Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concerted methane fixation at ambient temperature and pressure mediated by an alcohol oxidase and Fe-ZSM-5 catalytic couple

Abstract

Anthropogenic methane emissions, particularly from diffuse and dilute sources, pose a significant challenge for oxidation and valorization as existing methane oxidation routes rely on high temperatures or pressures. Here we report the catalytic coupling of alcohol oxidase with the iron-modified ZSM-5 (Fe-ZSM-5) zeolite catalyst, creating a tandem methanotrophic system that partially oxidizes methane at ambient temperatures and pressures. Methane reacts at Fe-ZSM-5 to produce methanol, which is then oxidized at the enzyme to formaldehyde and hydrogen peroxide. The latter subsequently reacts back at Fe-ZSM-5 and oxidizes methane in a catalytic couple. We show that methane-to-formaldehyde selectivity can exceed 90% at room temperature. The generated formaldehyde was rapidly incorporated into a growing urea polymer, with a material growth rate exceeding 5.0 mg gcat−1 h−1, which matches or exceeds the growth rates of many methanotrophic organisms. This work presents a sustainable route for methane oxidation, driven by oxygen in the air under ambient conditions, producing high-value polymers and valorizing methane emission streams.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tandem catalysis of Fe-ZSM-5 and AOX for the partial oxidation of methane.
Fig. 2: Growing urea-formaldehyde polymer production.
Fig. 3: Characterization of urea-formaldehyde materials.
Fig. 4: Formation of TiO2/urea-formaldehyde nanocomposites.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information or from the corresponding author upon reasonable request.

References

  1. Global Methane Tracker 2022 (IEA, 2022); https://www.iea.org/reports/global-methane-tracker-2022

  2. Staniaszek, Z. et al. The role of future anthropogenic methane emissions in air quality and climate. npj Clim. Atmos. Sci. 5, 21 (2022).

    Article  CAS  Google Scholar 

  3. Wuebbles, D. J. & Hayhoe, K. Atmospheric methane and global change. Earth Sci. Rev. 57, 177–210 (2002).

    Article  CAS  Google Scholar 

  4. Allen, D. T. Methane emissions from natural gas production and use: reconciling bottom-up and top-down measurements. Curr. Opin. Chem. Eng. 5, 78–83 (2014).

    Article  Google Scholar 

  5. Mansoor, R. & Tahir, M. Recent developments in natural gas flaring reduction and reformation to energy-efficient fuels: a review. Energy Fuels 35, 3675–3714 (2021).

    Article  CAS  Google Scholar 

  6. Oonk, H. Efficiency of landfill gas collection for methane emission reduction. Greenhouse Gas. Meas. Manage. 2, 129–145 (2012).

    Article  CAS  Google Scholar 

  7. Plant, G. et al. Inefficient and unlit natural gas flares both emit large quantities of methane. Science 377, 1566–1571 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Van Amstel, A. Methane. A review. J. Integr. Environ. Sci. 9, 5–30 (2012).

    Article  Google Scholar 

  9. Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl Acad. Sci. USA 116, 2805–2813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jackson, R. B. et al. Atmospheric methane removal: a research agenda. Philos. Trans. R. Soc. A 379, 20200454 (2021).

    Article  CAS  Google Scholar 

  11. Amaral, J. A., Ren, T. & Knowles, R. Atmospheric methane consumption by forest soils and extracted bacteria at different pH values. Appl. Environ. Microbiol. 64, 2397–2402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khider, M. L. K., Brautaset, T. & Irla, M. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. World J. Microbiol. Biotechnol. 37, 72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strong, P. J., Xie, S. & Clarke, W. P. Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49, 4001–4018 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Kalyuzhnaya, M. G., Puri, A. W. & Lidstrom, M. E. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29, 142–152 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Hwang, I. Y. et al. Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl. Microbiol. Biotechnol. 102, 3071–3080 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Kerckhof, F. M. et al. From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria. Front. Bioeng. Biotechnol. 9, 733753 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sahoo, K. K., Goswami, G. & Das, D. Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: current state of art and future prospects. Front. Microbiol. 12, 636486 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gęsicka, A., Oleskowicz-Popiel, P. & Łężyk, M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol. Adv. 53, 107861 (2021).

    Article  PubMed  Google Scholar 

  19. Strong, P. J., Kalyuzhnaya, M., Silverman, J. & Clarke, W. P. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 215, 314–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Conrado, R. J. & Gonzalez, R. Envisioning the bioconversion of methane to liquid fuels. Science 343, 621–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Haynes, C. A. & Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Yasin, M. et al. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour. Technol. 177, 361–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Khirsariya, P. & Mewada, R. K. Single step oxidation of methane to methanol—towards better understanding. Procedia Eng. 51, 409–415 (2013).

    Article  CAS  Google Scholar 

  25. Dummer, N. F. et al. Methane oxidation to methanol. Chem. Rev. 123, 6359–6411 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Bryliakov, K. P. & Talsi, E. P. Active sites and mechanisms of bioinspired oxidation with H2O2, catalyzed by non-heme Fe and related Mn complexes. Coord. Chem. Rev. 276, 73–96 (2014).

    Article  CAS  Google Scholar 

  27. York, A. P. E., Xiao, T. & Green, M. L. H. Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal. 22, 345–358 (2003).

    Article  CAS  Google Scholar 

  28. Lange, J.-P. Methanol synthesis: a short review of technology improvements. Catal. Today 64, 3–8 (2001).

    Article  CAS  Google Scholar 

  29. Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B. & Canadell, J. G. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 11, 120207 (2016).

    Article  Google Scholar 

  30. Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    Article  CAS  Google Scholar 

  31. Yang, N., Ren, Z., Yang, C., Wu, P. & Zeng, G. Direct oxidation of CH4 to HCOOH over extra-framework stabilized Fe@MFI catalyst at low temperature. Fuel 305, 121624 (2021).

    Article  CAS  Google Scholar 

  32. Cheng, Q. et al. Maximizing active Fe species in ZSM-5 zeolite using organic-template-free synthesis for efficient selective methane oxidation. J. Am. Chem. Soc. 145, 5888–5898 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hammond, C. et al. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Chem. Eur. J. 18, 15735–15745 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Forde, M. M. et al. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. J. Am. Chem. Soc. 135, 11087–11099 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Szécsényi, Á., Li, G., Gascon, J. & Pidko, E. A. Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst. ACS Catal. 8, 7961–7972 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Puértolas, B., Hill, A. K., García, T., Solsona, B. & Torrente-Murciano, L. In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: a mini-review. Catal. Today 248, 115–127 (2015).

    Article  Google Scholar 

  37. Wu, B. et al. Selective oxidation of methane to oxygenates using oxygen via tandem catalysis. Chem. Eur. J. 29, e202203057 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Reyes-De-Corcuera, J. I., Olstad, H. E. & García-Torres, R. Stability and stabilization of enzyme biosensors: the key to successful application and commercialization. Annu. Rev. Food Sci. Technol. 9, 293–322 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Deka, T. J., Osman, A. I., Baruah, D. C. & Rooney, D. W. Methanol fuel production, utilization, and techno-economy: a review. Environ. Chem. Lett. 20, 3525–3554 (2022).

    Article  CAS  Google Scholar 

  40. Dumée, L. F. Circular materials and circular design—review on challenges towards sustainable manufacturing and recycling. Circ. Econ. Sustain. 2, 9–23 (2022).

    Article  PubMed  Google Scholar 

  41. Ravindran, L., Sreekala, M. S., Anil Kumar, S. & Thomas, S. A comprehensive review on phenol-formaldehyde resin-based composites and foams. Polym. Compos. 43, 8602–8621 (2022).

    Article  CAS  Google Scholar 

  42. Nuryawan, A., Risnasari, I., Sucipto, T., Heri Iswanto, A. & Rosmala Dewi, R. Urea-formaldehyde resins: production, application, and testing. IOP Conf. Ser. Mater. Sci. Eng. 223, 012053 (2017).

    Article  Google Scholar 

  43. Li, W., Zhu, X., Zhao, N. & Jiang, Z. Preparation and properties of melamine urea-formaldehyde microcapsules for self-healing of cementitious materials. Materials (Basel) 9, 152 (2016).

    Article  PubMed  Google Scholar 

  44. Nair, B. R. & Francis, D. J. Kinetics and mechanism of urea-formaldehyde reaction. Polymer (Guildf.) 24, 626–630 (1983).

    Article  CAS  Google Scholar 

  45. Smythe, L. E. A kinetic study of the urea-formaldehyde reaction. J. Phys. Colloid Chem. 51, 369–378 (1947).

    Article  CAS  PubMed  Google Scholar 

  46. Sahm, H. Oxidation of formaldehyde by alcohol oxidase of Candida boidinii. Arch. Microbiol. 105, 179–181 (1975).

    Article  CAS  PubMed  Google Scholar 

  47. Steinhof, O., Kibrik, É. J., Scherr, G. & Hasse, H. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis. Magn. Reson. Chem. 52, 138–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, L.-Y. et al. Biological conversion of methane to polyhydroxyalkanoates: current advances, challenges, and perspectives. Environ. Sci. Ecotechnol. 2, 100029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pieja, A. J., Sundstrom, E. R. & Criddle, C. S. Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour. Technol. 107, 385–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Helm, J., Wendlandt, K.-D., Jechorek, M. & Stottmeister, U. Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J. Appl. Microbiol. 105, 1054–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Gonçalves, C. et al. Impact of the synthesis procedure on urea-formaldehyde resins prepared by alkaline–acid process. Ind. Eng. Chem. Res. 58, 5665–5676 (2019).

    Article  Google Scholar 

  52. Ding, Z., Ding, Z., Ma, T. & Zhang, H. Condensation reaction and crystallization of urea-formaldehyde resin during the curing process. Bioresources 15, 2924–2936 (2020).

    Article  CAS  Google Scholar 

  53. Blanchette, C. D. et al. Printable enzyme-embedded materials for methane to methanol conversion. Nat. Commun. 7, 11900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guilbault, G. G., Danielsson, B., Mandenius, C. F. & Mosbach, K. Enzyme electrode and thermistor probes for determination of alcohols with alcohol oxidase. Anal. Chem. 55, 1582–1585 (1983).

    Article  CAS  Google Scholar 

  55. Gonchar, M. V., Maidan, M. M., Moroz, O. M., Woodward, J. R. & Sibirny, A. A. Microbial O2- and H2O2-electrode sensors for alcohol assays based on the use of permeabilized mutant yeast cells as the sensitive bioelements. Biosens. Bioelectron. 13, 945–952 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Viña-Gonzalez, J., Gonzalez-Perez, D., Ferreira, P., Martinez, A. T. & Alcalde, M. Focused directed evolution of aryl-alcohol oxidase in Saccharomyces cerevisiae by using chimeric signal peptides. Appl. Environ. Microbiol. 81, 6451–6462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lundberg, D. J., Kim, J., Parviz, D. & Strano, M. S. Mitigation of ventilation air methane (VAM) using novel methanotrophic coating materials: a technical analysis. Environ. Res. Lett. 18, 114039 (2023).

    Article  Google Scholar 

  58. Baranowski, C. J., Bahmanpour, A. M. & Kröcher, O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl. Catal. B 217, 407–420 (2017).

    Article  CAS  Google Scholar 

  59. Sadeghi, M., Hanifpour, F., Taheri, R., Javadian, H. & Ghasemi, M. Comparison of using formaldehyde and carboxy methyl chitosan in preparation of Fe3O4 superparamagnetic nanoparticles-chitosan hydrogel network: sorption behavior toward bovine serum albumin. Process Saf. Environ. Prot. 102, 119–128 (2016).

    Article  CAS  Google Scholar 

  60. Rico-García, D. et al. Lignin-based hydrogels: synthesis and applications. Polymers 12, 81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Merline, D. J., Vukusic, S. & Abdala, A. A. Melamine formaldehyde: curing studies and reaction mechanism. Polym. J. 45, 413–419 (2013).

    Article  CAS  Google Scholar 

  62. Cao, M., Li, T., Liang, J. & Du, G. The influence of pH on the melamine-dimethylurea-formaldehyde co-condensations: a quantitative 13C-NMR study. Polymers (Basel) 9, 109 (2017).

    Article  PubMed  Google Scholar 

  63. Li, T., Cao, M., Zhang, B., Yang, L. & Du, G. Effects of molar ratio and pH on the condensed structures of melamine-formaldehyde polymers. Materials (Basel) 11, 2571 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Yu, T. et al. Identifying key mononuclear Fe species for low-temperature methane oxidation. Chem. Sci. 12, 3152–3160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beach, C. A. et al. Quantitative carbon detector for enhanced detection of molecules in foods, pharmaceuticals, cosmetics, flavors, and fuels. Analyst 141, 1627–1632 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Lundberg, D. J. et al. Universal kinetic mechanism describing CO2 photoreductive yield and selectivity for semiconducting nanoparticle photocatalysts. J. Am. Chem. Soc. 144, 13623–13633 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Youkhana, E. Q., Feltis, B., Blencowe, A. & Geso, M. Titanium dioxide nanoparticles as radiosensitisers: an in vitro and phantom-based study. Int. J. Med. Sci. 14, 602–614 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Silmore, K. S., Gong, X., Strano, M. S. & Swan, J. W. High-resolution nanoparticle sizing with maximum a posteriori nanoparticle tracking analysis. ACS Nano 13, 3940–3952 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Yashnik, S., Boltenkov, V., Babushkin, D., Taran, O. & Parmon, V. Methane oxidation by H2O2 over different Cu-species of Cu-ZSM-5 catalysts. Top. Catal. 63, 203–221 (2020).

    Article  CAS  Google Scholar 

  70. Yashnik, S. A., Boltenkov, V. V., Babushkin, D. E., Surovtsova, T. A. & Parmon, V. N. Liquid-phase methane peroxidation in the presence of Cu-ZSM-5: effect of modification with palladium. Kinet. Catal. 63, 555–568 (2022).

    Article  CAS  Google Scholar 

  71. Xu, J. et al. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catal. Today 270, 93–100 (2016).

    Article  CAS  Google Scholar 

  72. Xiao, P., Wang, Y., Nishitoba, T., Kondo, J. N. & Yokoi, T. Selective oxidation of methane to methanol with H2O2 over an Fe-MFI zeolite catalyst using sulfolane solvent. Chem. Commun. 55, 2896–2899 (2019).

    Article  CAS  Google Scholar 

  73. Yuan, Q., Deng, W., Zhang, Q. & Wang, Y. Osmium-catalyzed selective oxidations of methane and ethane with hydrogen peroxide in aqueous medium. Adv. Synth. Catal. 349, 1199–1209 (2007).

    Article  CAS  Google Scholar 

  74. Taran, O. P. et al. Formic acid production via methane peroxide oxidation over oxalic acid activated Fe-MFI catalysts. Top. Catal. 62, 491–507 (2019).

    Article  CAS  Google Scholar 

  75. Sun, S. et al. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catal. Sci. Technol. 11, 8052–8064 (2021).

    Article  CAS  Google Scholar 

  76. Lewis, R. J. et al. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catal. Lett. 149, 3066–3075 (2019).

    Article  CAS  Google Scholar 

  77. Aizat, A. G., Paiman, B., Lee, S. H. & Zaidon, A. Physico-mechanical properties and formaldehyde emission of rubberwood particleboard made with UF resin admixed with ammonium and aluminium-based hardeners. Pertanika J. Sci. Technol. 27, 473–488 (2019).

    Google Scholar 

  78. Park, B.-D., Frihart, C. R., Yu, Y. & Singh, A. P. Hardness evaluation of cured urea–formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method. Eur. Polym. J. 49, 3089–3094 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support of funding from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (Grant DE-FG02-08ER46488). SEM, TEM, ICP-OES and XPS were carried out in part through the use of MIT.nano Characterization Facilities. We thank the MIT Department of Chemistry Instrumentation Facility for the use of their NMR spectrometers. This material is based on work sponsored in part by the US Army DEVCOM ARL Army Research Office through the MIT Institute for Soldier Nanotechnologies under Cooperative Agreement number W911NF-23-2-0121. We thank Y.-M. Jo and M. Dinca for the Brunauer–Emmett–Teller measurement of the ZSM-5 catalysts. We thank R. Zhu and Y. Roman for the ultraviolet-visible measurement of the ZSM-5 catalysts.

Author information

Authors and Affiliations

Authors

Contributions

M.S.S. supervised the project. M.S.S. and D.J.L. conceived the idea. D.J.L. and J.K. designed and carried out the experiments. Y.-M.T. carried out the TEM and TGA analyses. C.L.R. carried out the TEM analyses and methane oxidation reactions. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Damien Debecker, Richard Lewis, Feng-Shou Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13, Methods, Tables 1–13 and Figs. 1–55.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundberg, D.J., Kim, J., Tu, YM. et al. Concerted methane fixation at ambient temperature and pressure mediated by an alcohol oxidase and Fe-ZSM-5 catalytic couple. Nat Catal 7, 1359–1371 (2024). https://doi.org/10.1038/s41929-024-01251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01251-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing