Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Earth-abundant electrocatalysts for acidic oxygen evolution

Abstract

Proton-exchange membrane water electrolysis is a promising technology for green hydrogen production, but its widespread commercialization is hindered by the high cost and scarcity of precious-metal-based catalysts for the oxygen evolution reaction (OER). Recent progress has been made in developing low-cost, earth-abundant electrocatalysts for the acidic OER, but little is known about degradation pathways. This makes the design of active and robust catalysts challenging. Here we review recent advances in the design of earth-abundant catalysts for the acidic OER, examining the degradation mechanisms from the device level to the catalyst electronic structure level, and highlighting the relevant characterization techniques. We discuss the thermodynamic and kinetic stability of the catalysts and present a quantitative comparative analysis of electrochemical data to evaluate different materials and design strategies for catalysts. We also examine the performance of the catalysts in proton-exchange membrane water electrolysers and conclude with a discussion of the key scientific challenges and future perspectives in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prices of precious and earth-abundant metals from January 2019 to January 2024.
Fig. 2: Degradation mechanisms at different levels under acidic OER conditions.
Fig. 3: Typical characterization techniques used for studying the acidic OER.
Fig. 4: Pourbaix diagrams for earth-abundant metals in aqueous solution at 25 °C.
Fig. 5: Comparison of the OER activity and stability of different earth-abundant catalysts.
Fig. 6: Comparison of OER activity and stability of earth-abundant catalysts using different strategies.
Fig. 7: Activity and stability of earth-abundant catalysts in PEM water electrolysers.

Similar content being viewed by others

References

  1. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  4. Du, N. et al. Anion-exchange membrane water electrolyzers. Chem. Rev. 122, 11830–11895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  6. Ayers, K. et al. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Article  Google Scholar 

  8. Kong, S. et al. Acid-stable manganese oxides for proton exchange membrane water electrolysis. Nat. Catal. 3, 252–261 (2024). A tailored γ-MnO2 catalyst with more planar oxygen showed high stability above 1.8V versus RHE at pH 0 in liquid electrolytes, also demonstrating high durability in MEAs.

  9. Li, A. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022). Incorporating manganese into the Co3O4 spinel lattice enabled enhanced stability in liquid electrolytes.

    Article  CAS  Google Scholar 

  10. Anantharaj, S. et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. ACS Catal. 6, 8069–8097 (2016).

    Article  CAS  Google Scholar 

  11. Zhao, B. et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 8, 14586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao, J., Tao, H. & Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 33, e2003786 (2021).

    Article  PubMed  Google Scholar 

  13. Roy, C. et al. Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces. ACS Energy Lett. 3, 2045–2051 (2018).

    Article  CAS  Google Scholar 

  14. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    Article  CAS  Google Scholar 

  15. Huang, J. et al. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 12, 3036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ram, R. et al. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 384, 1373–1380 (2024). A delaminated CoWO4 catalyst, formed via ion exchange between WO42− and H2O/OH, achieved remarkable activity and stability in MEAs.

    Article  CAS  PubMed  Google Scholar 

  17. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  18. Knöppel, J. et al. On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells. Nat. Commun. 12, 2231 (2021). A study examined differences in catalyst dissolution rates between aqueous systems and MEAs, identifying key factors.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pham, C. V., Escalera‐López, D., Mayrhofer, K., Cherevko, S. & Thiele, S. Essentials of high performance water electrolyzers – from catalyst layer materials to electrode engineering. Adv. Energy Mater. 11, 2101998 (2021).

    Article  CAS  Google Scholar 

  20. Feng, Q. et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources 366, 33–55 (2017). A review discussed the degradation and mitigation strategies of different components for the PEM electrolyser.

  21. Babic, U., Suermann, M., Büchi, F. N., Gubler, L. & Schmidt, T. J. Critical review—identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 164, F387–F399 (2017).

    Article  CAS  Google Scholar 

  22. Ito, H. et al. Effect of flow regime of circulating water on a proton exchange membrane electrolyzer. Int. J. Hydrogen Energy 35, 9550–9560 (2010).

    Article  CAS  Google Scholar 

  23. Trinke, P., Bensmann, B., Reichstein, S., Hanke-Rauschenbach, R. & Sundmacher, K. Hydrogen permeation in PEM electrolyzer cells operated at asymmetric pressure conditions. J. Electrochem. Soc. 163, F3164–F3170 (2016).

    Article  CAS  Google Scholar 

  24. Weiß, A. et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer. J. Electrochem. Soc. 166, F487–F497 (2019).

    Article  Google Scholar 

  25. Grigoriev, S. A. et al. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. Int. J. Hydrogen Energy 34, 5986–5991 (2009).

    Article  CAS  Google Scholar 

  26. Grigoriev, S. A., Dzhus, K. A., Bessarabov, D. G. & Millet, P. Failure of PEM water electrolysis cells: case study involving anode dissolution and membrane thinning. Int. J. Hydrogen Energy 39, 20440–20446 (2014).

    Article  CAS  Google Scholar 

  27. Briant, C. L., Wang, Z. F. & Chollocoop, N. Hydrogen embrittlement of commercial purity titanium. Corros. Sci. 44, 1875–1888 (2002).

    Article  CAS  Google Scholar 

  28. Okada, T., Ayato, Y., Yuasa, M. & Sekine, I. The effect of impurity cations on the transport characteristics of perfluorosulfonated ionomer membranes. J. Phys. Chem. B 103, 3315–3322 (1999).

    Article  CAS  Google Scholar 

  29. Sun, S., Shao, Z., Yu, H., Li, G. & Yi, B. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack. J. Power Sources 267, 515–520 (2014).

    Article  CAS  Google Scholar 

  30. Wang, X. et al. The influence of ferric ion contamination on the solid polymer electrolyte water electrolysis performance. Electrochim. Acta 158, 253–257 (2015).

    Article  CAS  Google Scholar 

  31. Ito, H., Maeda, T., Nakano, A., Kato, A. & Yoshida, T. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochim. Acta 100, 242–248 (2013).

    Article  CAS  Google Scholar 

  32. Zhang, K. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 1, e9120032 (2022).

    Article  Google Scholar 

  33. Liu, B., Ma, B., Chen, Y. & Wang, C. Corrosion mechanism of Ti/IrO2–RuO2–SiO2 anode for oxygen evolution in sulfuric acid solution. Corros. Sci. 170, 108662 (2020).

    Article  CAS  Google Scholar 

  34. Yang, X. et al. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 25, 42–50 (2016).

    Article  CAS  Google Scholar 

  35. Martelli, G. N., Ornelas, R. & Faita, G. Deactivation mechanisms of oxygen evolving anodes at high current densities. Electrochim. Acta 39, 1551–1558 (1994).

    Article  CAS  Google Scholar 

  36. Yi, Y. et al. Electrochemical degradation of multiwall carbon nanotubes at high anodic potential for oxygen evolution in acidic media. ChemElectroChem 2, 1929–1937 (2015).

    Article  CAS  Google Scholar 

  37. Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Ferrell, J. R., Rasmussen, M. & McNeary, W. W. Carbon corrosion in low-temperature CO2 electrolysis systems. Sustain. Energy Fuels 8, 3266–3278 (2024).

    Article  Google Scholar 

  39. Liu, T. et al. Towards cost-effective and durable bipolar plates for proton exchange membrane electrolyzers: a review. Fuel 368, 131610 (2024).

    Article  CAS  Google Scholar 

  40. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics 85th edn (CRC, 2004)

  41. Rakousky, C., Keeley, G. P., Wippermann, K., Carmo, M. & Stolten, D. The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers. Electrochim. Acta 278, 324–331 (2018).

    Article  CAS  Google Scholar 

  42. Khatib, F. N. et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review. Renew. Sustain. Energy Rev. 111, 1–14 (2019).

    Article  CAS  Google Scholar 

  43. Zlatar, M. et al. Standardizing OER electrocatalyst benchmarking in aqueous electrolytes: comprehensive guidelines for accelerated stress tests and backing electrodes. ACS Catal. 13, 15375–15392 (2023).

    Article  CAS  Google Scholar 

  44. Zhang, J., Tang, Y., Song, C., Zhang, J. & Wang, H. PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power Sources 163, 532–537 (2006).

    Article  CAS  Google Scholar 

  45. Geiger, S. et al. Catalyst stability benchmarking for the oxygen evolution reaction: the importance of backing electrode material and dissolution in accelerated aging studies. ChemSusChem 10, 4140–4143 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, C. et al. Degradation effects at the porous transport layer/catalyst layer interface in polymer electrolyte membrane water electrolyzer. J. Electrochem. Soc. 170, 034508 (2023).

    Article  CAS  Google Scholar 

  47. Spöri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. P. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).

    Article  Google Scholar 

  48. Rozain, C., Mayousse, E., Guillet, N. & Millet, P. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: part I–pure IrO2-based anodes. Appl. Catal. B 182, 153–160 (2016).

    Article  CAS  Google Scholar 

  49. Fathi Tovini, M., Hartig-Weiß, A., Gasteiger, H. A. & El-Sayed, H. A. The discrepancy in oxygen evolution reaction catalyst lifetime explained: RDE vs MEA – dynamicity within the catalyst layer matters. J. Electrochem. Soc. 168, 014512 (2021).

    Article  Google Scholar 

  50. Ghadge, S. D. et al. Influence of defects on activity–stability of Cu1.5Mn1.5O4 for acid-mediated oxygen evolution reaction. J. Electrochem. Soc. 167, 144511 (2020).

    Article  CAS  Google Scholar 

  51. Edgington, J., Schweitzer, N., Alayoglu, S. & Seitz, L. C. Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid. J. Am. Chem. Soc. 143, 9961–9971 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Li, N. et al. Origin of surface amorphization and catalytic stability of Ca2−xIrO4 nanocrystals for acidic oxygen evolution: critical roles of acid anions. ACS Catal. 12, 13475–13481 (2022).

    Article  Google Scholar 

  53. Costentin, C. & Nocera, D. G. Self-healing catalysis in water. Proc. Natl Acad. Sci. USA 114, 13380–13384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanchez Casalongue, H. G. et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem. Int. Ed. 53, 7169–7172 (2014).

    Article  CAS  Google Scholar 

  55. Kasian, O., Grote, J. P., Geiger, S., Cherevko, S. & Mayrhofer, K. J. J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem. Int. Ed. 57, 2488–2491 (2018).

    Article  CAS  Google Scholar 

  56. Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015). A correlation between the oxygen evolution activity and metal oxide corrosion was clarified on the basis of thermodynamic considerations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeng, F., Mebrahtu, C., Liao, L., Beine, A. K. & Palkovits, R. Stability and deactivation of OER electrocatalysts: a review. J. Energy Chem. 69, 301–329 (2022).

    Article  CAS  Google Scholar 

  58. Lei, Z. et al. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 10, 2000478 (2020).

    Article  CAS  Google Scholar 

  59. Shan, J., Zheng, Y., Shi, B., Davey, K. & Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 4, 2719–2730 (2019).

    Article  CAS  Google Scholar 

  60. Kötz, R., Lewerenz, H. J. & Stucki, S. XPS studies of oxygen evolution on Ru and RuO2 anodes. J. Electrochem. Soc. 130, 825 (1983).

    Article  Google Scholar 

  61. Wang, Y. et al. Inverse doping IrOx/Ti with weakened Ir–O interaction toward stable and efficient acidic oxygen evolution. Chem 9, 2931–2942 (2023).

    Article  CAS  Google Scholar 

  62. Li, A. et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem. Int. Ed. 58, 5054–5058 (2019).

    Article  CAS  Google Scholar 

  63. Bockris, J. O. M. Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817–827 (1956).

    Article  CAS  Google Scholar 

  64. Wang, Q. et al. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 62, e202216645 (2023).

    Article  CAS  Google Scholar 

  65. Huynh, M., Bediako, D. K. & Nocera, D. G. A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002–6010 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kakizaki, H. et al. Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide. Adv. Funct. Mater. 28, 1706319 (2018).

    Article  Google Scholar 

  67. Thorarinsdottir, A. E., Veroneau, S. S. & Nocera, D. G. Self-healing oxygen evolution catalysts. Nat. Commun. 13, 1243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh, A. K. et al. Electrochemical stability of metastable materials. Chem. Mater. 29, 10159–10167 (2017).

    Article  CAS  Google Scholar 

  69. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  70. May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    Article  CAS  Google Scholar 

  71. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  PubMed  Google Scholar 

  72. Peng, J., Giordano, L., Davenport, T. C. & Shao-Horn, Y. Stability design principles of manganese-based oxides in acid. Chem. Mater. 34, 7774–7787 (2022). A study revealed that lower manganese oxidation states decreased the stability of the oxides and accelerated their dissolution kinetics in acid, supported by the computation of ~1,000 manganese-based oxides.

    Article  CAS  Google Scholar 

  73. Wang, X. et al. Preparation and characterization of partial-cocrystallized catalyst-coated membrane for solid polymer electrolyte water electrolysis. Int. J. Hydrogen Energy 38, 9057–9064 (2013).

    Article  CAS  Google Scholar 

  74. Fouda-Onana, F. et al. Investigation on the degradation of MEAs for PEM water electrolysers part I: effects of testing conditions on MEA performances and membrane properties. Int. J. Hydrogen Energy 41, 16627–16636 (2016).

    Article  CAS  Google Scholar 

  75. Saveleva, V. A. et al. Insight into the mechanisms of high activity and stability of iridium supported on antimony-doped tin oxide aerogel for anodes of proton exchange membrane water electrolyzers. ACS Catal. 10, 2508–2516 (2020).

    Article  CAS  Google Scholar 

  76. Pfeifer, V. et al. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 8, 2143–2149 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Chong, L. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380, 609–616 (2023). A lanthanum- and manganese-doped cobalt spinel fibre showed attractive stability in MEAs.

    Article  CAS  PubMed  Google Scholar 

  78. Mom, R. V. et al. Operando structure-activity-stability relationship of iridium oxides during the oxygen evolution reaction. ACS Catal. 12, 5174–5184 (2022).

    Article  CAS  Google Scholar 

  79. Li, A. et al. Atomically dispersed hexavalent iridium oxide from MnO2 reduction for oxygen evolution catalysis. Science 384, 666–670 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, J. et al. Single-atom Co dispersed on polyoxometalate derivatives confined in bamboo-like carbon nanotubes enabling efficient dual-site lattice oxygen mediated oxygen evolution electrocatalysis for acidic water electrolyzers. Energy Environ. Sci. 9, 3088–3098 (2024).

    Article  Google Scholar 

  81. Wang, N. et al. Doping shortens the metal/metal distance and promotes OH coverage in non-noble acidic oxygen evolution reaction catalysts. J. Am. Chem. Soc. 145, 7829–7836 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Wohlfahrt-Mehrens, M. & Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and online mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 237, 251–260 (1987).

    Article  CAS  Google Scholar 

  83. Pan, S. et al. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13, 2294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kötz, R., Stucki, S., Scherson, D. & Kolb, D. M. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. Interfacial Electrochem. 172, 211–219 (1984).

    Article  Google Scholar 

  85. Wang, L. et al. Co–Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem. Int. Ed. 62, e202314 (2023).

    Google Scholar 

  86. Zhu, S. et al. Reconstructing hydrogen-bond network for efficient acidic oxygen evolution. Angew. Chem. Int. Ed. 63, e202319462 (2024).

    Article  CAS  Google Scholar 

  87. Huang, J. et al. Surface oxidation/spin state determines oxygen evolution reaction activity of cobalt-based catalysts in acidic environment. Nat. Commun. 15, 3067 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yi, Y. et al. Electrochemical corrosion of a glassy carbon electrode. Catal. Today 295, 32–40 (2017).

    Article  CAS  Google Scholar 

  89. Kasian, O., Geiger, S., Mayrhofer, K. J. J. & Cherevko, S. Electrochemical on-line ICP-MS in electrocatalysis research. Chem. Rec. 19, 2130–2142 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Fiedler, L. et al. Stability of bipolar plate materials for proton-exchange membrane water electrolyzers: dissolution of titanium and stainless steel in DI water and highly diluted acid. ChemElectroChem 10, e202300373 (2023).

    Article  CAS  Google Scholar 

  91. Frydendal, R. et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1, 2075–2081 (2014).

    Article  CAS  Google Scholar 

  92. Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).

    Article  PubMed  Google Scholar 

  93. Chatti, M. et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat. Catal. 2, 457–465 (2019).

    Article  CAS  Google Scholar 

  94. Li, N., Keane, T. P., Veroneau, S. S. & Nocera, D. G. Role of electrolyte composition on the acid stability of mixed-metal oxygen evolution catalysts. Chem. Commun. 56, 10477–10480 (2020).

    Article  CAS  Google Scholar 

  95. Wang, L. et al. Strong Ni–S hybridization in a crystalline NiS electrocatalyst for robust acidic oxygen evolution. J. Phys. Chem. C 124, 2756–2761 (2020).

    Article  CAS  Google Scholar 

  96. Hu, F. et al. Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 29, 1606570 (2017).

    Article  Google Scholar 

  97. Chang, S., Cheng, C. C., Cheng, P. Y., Huang, C. L. & Lu, S. Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 446, 137452 (2022).

    Article  CAS  Google Scholar 

  98. Gunasooriya, G. T. K. K. & Nørskov, J. K. Analysis of acid-stable and active oxides for the oxygen evolution reaction. ACS Energy Lett. 5, 3778–3787 (2020). A high-throughput screening framework was developed, incorporating ΔGpbx and theoretical overpotential to discover acid-stable, active earth-abundant catalysts for the acidic OER.

    Article  CAS  Google Scholar 

  99. Rao, K. K. et al. Overcoming hurdles in oxygen evolution catalyst discovery via codesign. Chem. Mater. 34, 899–910 (2022).

    Article  CAS  Google Scholar 

  100. Klyukin, K., Zagalskaya, A. & Alexandrov, V. Role of dissolution intermediates in promoting oxygen evolution reaction at RuO2(110) surface. J. Phys. Chem. C 123, 22151–22157 (2019).

    Article  CAS  Google Scholar 

  101. Zagalskaya, A. & Alexandrov, V. Mechanistic study of IrO2 dissolution during the electrocatalytic oxygen evolution reaction. J. Phys. Chem. Lett. 11, 2695–2700 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Dam, A. P., Papakonstantinou, G. & Sundmacher, K. On the role of microkinetic network structure in the interplay between oxygen evolution reaction and catalyst dissolution. Sci. Rep. 10, 14140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ooka, H. et al. Microkinetic model to rationalize the lifetime of electrocatalysis: trade-off between activity and stability. J. Phys. Chem. Lett. 15, 10079–10085 (2024).

    Article  CAS  PubMed  Google Scholar 

  104. Cherevko, S. et al. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).

    Article  CAS  Google Scholar 

  105. Mondschein, J. S. et al. Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions. Chem. Mater. 29, 950–957 (2017).

    Article  CAS  Google Scholar 

  106. Lewinski, K. A., van der Vliet, D. & Luopa, S. M. NSTF advances for PEM electrolysis-the effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers. ECS Trans. 69, 893 (2015).

    Article  CAS  Google Scholar 

  107. Yang, X. et al. Self-supported N-doped hierarchical Co3O4 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. Chem. Eng. J. 465, 142745 (2023).

    Article  CAS  Google Scholar 

  108. Zhao, Z. et al. Tailoring manganese oxide nanoplates enhances oxygen evolution catalysis in acid. J. Catal. 405, 265–272 (2022).

    Article  CAS  Google Scholar 

  109. Wang, Y. et al. Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew. Chem. Int. Ed. 61, e202116233 (2022).

    Article  CAS  Google Scholar 

  110. Liu, J. et al. Reducible Co3+–O sites of Co–Ni–P–Ox on CeO2 nanorods boost acidic water oxidation via interfacial charge transfer-promoted surface reconstruction. ACS Catal. 13, 5194–5204 (2023).

    Article  CAS  Google Scholar 

  111. Cheng, W. et al. A metal-vacancy-solid-solution NiAlP nanowall array bifunctional electrocatalyst for exceptional all-pH overall water splitting. J. Mater. Chem. A 6, 9420–9427 (2018).

    Article  CAS  Google Scholar 

  112. Yang, Y. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Feng, M. et al. Tuning electronic structures of transition metal carbides to boost oxygen evolution reactions in acidic medium. ACS Nano 16, 13834–13844 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Su, H. et al. Hetero-N-coordinated Co single sites with high turnover frequency for efficient electrocatalytic oxygen evolution in an acidic medium. ACS Energy Lett. 4, 1816–1822 (2019).

    Article  CAS  Google Scholar 

  115. Zhao, X. et al. Operando insight into the oxygen evolution kinetics on the metal-free carbon-based electrocatalyst in an acidic solution. ACS Appl. Mater. Interfaces 11, 34854–34861 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, X. et al. Carboxylated carbon nanotubes with high electrocatalytic activity for oxygen evolution in acidic conditions. InfoMat 4, e12273 (2021).

    Article  Google Scholar 

  117. Lu, S. et al. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem 8, 1415–1426 (2022).

    Article  CAS  Google Scholar 

  118. Mondschein, J. S. et al. Intermetallic Ni2Ta electrocatalyst for the oxygen evolution reaction in highly acidic electrolytes. Inorg. Chem. 57, 6010–6015 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Kirshenbaum, M. J., Richter, M. H. & Dasog, M. Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst. ChemCatChem 11, 3877–3881 (2019).

    Article  CAS  Google Scholar 

  120. Delgado, D., Minakshi, M., McGinnity, J. & Kim, D. J. Co/Mo bimetallic addition to electrolytic manganese dioxide for oxygen generation in acid medium. Sci. Rep. 5, 15208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Senthil Raja, D. et al. In-situ grown metal–organic framework-derived carbon-coated Fe-doped cobalt oxide nanocomposite on fluorine-doped tin oxide glass for acidic oxygen evolution reaction. Appl. Catal. B 303, 120899 (2022).

    Article  CAS  Google Scholar 

  122. Xiong, Q. et al. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 54, 3859–3862 (2018).

    Article  CAS  Google Scholar 

  123. Zhou, L. et al. Rutile alloys in the Mn–Sb–O system stabilize Mn3+ to enable oxygen evolution in strong acid. ACS Catal. 8, 10938–10948 (2018).

    Article  CAS  Google Scholar 

  124. Hayashi, T., Bonnet-Mercier, N., Yamaguchi, A., Suetsugu, K. & Nakamura, R. Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers. R. Soc. Open Sci. 6, 190122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Blasco-Ahicart, M., Soriano-López, J., Carbó, J. J., Poblet, J. M. & Galan-Mascaros, J. R. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 10, 24–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Younus, H. A. et al. Engineering of a highly stable metal–organic Co-film for efficient electrocatalytic water oxidation in acidic media. Mater. Today Energy 17, 100437 (2020).

    Article  Google Scholar 

  127. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  128. Zhao, L. et al. Iron oxide embedded titania nanowires – an active and stable electrocatalyst for oxygen evolution in acidic media. Nano Energy 45, 118–126 (2018).

    Article  CAS  Google Scholar 

  129. Tran-Phu, T. et al. Nanoscale TiO2 coatings improve the stability of an earth-abundant cobalt oxide catalyst during acidic water oxidation. ACS Appl. Mater. Interfaces 14, 33130–33140 (2022).

    Article  CAS  Google Scholar 

  130. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Du, H. L. et al. Durable electrooxidation of acidic water catalysed by a cobalt-bismuth-based oxide composite: an unexpected role of the F-doped SnO2 substrate. ChemCatChem 14, e202200013 (2022).

    Article  CAS  Google Scholar 

  132. Lei, C. et al. Fe–N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8, 1801912 (2018).

    Article  Google Scholar 

  133. Wang, L. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 10, 1903137 (2019).

    Article  Google Scholar 

  134. Han, N. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yang, L. J., Deng, Y. Q., Zhang, X. F., Liu, H. & Zhou, W. J. MoSe2 nanosheet/MoO2 nanobelt/carbon nanotube membrane as flexible and multifunctional electrodes for full water splitting in acidic electrolyte. Nanoscale 10, 9268–9275 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, J. et al. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Adv. Mater. Interfaces 3, 1500669 (2016).

    Article  Google Scholar 

  137. Yu, J. et al. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4. Nat. Commun. 13, 4341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jo, S. et al. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for efficient and stable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Adv. Energy Mater. 13, 2301420 (2023).

    Article  CAS  Google Scholar 

  139. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016). An example highlighted a self-healing catalyst in a solution-based hybrid water-splitting–biosynthetic system, converting CO2 into biomass and valuable chemicals, outperforming natural photosynthesis.

    Article  CAS  PubMed  Google Scholar 

  140. Kim, Y. T. et al. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 8, 1449 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Moses, O. A. et al. Integration of data-intensive, machine learning and robotic experimental approaches for accelerated discovery of catalysts in renewable energy-related reactions. Mater. Rep. Energy 1, 100049 (2021).

    CAS  Google Scholar 

  142. Jiang, J. & Kucernak, A. Investigations of fuel cell reactions at the composite microelectrode|solid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured Pt|Nafion® membrane interface. J. Electroanal. Chem. 567, 123–137 (2004).

    Article  CAS  Google Scholar 

  143. Schröder, J. et al. The gas diffusion electrode setup as straightforward testing device for proton exchange membrane water electrolyzer catalysts. JACS Au 1, 247–251 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Petzoldt, P. J., Kwan, J. T. H., Bonakdarpour, A. & Wilkinson, D. P. Deconvoluting reversible and irreversible degradation phenomena in OER catalyst coated membranes using a modified RDE technique. J. Electrochem. Soc. 168, 026507 (2021).

    Article  CAS  Google Scholar 

  145. Cherevko, S. Stabilization of non-noble metal electrocatalysts for acidic oxygen evolution reaction. Curr. Opin. Electrochem. 38, 101213 (2023). A review discussed stabilization strategies based on thermodynamics, kinetics, electrolytes, interfaces and systems.

    Article  CAS  Google Scholar 

  146. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  147. Lv, Y. et al. Highly efficient electrochemical nitrate reduction to ammonia in strong acid conditions with Fe2M-trinuclear-cluster metal–organic frameworks. Angew. Chem. Int. Ed. 62, e202305246 (2023).

    Article  CAS  Google Scholar 

  148. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Young, C. B. F. & Egerman, C. Nickel–cobalt alloy plating from low pH acid sulfate solutions. Trans. Electrochem. Soc. 72, 447 (1937).

    Article  Google Scholar 

  150. Kim, J. et al. Metal ion recovery from electrodialysis-concentrated plating wastewater via pilot-scale sequential electrowinning/chemical precipitation. J. Clean. Prod. 330, 129879 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52102248 and 22479050), the Guangdong Basic and Applied Basic Research Foundation (2022A1515010231), the Guangzhou Basic Research Projects (Basic and Applied Basic Research Projects) (2023A04J1568), the Fundamental Research Funds for the Central Universities (2024ZYGXZR067), the National Key R&D Program of China (2021YFA1502400) and the Introduced Innovative R&D Team of Guangdong (2021ZT09L392). M.L. acknowledges the support of the Hightower Endowed Chair and the Georgia Tech Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.Z., M.L. and R.W. contributed to the conception of this manuscript. R.W. and B.Z. led the manuscript writing. All authors contributed to the revision of this manuscript.

Corresponding authors

Correspondence to Meilin Liu or Bote Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Ailong Li and Lina Chong for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1 and 2 and Note 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, R., Yuan, T., Wang, L. et al. Earth-abundant electrocatalysts for acidic oxygen evolution. Nat Catal 7, 1288–1304 (2024). https://doi.org/10.1038/s41929-024-01266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01266-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing