsSnI3 perovskite channels. Our optimized TFTs 
exhibit average hole field-effect mobilities of around 33.8 cm2 V−1 s−1,  
on/off current ratios of around 108, and large-area fabrication 
uniformity. The devices also exhibit improved stability compared with 
solution-deposited devices.

Tin (Sn2+)-halide perovskites—such as caesium tin triiodide (CsSnI3)1,2, 
methylammonium tin triiodide (MASnI3)3 and formamidinium tin 
triiodide (FASnI3) (refs. 4,5)—are of potential use in the develop-
ment of high-performance p-channel thin-film transistors (TFTs)6–9. 
Such devices could, in particular, find practical application in 
next-generation complementary electronics when integrated with 
commercial n-channel metal-oxide technology. The materials have 
intrinsic p-type semiconducting properties, as well as low effective 
mass (m*), low Fröhlich interaction, weak ion migration and intrinsically 
high hole mobilities (µ) (ranging over hundreds of square centimetres 
per voltage second)10–12. To apply the perovskites as channel layers in 
TFT applications, it is crucial to modulate the excessive hole concen-
tration and control the crystallization process to extend the scattering 
time (τ) (µ = qτ/m*, where q is the elementary charge)13,14. Composition 
engineering methods have been used to regulate the nucleation and 
crystallization of solution-processed Sn2+-halide perovskite precursors, 

allowing TFTs to achieve high hole field-effect mobilities (µFE) over 
50 cm2 V−1 s−1, rivalling that of low-temperature polysilicon devices5,15–18.

Solution processing has been the primary deposition technique 
for Sn2+-halide perovskite thin films. This method can provide rapid 
optimization trials in a cost-effective manner. However, it has low com-
patibility with conventional manufacturing processes for flat-panel dis-
plays and semiconducting devices19–21. An alternative method is vapour 
deposition, which is at the forefront of commercialized thin-film elec-
tronics, providing precision, simplicity and compatibility with existing 
production infrastructures22–24. Vapour deposition can allow precise 
manipulation of thin-film thickness and morphology, which have a criti-
cal impact on device performance. Its simplicity in terms of thin-film 
deposition can provide notable batch-by-batch reproducibility, as 
well as uniformity in large-scale production25–27. However, owing to the 
difference in crystallization processes between solution processing 
(fast ionic reactions) and vapour deposition (slow solid reactions), it is 
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Hereby, the atomic percentage (at.%) of each element in the final film 
(CsSnI3:PbX2) was calculated from the area integration throughout 
the film thickness by X-ray photoelectron spectroscopy (XPS) depth 
profile, relative to tin (Supplementary Table 1). Interestingly, although 
PbI2 shows a slight hole suppression effect, the device failed to reach 
a reliable off-state current (Ioff) even with 30 at.% addition of PbI2. By 
contrast, PbBr2 and PbCl2 demonstrated notable hole suppression 
properties, achieving a reliable Ioff with the addition of 20 at.% PbCl2 
and 30 at.% PbBr2. Because PbCl2 demonstrates the highest efficiency 
as a hole suppressor and device performance enhancer, we continued 
to investigate the association of varied PbCl2 amounts on the electrical 
properties of CsSnI3:PbCl2. Increasing PbCl2 from 10 at.% to 20 at.% 
resulted in a reliable Ioff, elevating the Ion/Ioff from ~102 to ~108 (Fig. 1d). 
However, further increasing the PbCl2 molar ratio to 25 at.% degraded 
the TFT performance by lowering the current level and the µFE. The opti-
mal addition of 20 at.% PbCl2 achieved high TFT electrical performance, 
including a high µFE of 33.8 cm2 V−1 s−1, a high Ion/Ioff of 8.2 × 108, and a 
small subthreshold swing value of 0.5 V dec−1 (Fig. 1e). The correspond-
ing output characteristics of the optimized CsSnI3:PbCl2 TFT exhibit 
good linearity at low drain-source voltage (VDS) and current saturation 
at high VDS, indicating a low charge-carrier injection barrier and ohmic 
contact between the channel layer and electrodes (Fig. 1f). The contact 
resistance (Rc) was measured at ~57 Ω cm, which is lower compared with 
previously reported solution-processed CsSnI3-based TFTs at ~1 kΩ cm, 
suggesting enhanced quality of the channel/contact interface (Sup-
plementary Fig. 4). Reliable device operation was also verified by the 
negligible difference in transfer curves after scanning current–voltage 
characteristics for 100 repetitive cycles (Fig. 1g). To evaluate the PbCl2 
additive effect on device stability, a negative-bias-stress test was per-
formed on CsSnI3 TFTs and CsSnI3:PbCl2 TFTs. The results clearly show 
that the CsSnI3:PbCl2 TFT has much less performance degradation com-
pared with CsSnI3 TFTs (Fig. 1h), which indicates improved perovskite 
channel quality and lower defect density. To benchmark the electrical 
parameter of our vapour-deposited CsSnI3:PbCl2 TFTs compared with 
previously reported perovskite TFTs, we listed representative studies 
in Supplementary Table 2 and summarized the key data in Fig. 1i. The 
achieved µFE and Ion/Ioff represent the state-of-the-art values for the 
vapour-deposited perovskite device and are much superior to the 
majority of solution-processed devices.

Film morphology and structure with PbCl2
We then performed film characterizations from the surface to bulk to 
understand the mechanism behind the formation of CsSnI3 in vapour 
deposition and the unique role of PbCl2. The scanning electron micros-
copy (SEM) images of CsSnI3:PbX2 films illustrate a distinctive differ-
ence from pristine CsSnI3 to PbX2-incorporated films (Fig. 2a). The 
pristine CsSnI3 film exhibited 1–2-µm sized grains with grain-sized 
pinholes and sharp white aggregates, indicating uneven reaction of 
the as-evaporated perovskite compounds. CsSnI3:PbBr2 and CsSnI3:PbI2 
films showed improved uniformity with reduced pinholes, although 
notable surface particles remained. Energy dispersive spectroscopy 
mapping of CsSnI3, CsSnI3:PbBr2 and CsSnI3:PbI2 films identified the 
white aggregates to be unreacted precursor compounds of CsI (Sup-
plementary Fig. 5). By contrast, the CsSnI3:PbCl2 film exhibited much 
improved morphology with high film homogeneity and large grain sizes 
exceeding 5 µm. The grain boundaries were vaguely visible, connecting 
each grain in a cascade style. The corresponding surface root mean 
square value of CsSnI3:PbCl2 film was 9.95 nm, which was much lower 
than those of pristine, and Br- and I-incorporated films, which were 
42.8, 16.7 and 15.2 nm, respectively (Fig. 2b and Supplementary Fig. 6).

X-ray diffraction (XRD) patterns of the pristine CsSnI3 and 
CsSnI3:PbX2 films exhibited dominant three-dimensional orthorhom-
bic phase (β-γ-CsSnI3) peaks at (101) and (202) and the CsSnI3:PbCl2 film 
demonstrated the highest film crystallization peak intensity (Fig. 2c)11. 
In addition, the Br- and Cl-incorporated samples showed minor shifts in 

still a challenge to achieve high-quality, high-mobility Sn2+-perovskite 
channels with suitable hole density by means of vapour deposition.

In this article, we report vapour-deposited inorganic CsSnI3-based 
p-channel TFTs using lead chloride (PbCl2) as an additive. The volatile 
chloride can initiate solid-state reactions which extend to complete 
perovskite phase formation, promoting densely packed enlarged 
grains in a cascaded manner. Our optimized TFTs exhibit µFE of more 
than 33.8 cm2 V−1 s−1 and on/off current ratios (Ion/Ioff) greater than 108, 
as well as long-term stability. We also fabricate large-scale uniform 
Sn2+-halide perovskite TFT arrays, overcoming the technical challenges 
previously identified in solution processing.

Vapour-deposited Sn2+-halide perovskite TFTs
To deposit the CsSnI3-based perovskite channel layer, a sequential 
deposition method was used for each component—PbCl2, SnI2 and 
CsI—to avoid contamination and ensure precise control of the atomic 
ratio (Fig. 1a). PbCl2 was deposited as the initial layer on the 100-nm SiO2 
dielectric substrate, followed by the sequential evaporation of SnI2 and 
CsI layers. The deposition of PbCl2 in the bottom layer plays a key role 
in achieving high-quality film deposition, which will be discussed later. 
The multilayer films were then annealed at 320 °C to merge and form a 
single CsSnI3 layer (Fig. 1b and Supplementary Fig. 1). The sample with 
PbCl2 will hereafter be referred to as the CsSnI3:PbCl2 film. The final step 
involved the deposition of Au source/drain electrodes to construct 
bottom-gate, top-contact TFTs (Fig. 1c). For the pristine CsSnI3 TFT, 
a metallic behaviour with poor field-effect modulation was observed 
(Fig. 1d,e). This phenomenon indicates a high hole concentration (n) in 
the CsSnI3 channel, measured to be ~1018 cm−3 using Hall measurements.

Owing to the low formation energy of tin vacancy (VSn) in Sn2+-halide 
perovskite, the deposited three-dimensional Sn2+-halide perovskite 
films typically contain excessive hole concentrations, making the 
field-effect modulation challenging for transistor applications28,29. 
To address this issue, the use of tin fluoride (SnF2) (~10 mol.%) has 
been developed as an indispensable additive in solution-processed 
Sn2+-halide perovskite optoelectronic devices5,30. The low solubility 
of SnF2 provides a synergistic effect, enhancing nucleation for bet-
ter crystallization and VSn passivation31. However, we found that the 
efficacy of SnF2 differs in vapour deposition, where it does not benefi-
cially affect the modulation of hole concentration or crystallization 
(Supplementary Fig. 2). This discrepancy can be attributed to the dif-
ferent crystallization behaviours in vapour deposition: the thermally 
driven solid-state reactions of sequentially deposited precursor layers, 
without a solvent to aid in molecular dissociation32–35. Thus, bond dis-
sociation energy is critical to initiate these solid-state reactions36,37. 
The high electronegativity of fluorine makes Sn–F bonds particularly 
strong, which makes them difficult to dissociate during the solid-state 
reaction38. Therefore, a different compound with sufficiently low bond 
dissociation energy is needed to actively participate as a hole sup-
pressor and/or to aid crystallization. A promising candidate is Pb–X  
(X = I, Br, Cl), which has a lower bond dissociation energy than Sn–X 
due to its larger atomic size, longer bond length and thus weaker bond 
energy. In addition, Pb is considered an optimal alternative to Sn owing 
to its similar coordination environment. The greater number of inert 
6s electrons of Pb can also increase the VSn formation energy and 
effectively lower the hole concentration39. PbCl2 has been introduced 
as a beneficial additive in thermal evaporated Pb-based perovskite 
solar cells. Partial substitution of PbI2 with PbCl2 induced formation 
of Cl-alloy, facilitating the perovskite phase transition and enhancing 
film crystallinity by promoting the diffusion and evaporation of Cl in 
the form of organic ammonium chloride34,40. Furthermore, studies 
on Cl-alloyed tin oxide as an electron-transporting layer have dem-
onstrated that evaporation of Cl during annealing promotes uniform 
growth of large, vertically oriented grains41–43.

We then tested the effect of PbI2, PbBr2 and PbCl2 on the electri-
cal performance of CsSnI3 TFTs (Fig. 1 and Supplementary Fig. 3). 
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peak positions from 29.10° (CsSnI3) to 29.14° (CsSnI3:PbCl2) and 29.40° 
(CsSnI3:PbBr2). The incorporation of Br into the iodide-based perovs-
kite lattice is well documented owing to the close ionic radius44–46. The 
minor shift in CsSnI3:PbCl2 suggests that only a portion of the Cl was 
incorporated into the lattice. The incorporation of Br− and residue 
Cl− caused a slight shift in XRD spectra towards a higher angle, corre-
sponding to lattice contraction. Slight contraction can increase orbital 
overlap and decrease charge scattering to increase carrier mobility47,48.

Role of chlorine in CsSnI3:PbCl2 thin films and TFTs
To characterize and trace the Cl incorporation in the CsSnI3-based thin 
film, we conducted XPS analysis and depth profiling (Supplementary 
Fig. 7). The deposited CsSnI3 films exhibited evenly distributed ele-
ments of Cs, Sn and I throughout the bulk, indicating successful reac-
tion among precursor compounds (Fig. 3a). In addition, a uniform 
distribution of Pb was detected throughout the bulk, whereas a minor 
signal of Cl was identified at the film surface, indicating that most of the 
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Fig. 1 | Electrical characterizations of vapour-deposited CsSnI3-based TFTs.  
a–c, Fabrication of bottom-gate, top-contact vapour-deposited CsSnI3-based 
TFT. Sequential evaporation of perovskite compounds (a), post annealing 
treatment of the perovskite multilayers (b) and evaporation of Au electrodes 
(c). d, Field-effect mobility and on/off current ratio as a function of PbCl2 atomic 
ratio. The average (centre) and standard deviations (error bars) were obtained 
from sample size n = 10. e, Transfer characteristics of CsSnI3 TFTs and optimized 

CsSnI3:PbCl2 TFTs (Cs1.3SnPb0.2I3Cl0.15). IG indicates gate leakage current. 
Channel length/width = 100 µm/200 µm (VDS = −40 V). f, Output characteristics 
of optimized CsSnI3:PbCl2 TFTs. g, Consecutive forward scans of transfer 
characteristics for 100 cycles (VDS = −40 V). h, Negative bias-stress measurements 
for CsSnI3 and CsSnI3:PbCl2 TFTs (VDS = VGS = −40 V) for 2,000 s. i, Benchmark of 
representative µFE and Ion/Ioff values of reported vapour-deposited perovskite 
TFTs based on different channel materials.
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Cl was sublimated out of the film during annealing (Fig. 3b,c). This is in 
contrast to the CsSnI3:PbBr2 and CsSnI3:PbI2 thin films, which showed 
a uniform distribution of Br and I from the surface to the bulk (Sup-
plementary Fig. 8). From XPS analysis, the relative atomic ratios of 
the final CsSnI3:PbX2 film are listed in Supplementary Table 1, with the 
optimized CsSnI3:PbCl2 final film as Cs1.3SnPb0.2I3Cl0.15, representatively.

To identify the form of vaporized Cl, we conducted powder 
thermogravimetric analysis (TGA) collected from the as-evaporated 
pristine CsSnI3 and CsSnI3:PbCl2 thin films (Fig. 3d). Both films dem-
onstrated comparable trends, but a notable difference was identified 
between the weight loss below 100 °C, where the CsSnI3:PbCl2 film 
showed 2% weight loss since the beginning. To identify the origin of this 
weight loss, we conducted TGA of each CsI, SnI2, PbCl2, SnCl2 and CsCl 
powder, and only SnCl2 demonstrated an initial 2% weight loss, identical 
to the CsSnI3:PbCl2 film (Supplementary Fig. 9). Thus, we speculated the 
thermally activated initiation of Cl vaporization through SnCl2-related 
and/or generated species and the start of solid-state reactions. The 
vaporization of Cl can promote uniform grain growth in the vertical 
direction, triggering perovskite conversion of sequentially deposited 
precursor layers and consequently enhanced film crystallinity34,49. 
The low reaction efficiency of sequentially deposited layers relies on 
thermally driven layer-to-layer solid melting and merging process32–35. 
Here a thermally activated volatile species can initiate its sublimation 
from the bottom, diffusing through the entire layer and transporting 
reactive species, to enhance the reaction kinetics at each interface, 
and accelerate and refine overall perovskite conversion (Fig. 3e,f). 
This reaction kinetics corresponds to the disappearance of unreacted 
CsI aggregates identified in scanning electron microscopy–energy 
dispersive X-ray spectroscopy analysis, through volatile Cl-related 
species-driven perovskite conversion (Supplementary Fig. 5). The 
residue Cl on the film surface may passivate the iodide vacancy as 
aligned with the positive peak shift in the XRD spectrum.

Comparing the field-effect modulation between CsSnI3 and PbX2 
reveals that Pb did not play a crucial role in hole suppression because 

similar amounts of PbI2 did not effectively reduce the Ioff. In comparison 
with I and Br, the small ionic size of Cl makes it difficult to dominantly 
alloy into the iodide-based perovskite matrix. Instead, only a minimal 
amount of Cl remains whereas vaporization of dominant amount of Cl 
plays a key role in increasing perovskite phase crystallization34,40. The 
enhanced perovskite film quality and uniformity can greatly reduce 
the number of dominant defects and the associated hole source that 
are heavily concentrated in grain boundaries, that is, VSn, and thus 
successfully modulate the high intrinsic conductivity50–52. To verify 
the unique effect of the buried PbCl2 layer, we deposited PbCl2 as the 
top layer of the multilayer precursor compounds (Supplementary 
Fig. 10). Interestingly, we observed that the transfer characteristics of 
CsSnI3:PbCl2 TFTs with PbCl2 as the top layer exhibited almost metal-
lic characteristics with the absence of reliable off-current, indicating 
that the effect of PbCl2 is not present when it is not the initial layer. 
This supports the notion that Cl from the buried layer enhances the 
reaction kinetics and film quality, improving field-effect modulation 
and reducing hole concentration.

Device scalability and long-term storage stability
The epitome of thermal evaporation is the ease of processing and scal-
ability of thin films and devices. We therefore demonstrate large-area 
fabrication of CsSnI3:PbCl2 TFTs on a 49-cm2 wafer (Fig. 4a). The transfer 
characteristics of 75 evenly selected devices out of 576 CsSnI3:PbCl2 
TFTs show high uniformity, with a Gaussian distribution of µFE averag-
ing 34.2 cm2 V−1 s−1 and a standard deviation of 2.0 cm2 V−1 s−1 (Fig. 4b 
and Supplementary Fig. 11). This is a demonstration of a large-scale 
three-dimensional Sn2+-halide perovskite TFT array. It should be noted 
that fabricating high-performance and uniform Sn2+-perovskite TFTs 
over a large area has remained an unsolved challenge when using the 
typical spin-coating approach. This difficulty arises from the necessity 
of adding an antisolvent dripping to promote nucleation for highly 
crystalline films during spin-coating, which results in varying perovs-
kite film quality from centre to edge53.
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More importantly, vapour-deposited CsSnI3:PbCl2 TFTs exhibit 
much improved storage stability in an N2-filled glove box. By contrast, 
earlier works on solution-processed CsSnI3-based perovskite TFTs 
could only achieve long-term stability with glass or polymer encapsula-
tion12. Without encapsulation, solution-processed CsSnI3 TFTs lasted 
only a few hours, even when stored in the glove box (Fig. 4c). However, 
our vapour-deposited CsSnI3 perovskite TFTs demonstrate superior 
stability under the same conditions, maintaining their electrical prop-
erties for over 150 days without any encapsulation (Fig. 4d). The fragile 
nature of solution-processed CsSnI3-based thin films compared with 
their vapour-deposited counterparts can be traced back to the film 
fabrication, final thickness and density. Through AFM measurement, 
we confirmed that the thickness of solution-processed CsSnI3-based 
film was substantially smaller than that of vapour-deposited film, that 
is, 16 nm and 48 nm, respectively (Fig. 4e). The film densities of the 
solution-processed and vapour-deposited film was measured through 
X-ray reflectometry, which were 3.74 cm−3 and 4.68 cm−3, respectively. 
The high density of vapour-deposited film arises from the dense pack-
ing of grains through high-temperature post annealing at 320 °C, 
whereas solution-processed films are annealed at 120 °C. The classical 
nucleation theory suggests that high temperature enables decreased 
nucleation rate, increased growth rate and, consequently, formation 
of densely packed large grains when applied to the crystallization of 
sequentially deposited perovskite precursor layers (Fig. 4e,f)54,55. The 
XRD spectrum of the vapour-deposited film illustrates preferred ver-
tical orientation with high crystallinity induced by vaporization of Cl, 

in comparison with the lower crystallinity of solution-processed film 
(Supplementary Fig. 12). Therefore, vapour-deposited CsSnI3-based 
films and devices demonstrate stronger structural and environmental 
stability compared with solution-processed counterparts.

Conclusions
We have reported high-performance, stable p-channel CsSnI3-based 
TFTs using a commercially compatible vapour-deposition approach 
with PbCl2 as an additive. The volatile chloride triggers solid-state reac-
tions and the conversion of as-evaporated precursor compounds. This 
facilitates the formation of high-quality and uniform perovskite films, 
and also modulates the high hole density, making them suitable for use 
as channel layers. The optimized CsSnI3:PbCl2 TFTs delivered average 
µFE of around 34 cm2 V−1 s−1, Ion/Ioff of around 108 and storage stability 
of more than 150 days. We also demonstrated a large-scale Sn2+-halide 
perovskite TFT array that overcomes the technical challenges faced 
in the solution process. Our vapour-deposited TFTs could be used in 
backplanes for organic light-emitting diode displays, or in logic devices 
and circuits for monolithic three-dimensional integration, where low 
process temperatures are required.

Methods
Thin-film fabrication
CsI (99.9%) and PbCl2 (99.99%) were purchased from Xi’an Polymer 
Light Technology Corp., and SnI2 (99.99%), PbBr2 (98%) and PbI2 (99%) 
were purchased from Merck. These powders were directly used as 
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vapour-deposition sources. The CsSnI3:PbX2 films were deposited using 
a thermal evaporator through the following procedure. Each powder 
was loaded in an alumina crucible for optimal conditions. The substrate 
temperature was maintained at room temperature, and vacuum pres-
sure before evaporation was ~2.7 × 10−7 Torr. The distance between the 
powder-loaded alumina crucible and the substrate holder was ~40 cm. 
The thickness of each source was monitored during deposition. The 
perovskite precursor materials were evaporated in the following order: 
PbX2/SnI2/CsI. The thickness of each precursor source was monitored 
during deposition, and the thickness value of each as-evaporated 
precursor layer was measured by AFM to be 47.5 nm (CsI), 45 nm (SnI2), 
7.5 nm (25 at.% PbCl2), 9.5 nm (30 at.% PbBr2) and 11 nm (30 at.% PbI2) 
(Supplementary Fig. 13). The multilayer of perovskite compounds 
was annealed at 320 °C for 10 min in an N2-filled glove box. The final 
thickness value of the optimized Cs1.3SnPb0.2I3Cl0.15 film was measured 
at 48 nm (Supplementary Fig. 14).

Device fabrication and characterization
A heavily doped Si wafer (resistivity: 1–100 Ω cm) with a 100-nm ther-
mally grown SiO2 layer was used as the gate electrode and the dielectric 
layer. The CsSnI3:PbX2 channels were deposited on SiO2 as channel 
layers using the aforementioned procedure. The shadow mask was 
covered on the substrate to obtain the patterned channel layers with 
width W = 750 µm and length L = 550 µm. Au source/drain electrodes 
(20 nm) were deposited with a shadow mask using thermal evaporation 

to construct a bottom-gate top-contact TFT. The channel length and 
width were 100 µm and 200 µm, respectively. All TFTs were character-
ized using a Keithley 4200SCS at room temperature.

The value of µFE and the threshold voltage (VTH) were extracted 
at the saturation regime from the |IDS| versus VGS curve, following 
equation (1) (refs. 56,57). Ci is the capacitance of the gate oxide. The 
extraction of VTH and µFE is further described in Supplementary Fig. 15.

μFE =
2L
WCi

|IDS|
(VGS − VTH)

2 (1)

Film characterizations
The crystal structures of the films were analysed using XRD with 
MAX-2500 (Rigaku). The XPS depth profile and ultraviolet photo-
electron spectroscopy analysis was performed using a PHI 5000 
VersaProbe instrument (Ulvac-PHI, Tokyo, Japan). The Hall measure-
ments of the films were performed using the van der Pauw method 
with a 0.51-T magnet (HMS-3000, Ecopia). The SEM images were 
measured using high-resolution FE-SEM ( JSM 7800 F Prime). The 
AFM images were measured using NX-10 (Park Systems). The TGA 
analysis was measured using SDT Q-600 (TA Instruments), per-
formed in an N2-filled environment. The film samples were collected 
and measured in powder form, by scraping the as-evaporated film 
from glass substrates.
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Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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