Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields

Abstract

The electrochemical reduction of CO2 is sensitive to the microenvironment surrounding catalytic active sites. Although the impact of changing electrolyte composition on rates has been studied intensively in aqueous electrolytes, less is known about the influence of the electrochemical environment in non-aqueous solvents. Here we demonstrate that organic alkylammonium cations influence catalytic performance in non-aqueous media and describe a physical model that rationalizes these observations. Using results from kinetic, spectroscopic and computational techniques, we argue that the strength of the electric field at the catalyst surface is sensitive to the molecular identity of the organic cation in the electrolyte. This is true irrespective of solvent, electrolyte ionic strength or electrolyte anion. Our results suggest that changes in the interfacial electric field strength can be attributed to differences in the cation–electrode distance. Changes in the electric field strength affect CO formation rates as they modify the energetics of the kinetically relevant CO2 activation step.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Effect of organic cations on CO2R in aprotic electrolytes.
Fig. 2: Effect of changing electrolyte ionic strength on CO2R rates.
Fig. 3: Effect of changing electrolyte counteranion.
Fig. 4: Proposed model of the impact of organic alkylammonium cations on CO2R reactivity.
Fig. 5: Understanding the mechanism of CO2R to CO in aprotic electrolytes.
Fig. 6: Spectroscopic probes of cation-mediated field strength.
Fig. 7: Computationally probing the effect of cation size on interfacial fields.
Fig. 8: Isolating the effect of cation–electrode distance on CO2R reactivity.

Similar content being viewed by others

Data availability

Computational datasets are available at the UCPH repository: https://sid.erda.dk/sharelink/hxqah2G0De. This includes all trajectory files from both relaxation and molecular dynamics simulations and covers initial and final configurations. Experimental datasets can be obtained from the corresponding author upon reasonable request.

References

  1. Hori, Y. in Modern Aspects of Electrochemistry Vol. 42, 1st edn (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).

  2. Stephens, I. E. L. et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).

    Article  CAS  Google Scholar 

  3. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  PubMed  CAS  Google Scholar 

  4. Resasco, J. & Bell, A. T. Electrocatalytic CO2 reduction to fuels: progress and opportunities. Trends Chem. 2, 825–836 (2020).

    Article  CAS  Google Scholar 

  5. König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 19, 135–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Govindarajan, N., Xu, A. & Chan, K. How pH affects electrochemical processes. Science 375, 379–380 (2022).

    Article  PubMed  CAS  Google Scholar 

  7. Waegele, M. M., Gunathunge, C. M., Li, J. & Li, X. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J. Chem. Phys. 151, 160902 (2019).

    Article  PubMed  Google Scholar 

  8. Potts, D. S., Bregante, D. T., Adams, J. S., Torres, C. & Flaherty, D. W. Influence of solvent structure and hydrogen bonding on catalysis at solid–liquid interfaces. Chem. Soc. Rev. 50, 12308–12337 (2021).

    Article  PubMed  CAS  Google Scholar 

  9. Li, G., Wang, B. & Resasco, D. E. Water-mediated heterogeneously catalyzed reactions. ACS Catal. 10, 1294–1309 (2020).

    Article  CAS  Google Scholar 

  10. Deacon-Price, C., Da Silva, A. H. M., Santana, C. S., Koper, M. T. M. & Garcia, A. C. Solvent effect on electrochemical CO2 reduction reaction on nanostructured copper electrodes. J. Phys. Chem. C 127, 14518–14527 (2023).

  11. Bender, J. T. et al. Understanding cation effects on the hydrogen evolution reaction. ACS Energy Lett. 8, 657–665 (2023).

    Article  CAS  Google Scholar 

  12. Govindarajan, N., Kastlunger, G., Heenen, H. H. & Chan, K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem. Sci. 13, 14–26 (2022).

    Article  CAS  Google Scholar 

  13. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  14. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  16. Gunathunge, C. M., Ovalle, V. J. & Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Phys. Chem. Chem. Phys. 19, 30166–30172 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  18. Resasco, J., Lum, Y., Clark, E., Zeledon, J. Z. & Bell, A. T. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064–1072 (2018).

    Article  CAS  Google Scholar 

  19. Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. BCSJ 64, 123–127 (1991).

    Article  CAS  Google Scholar 

  20. Kas, R., Kortlever, R., Yılmaz, H., Koper, M. T. M. & Mul, G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. Chem. Electro Chem. 2, 354–358 (2015).

    CAS  Google Scholar 

  21. Marcandalli, G., Monteiro, M. C. O., Goyal, A. & Koper, M. T. M. Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 55, 1900–1911 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ovalle, V. J., Hsu, Y.-S., Agrawal, N., Janik, M. J. & Waegele, M. M. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022).

    Article  CAS  Google Scholar 

  23. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Haynes, L. V. & Sawyer, D. T. Electrochemistry of carbon dioxide in dimethyl sulfoxide at gold and mercury electrodes. Anal. Chem. 39, 332–338 (1967).

    Article  CAS  Google Scholar 

  25. Chu, A. T., Jung, O., Toh, W. L. & Surendranath, Y. Organic non-nucleophilic electrolyte resists carbonation during selective CO2 electroreduction. J. Am. Chem. Soc. 145, 9617–9623 (2023).

    Article  PubMed  CAS  Google Scholar 

  26. Fogg, P. & Clever, L. (eds) Carbon Dioxide in Non-Aqueous Solvents at Pressures Less Than 200 KPA (Pergamon, 2017).

  27. Ikeda, S., Takagi, T. & Ito, K. Selective formation of formic acid, oxalic acid, and carbon monoxide by electrochemical reduction of carbon dioxide. Bull. Chem. Soc. Jpn 60, 2517–2522 (1987).

    Article  CAS  Google Scholar 

  28. Ito, K., Ikeda, S., Yamauchi, N., Iida, T. & Takagi, T. Electrochemical reduction products of carbon dioxide at some metallic electrodes in non-aqueous electrolytes. Bull. Chem. Soc. Jpn 58, 3027–3028 (1985).

    Article  CAS  Google Scholar 

  29. Dubouis, N. et al. The fate of water at the electrochemical interfaces: electrochemical behavior of free water versus coordinating water. J. Phys. Chem. Lett. 9, 6683–6688 (2018).

    Article  PubMed  CAS  Google Scholar 

  30. Bagger, A., Christensen, O., Ivaništšev, V. & Rossmeisl, J. Catalytic CO2/CO reduction: gas, aqueous, and aprotic phases. ACS Catal. 12, 2561–2568 (2022).

    Article  CAS  Google Scholar 

  31. Weng, S., Toh, W. L. & Surendranath, Y. Weakly coordinating organic cations are intrinsically capable of supporting CO2 reduction catalysis. J. Am. Chem. Soc. 145, 16787–16795 (2023).

    Article  PubMed  CAS  Google Scholar 

  32. Malkani, A. S. et al. Understanding the electric and non-electric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6, eabd2569 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  34. Mairegger, T. et al. Electroreduction of CO2 in a non-aqueous electrolyte—the generic role of acetonitrile. ACS Catal. 13, 5780–5786 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Foley, J. K., Korzeniewski, C. & Pons, S. Anodic and cathodic reactions in acetonitrile/tetra-n-butylammonium tetrafluoroborate: an electrochemical and infrared spectroelectrochemical study. Can. J. Chem. 66, 201–206 (1988).

    Article  CAS  Google Scholar 

  36. Figueiredo, M. C., Ledezma-Yanez, I. & Koper, M. T. M. In situ spectroscopic study of CO2 electroreduction at copper electrodes in acetonitrile. ACS Catal. 6, 2382–2392 (2016).

    Article  CAS  Google Scholar 

  37. Tomita, Y. & Hori, Y. in Studies in Surface Science and Catalysis Vol. 114 (eds Inui, T. et al.) 581–584 (Elsevier, 1998).

  38. Shi, J. et al. Electrochemical reduction of CO2 into CO in tetrabutylammonium perchlorate/propylene carbonate: water effects and mechanism. Electrochim. Acta 240, 114–121 (2017).

    Article  CAS  Google Scholar 

  39. Berto, T. C., Zhang, L., Hamers, R. J. & Berry, J. F. Electrolyte dependence of CO2 electroreduction: tetraalkylammonium ions are not electrocatalysts. ACS Catal. 5, 703–707 (2015).

    Article  CAS  Google Scholar 

  40. Cencer, M. M. et al. Interactions of CO2 anion radicals with electrolyte environments from first-principles simulations. ACS Omega 7, 18131–18138 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. König, M., Vaes, J., Pant, D. & Klemm, E. Effect of solvents on aprotic CO2 reduction: a study on the role of CO2 mass transport in the product selectivity between oxalate and carbon monoxide. J. Phys. Chem. C 127, 18159–18166 (2023).

  42. Liu, B., Guo, W. & Gebbie, M. A. Tuning ionic screening to accelerate electrochemical CO2 reduction in ionic liquid electrolytes. ACS Catal. 12, 9706–9716 (2022).

    Article  CAS  Google Scholar 

  43. Wuttig, A., Yoon, Y., Ryu, J. & Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139, 17109–17113 (2017).

    Article  PubMed  CAS  Google Scholar 

  44. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–93 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gomes, R. J. et al. Probing electrolyte influence on CO2 reduction in aprotic solvents. J. Phys. Chem. C. 126, 13595–13606 (2022).

    Article  CAS  Google Scholar 

  46. Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Ringe, S. The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts. Nat. Commun. 14, 2598 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold. Nat. Commun. 11, 33 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Alsunni, Y. A., Alherz, A. W. & Musgrave, C. B. Electrocatalytic reduction of CO2 to CO over Ag(110) and Cu(211) modeled by grand-canonical density functional theory. J. Phys. Chem. C 125, 23773–23783 (2021).

  50. Rosen, J. et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 5, 4293–4299 (2015).

    Article  CAS  Google Scholar 

  51. Clark, E. L. et al. Influence of atomic surface structure on the activity of Ag for the electrochemical reduction of CO2 to CO. ACS Catal. 9, 4006–4014 (2019).

    Article  CAS  Google Scholar 

  52. Amatore, C. & Saveant, J. M. Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J. Am. Chem. Soc. 103, 5021–5023 (1981).

    Article  CAS  Google Scholar 

  53. Noh, S., Cho, Y. J., Zhang, G. & Schreier, M. Insight into the role of entropy in promoting electrochemical CO2 reduction by imidazolium cations. J. Am. Chem. Soc. 145, 27657–27663 (2023).

    Article  PubMed  CAS  Google Scholar 

  54. Guo, W., Liu, B. & Gebbie, M. A. Suppressing co-ion generation via cationic proton donors to amplify driving forces for electrochemical CO2 reduction. J. Phys. Chem. C 127, 14243–14254 (2023).

  55. Deng, W., Zhang, P., Seger, B. & Gong, J. Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide. Nat. Commun. 13, 803 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Li, G., Wang, B. & Resasco, D. E. Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces. Surf. Sci. Rep. 76, 100541 (2021).

    Article  CAS  Google Scholar 

  57. Linic, S. & Barteau, M. A. On the mechanism of Cs promotion in ethylene epoxidation on Ag. J. Am. Chem. Soc. 126, 8086–8087 (2004).

    Article  PubMed  CAS  Google Scholar 

  58. Lang, N. D., Holloway, S. & Nørskov, J. K. Electrostatic adsorbate–adsorbate interactions: the poisoning and promotion of the molecular adsorption reaction. Surf. Sci. 150, 24–38 (1985).

  59. Roth, J. D. & Weaver, M. J. Role of double-layer cation on the potential-dependent stretching frequencies and binding geometries of carbon monoxide at platinum–non-aqueous interfaces. Langmuir 8, 1451–1458 (1992).

  60. Fried, S. D. & Boxer, S. G. Measuring electric fields and non-covalent interactions using the vibrational Stark effect. Acc. Chem. Res. 48, 998–1006 (2015).

  61. Lambert, D. K. Vibrational Stark effect of CO on Ni(100), and CO in the aqueous double layer: experiment, theory, and models. J. Chem. Phys. 89, 3847–3860 (1988).

  62. Cuesta, A. Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: the potential of zero charge of Pt(111). Surf. Sci. 572, 11–22 (2004).

    Article  CAS  Google Scholar 

  63. Anderson, M. R. & Huang, J. The influence of cation size upon the infrared spectrum of carbon monoxide adsorbed on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 318, 335–347 (1991).

    Article  CAS  Google Scholar 

  64. Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

    Article  PubMed  CAS  Google Scholar 

  65. Mamatkulov, M. & Filhol, J.-S. An study of electrochemical vs. electromechanical properties: the case of CO adsorbed on a Pt(111) surface. Phys. Chem. Chem. Phys. 13, 7675 (2011).

  66. Dimakis, N., Navarro, N. E., Mion, T. & Smotkin, E. S. Carbon monoxide adsorption coverage study on platinum and ruthenium surfaces. J. Phys. Chem. C 118, 11711–11722 (2014).

  67. Suydam, I. T. & Boxer, S. G. Vibrational Stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins. Biochemistry 42, 12050–12055 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. Clark, M. L. et al. CO2 reduction catalysts on gold electrode surfaces influenced by large electric fields. J. Am. Chem. Soc. 140, 17643–17655 (2018).

    Article  PubMed  CAS  Google Scholar 

  69. Staffa, J. K. et al. Determination of the local electric field at Au/SAM interfaces using the vibrational Stark effect. J. Phys. Chem. C 121, 22274–22285 (2017).

  70. Ge, A. et al. Interfacial structure and electric field probed by in situ electrochemical vibrational Stark effect spectroscopy and computational modeling. J. Phys. Chem. C 121, 18674–18682 (2017).

  71. Bhattacharyya, D. et al. Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces. Chem. Sci. 12, 10131–10149 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhao, K. et al. Action at a distance: organic cation induced long range organization of interfacial water enhances hydrogen evolution and oxidation kinetics. Chem. Sci. 14, 11076–11087 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lambert, D. K. Vibrational Stark effect of adsorbates at electrochemical interfaces. Electrochim. Acta 41, 623–630 (1996).

    Article  CAS  Google Scholar 

  74. Chang, S. C., Jiang, X., Roth, J. D. & Weaver, M. J. Influence of potential on metal–adsorbate structure: solvent-independent nature of infrared spectra for platinum(111) carbon monoxide. J. Phys. Chem. 95, 5378–5382 (1991).

  75. Zhu, Q., Wallentine, S. K., Deng, G.-H., Rebstock, J. A. & Baker, L. R. The solvation-induced Onsager reaction field rather than the double-layer field controls CO2 reduction on gold. JACS Au 2, 472–482 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Levell, Z. et al. Emerging atomistic modeling methods for heterogenous electrocatalysis. Chem. Rev. 124, 8620–8656 (2024).

    Article  PubMed  CAS  Google Scholar 

  77. Resasco, J. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 5, 374–381 (2022).

    Article  Google Scholar 

  78. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  PubMed  CAS  Google Scholar 

  79. Gauthier, J. A. et al. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 9, 920–931 (2019).

    Article  CAS  Google Scholar 

  80. Zhao, S.-F., Horne, M., Bond, A. M. & Zhang, J. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide? J. Phys. Chem. C 120, 23989–24001 (2016).

  81. Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    Article  CAS  Google Scholar 

  82. Lobaccaro, P. et al. Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. Phys. Chem. Chem. Phys. 18, 26777–26785 (2016).

    Article  PubMed  CAS  Google Scholar 

  83. Chae, K. J. et al. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 22, 169–176 (2008).

    Article  CAS  Google Scholar 

  84. Delley, M. F., Nichols, E. M. & Mayer, J. M. Electrolyte cation effects on interfacial acidity and electric fields. J. Phys. Chem. C 126, 8477–8488 (2022).

  85. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  PubMed  CAS  Google Scholar 

  86. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  87. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  88. Hammer, B., Hansen, L. B. & Norskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  89. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.M. gratefully acknowledges the support of ExxonMobil Corporation through the Future Leaders Academy Ph.D. Fellowship. Findings and conclusions are those of the author and do not reflect the views of ExxonMobil Corporation. J.F.B and J. Resasco gratefully acknowledge support from the Robert A. Welch Foundation (Grants F-1945 and F-2076, respectively). We thank A. Kennedy from the University of Texas at Austin Dept. of Chemistry’s Glass Shop for the construction of electrochemistry glass cell components and D. Davies for assistance with graphic design. J.T.B. gratefully acknowledges the support of the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) under Grant Nos. DGE-1610403 and DGE-2137420. A.S.P and J. Rossmeisl thank the Center for High Entropy Alloy (CHEAC) funded by the Danish National Research Foundation (DNRF 149) and the Villum Foundation through the Villum Center for the Science of Sustainable Fuels and Chemicals (#9444) for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

J.M. conducted all electrochemical experiments and wrote the paper. J.T.B. collected all the vibrational spectroscopy data. A.S.P. performed all the computational calculations and J. Rossmeisl guided the computational efforts. L.C. synthesized and characterized the asymmetric quaternary cations. J. Resasco conceptualized the paper. J.F.B and J. Resasco guided the work. All authors contributed to the discussion, review and editing of the paper.

Corresponding author

Correspondence to Joaquin Resasco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–64; Tables 1–5 and Notes 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGregor, JM., Bender, J.T., Petersen, A.S. et al. Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields. Nat Catal 8, 79–91 (2025). https://doi.org/10.1038/s41929-024-01278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01278-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing