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Copy number variants as modifiers of breast cancer
risk for BRCA1/BRCA2 pathogenic variant carriers

The contribution of germline copy number variants (CNVs) to risk of developing cancer in

individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We con-

ducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2

pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-

modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in

BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR)= 1.21), 95%

confidence interval (95% CI= 1.09–1.35) compared with non-CNV pathogenic variants. In

contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR=
0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1

showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated

with reduced cellular proliferation and reduced DNA damage after treatment with DNA

damaging agents. These data provide evidence that deleterious variants in BRCA1 plus

SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.
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Women who carry pathogenic variants in BRCA1
(OMIM 113705) and BRCA2 (OMIM 600185) have
greatly increased risk of developing breast cancer.

Recent cumulative risk estimates in high-risk families for devel-
oping breast cancer by age 80 years were 72% (95% confidence
interval (95% CI, 65–79%)) for BRCA1 and 69% (95% CI,
61–77%) for BRCA2 pathogenic. variant carriers1. The significant
variation of age at diagnosis of breast cancer between pathogenic
variant carriers suggests additional factors, such as common
inherited genetic variants, influence disease penetrance2,3. Large
genome-wide association studies, facilitated by the Consortium of
Investigators of Modifiers of BRCA1/BRCA2 (CIMBA2,3), have
demonstrated that >60 single nucleotide polymorphisms (SNPs)
or small insertions or deletions (Indels) associated with cancer
risk in the general population also are associated with breast
cancer risk for BRCA1/2 pathogenic variant carriers4–6. More-
over, population-based breast cancer polygenic risk scores are
associated with modified breast cancer risk for carriers7,8. How-
ever, the identified single nucleotide variant modifiers account for
<10% of heritable variation in risk in BRCA1/2 pathogenic variant
carriers5.

Copy number variants (CNVs) cover between 5-10% of the
human genome and, based on nucleotide coverage, are respon-
sible for the majority of variation in the human genome9,10.
CNVs exhibit substantial variability in both size and frequency
and can disrupt gene function significantly by altering gene
dosage, coding sequences, and gene regulation11. Germline CNVs
overlapping the BRCA1 and BRCA2 gene loci are associated with
the pathogenesis of breast cancer, accounting for <5% of known
pathogenic variants in these genes (https://www.ncbi.nlm.nih.
gov/clinvar). Multiple studies have utilised a genome-wide
approach to identify associations between rare and common
CNVs and the risk of developing breast cancer12–16.

CNVs previously have been shown to be modifiers of hereditary
breast cancer risk. In a genome-wide association study (GWAS) of
CNVs in 2500 BRCA1 pathogenic variant carriers, 52 gene loci were
associated (unadjusted p < 0.05) with breast cancer risk14. Although
no variant reached the widely-adopted genome-wide statistical sig-
nificance threshold applied for SNP-centric GWAS (p < 5 × 10−8)
and the study sample size was relatively small, the specific genes
disrupted by CNVs had plausible biological consequences regarding
cancer development. These data suggested that CNVs are an
important modifier of hereditary breast cancer risk and highlighted
the need for larger and more comprehensive CNV studies.

In this study, we conducted genome-wide CNV analyses of
15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers using
genotype data generated by the OncoArray Network17. We applied
in silico and in vitro analyses to characterise a novel risk association
between deletions overlapping SULT1A1 (OMIM 171150) and
decreased breast cancer risk for BRCA1 pathogenic variant carriers.

Results
Copy number variants. 857,647 CNVs (327,530 deletions and
530,117 duplications) were called in study participants, of which
374,210 CNVs (43.6%; 136,534 deletions and 237,676 duplica-
tions) overlapped at least one of 16,395 different gene regions. On
average, each genome carried 14.4 CNVs (range= 0–63) that
overlapped an average of 21.7 genes (range= 0–236). On average,
duplications were detected nearly twice as often as deletions (9.1
(range= 0–55) versus 5.2 (range= 0–58), respectively) and
affected twice as many gene regions (14.6 (range= 0–220) versus
7.0 (range= 0–207), respectively).

Evaluation of CNV calling. The sensitivity and specificity of our
CNV calling was assessed by comparing diagnostically identified

BRCA1 and BRCA2 CNVs to the CNVs called by our analysis. In
our cohort, 1,138 BRCA1 and 166 BRCA2 diagnostically identified
CNVs overlapped five or more probes and passed our variant
filtering; we detected 678 and 155 for BRCA1 and BRCA2,
respectively. Furthermore, our genome-wide analysis called 851
BRCA1 and 183 BRCA2 CNVs, of which 151 and 28 CNVs were
not supported by diagnostic testing of BRCA1 and BRCA2,
respectively. Together, our CNV calling achieved an 82.2% and
84.7% detection specificity and 59.6% and 92.8% detection sen-
sitivity for CNVs in BRCA1 and BRCA2, respectively.

Separate analysis of deletions and duplications found that
PennCNV performed better with deletion calling verses duplica-
tion calling (Supplementary Data 1). The sensitivity of calling
BRCA1 and BRCA2 deletions were 84.1% and 91.3%, respectively,
while the sensitivity of calling BRCA1 and BRCA2 duplications
were 68.6% and 39.1%, respectively. Similarly, the specificity of
calling BRCA1 and BRCA2 deletions was 70.4% and 94.8% and
duplications was 25.0% and 60.0%, respectively. A review of the
diagnostic CNVs not called by PennCNV found that the majority
of uncalled CNVs overlapped were the same variants. For
example, 54.1% of BRCA1 deletions not detected by PennCNV
were the same variant (c.5333-36_5406+ 400del510), which was
only successfully called by PennCNV for 1.4% of the variant
carriers.

Genome-wide CNV calling was assessed further for three cases
using whole-genome sequencing (WGS). In the three whole-
genome sequenced cases, 4444 (Case 1), 4540 (Case 2), and 4545
(Case 3) CNV calls passed confidence filtering, of which 1884
(Case 1), 1981 (Case 2), and 1940 (Case 3) overlapped gene
regions, respectively (Supplementary Data 2). A total of 10 of 14
(71.4%—Case 1), 23 of 42 (54.8%—Case 2), and 13 of 19 (68.4%
—Case 3) of PennCNV calls were supported by a CNV called in
the WGS data (Supplementary Data 3). Of the CNVs not
supported by WGS, 4 of 4 (100%—Case 1), 12 of 19 (63.2%—
Case 2), and 6 of 6 (100%—Case 3), CNVs were supported by a
previously-published CNV map10. All duplications that were not
supported by WGS were supported by the CNV map while
approximately half the deletions were not (Supplementary
Data 4). Each of the three cases also carried a diagnostically
identified pathogenic BRCA1 deletion that was called by WGS
CNV calling. Together, these data provide confidence that >80%
of deletions and duplications called by PennCNV in this study
cohort appear to be true calls.

Prioritization of candidate breast cancer CNV risk loci. To
prioritise genes for in silico and functional analyses, we selected
candidate gene loci with p < 0.01 from retrospective likelihood
analysis, effectively restricting hazard ratios to >1.25 and <0.75
(Supplementary Data 5–8). Putative CNVs at 31 gene regions
passed this threshold. For 16 of these 31 regions, the proportion
of unique CNVs represented in a published human CNV map10

was <95%. Although none of the CNV regions passed significance
thresholds when adjusted for multiple hypothesis testing (See
Methods; deletions in BRCA1 carriers—p ≤ 8 × 10−6; duplications
in BRCA1 carriers—p ≤ 5 × 10−6; deletions in BRCA2 carriers—
p ≤ 1 × 10−5; and duplications in BRCA2 carriers—p ≤ 6 × 10−6),
we used these results to prioritise a candidate risk-modifier gene
for laboratory analysis and biological validation.

Deletions overlapping BRCA1 increased breast cancer risk
(hazard ratio (HR)= 1.29, 95%CI= 1.13–1.49, p= 1.98 × 10−4)
(Supplementary Data 5) for BRCA1 pathogenic variant carriers. This
result was explored further as the analysis did not directly compare
the effect of BRCA1 deletions and BRCA1 non-deletion pathogenic
variants. Clinically diagnosed variants for BRCA1 and BRCA2
carriers were categorised by type (deletions, duplications, and small
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variants [i.e. nonsense, missense, frame shift, Indel, and splice site]).
Assessing the HRs for CNV versus non-CNV pathogenic variants,
separately for BRCA1 and BRCA2 suggested elevated breast cancer
risk for BRCA1 deletions (HR= 1.21, 95%CI= 1.09–1.35) but not
BRCA2 deletions (Table 1, Supplementary Data 9). These results
remained similar after excluding missense variant carriers from the
analysis (Supplementary Data 9). Estimated HRs were elevated for
duplications versus non-duplication pathogenic variants (deletions
were excluded) for BRCA1 duplication carriers (HR= 1.21, 95%
CI= 0.99–1.48; p= 0.066), and BRCA2 duplication carriers (HR=
1.52, 95%CI= 0.61–3.77, p= 0.39); however, results for BRCA2
were less definitive given the smaller sample size and wide
confidence intervals.

Putative duplications overlapping the breast cancer tumour
suppressor gene STK11 suggested decreased risk of breast cancer
in our study for both BRCA1 carriers (HR= 0.49, 95%CI
0.29–0.81, p= 5.4 × 10−3) and BRCA2 carriers (HR= 0.44, 95%
CI 0.22–0.88, p= 9.2 × 10−3). Putative deletions overlapping
TERT and duplications overlapping LSP1, two loci previously
shown to be associated with breast cancer risk for BRCA1 (TERT
locus) and BRCA2 (TERT and LSP1 loci) pathogenic variant
carriers from SNP-based studies18,19, suggested increased risk
(HR= 1.92, 95%CI= 1.06–3.46, p= 6.0 × 10−3) and decreased
risk (HR= 0.13, 95%CI= 0.04–0.45, p= 3.3 × 10−3) breast
cancer risk for BRCA2 pathogenic variant carriers in this study,
respectively. However, analysis of TERT and LSP1 CNVs using
TaqMan assays with available DNA showed only 25% (1/4) of
predicted deletions overlapping TERT and 50% (1/2) predicted
duplications overlapping LSP1 were successfully validated
(Table 2, Supplementary Fig. 1). These results are consistent
with the observation that predicted CNVs overlapping LSP1 and
TERT were not found in a published genomic map of human
CNVs10.

Identification of SULT1A1 as a candidate modifier gene. CNV
loci suggested to modify breast cancer risk estimates in BRCA1/2
pathogenic variant carriers, were examined to identify a candidate
gene for functional characterisation using in silico and in vitro

assays. SULT1A1 (sulfotransferase 1A1) was selected as a novel
candidate modifier based on potential biological mechanisms of
action and because overlapping CNVs had a population fre-
quency above 1%.

In our study, CNV deletions overlapping SULT1A1 were
identified in 1.7% of BRCA1 pathogenic variant carriers and they
suggested a decreased breast cancer HR (HR= 0.73, 95%
CI= 0.59–0.91, p= 9.1 × 10−3). Deletions overlapping all eight
SULT1A1 exons of the reference transcript were validated in all
eight available DNA samples using both TaqMan assays and
multiplex ligation-dependent probe amplification (MLPA; Sup-
plementary Fig. 2), and were identified in the CNV map
published by Zarrei et al (Supplementary Fig. 1c). Furthermore,
CNVs involving the SULT1A1 gene locus had an expression
dosage effect in breast tumours (Fig. 1).

Characterisation of SULT1A1 knockdown in BRCA1+/− cells.
To model the effect of SULT1A1 deletions in BRCA1 carriers, a
pair of isogenic MCF7 breast cell lines with and without a
pathogenic variant (BRCA1 c.2432_2433del) were created using
CRISPR-Cas9 (Fig. 2a). A comparison of the isogenic control
(MCF7–C1) and pathogenic variant carrying cells
(MCF7–BRCA1+/−) with the parent MCF7 cells (MCF7–WT)
showed no significant difference in cell proliferation (Fig. 2b,
Supplementary Data 10). There were also no differences in the
relative expression of BRCA1 mRNA between the isogenic
MCF7–C1 and MCF7–BRCA1+/− lines and the parent
MCF7–WT line (Fig. 2c, Supplementary Data 10). However, the
MCF7–BRCA1+/− cells showed a significant 25%
(p= 4.44 × 10−4) reduction in ESR1 expression (Fig. 2d, Sup-
plementary Data 10) and a significant 78% (p= 2.03 × 10−3)
increase in CYP1A1 expression (Fig. 2e, Supplementary Data 10),
consistent with breast cells with a pathogenic BRCA1 variant20.
There was no significant difference in SULT1A1 mRNA expres-
sion between the MCF7–WT and the isogenic MCF7–C1 and
MCF7–BRCA1+/− cells (Fig. 2f, Supplementary Data 10).

siRNA was used to transiently reduce the relative expression of
SULT1A1 mRNA in the isogenic MCF7–C1 and MCF7–BRCA1+/−

Table 1 Breast cancer hazard ratio estimates using a single model comparing other BRCA1/2 pathogenic variants versus (1)
deletions, and (2) duplicationsa.

Mutation type Unaffected Affected HR 95%CI p

BRCA1 carriers Other 8669 8483 1.00 [reference]
Deletions 636 789 1.21 1.09 1.35 4.35E-04
Duplications 153 192 1.21 0.99 1.48 6.60E-02

BRCA2 carriers Other 5913 6204 1.00 [reference]
Deletions 85 111 1.11 0.79 1.54 5.54E-01
Duplications 6 16 1.52 0.61 3.77 3.68E-01

a Weighted cohort models fitted separately for BRCA1 and BRCA2 carriers. Weights were calculated assuming BRCA1/2 carrier breast cancer incidences from most recent age cohort in Antoniou et al.,
(2008). Models were stratified by country and Ashkenazi Jewish ancestry, and adjusted for birth cohort and genotyping array. Cluster robust variances were estimated using families as clusters.
HR hazard ratio, 95%CI 95% confidence interval; p-value.

Table 2 Putative copy number variants assessed by TaqMan assays.

Gene symbol CNV type Variant carrier Assay ID Overlap CNV map1 Proportion validated

SULT1A1 Deletion BRCA1 1 Yes 100% (8/8)
TERT Deletion BRCA2 1 No 0% (0/1)

2 No 0% (0/1)
3 No 33% (1/3)

LSP1 Duplication BRCA2 1 No 50% (1/2)

CNV copy number variant. 1Zarrei et al (2015) stringent CNV map.
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lines. Compared with the non-targeting siRNA control, the relative
expression of SULT1A1 was approximately half in both isogenic lines
72 h after transfection targeting SULT1A1 (Fig. 3a, Supplementary
Data 11). As deletions overlapping SULT1A1 were suggested to
decrease breast cancer risk in BRCA1 pathogenic variant carriers, the
relative expression of BRCA1 was quantified to assess if the SULT1A1
knockdown affected its regulation (Fig. 3b, Supplementary Data 11).
However, there was no significant change in the BRCA1 expression
for the SULT1A1 knockdown cells compared with the transfection
control for either of the MCF7–C1 or the MCF7–BRCA1+/− lines.

The proliferation of the transfected MCF7–C1 and
MCF7–BRCA1+/− cells was assessed by measuring relative
DNA content. Knockdown of SULT1A1 expression did not alter
the proliferation of the MCF7–C1 compared with the transfection
control (Fig. 3c, Supplementary Data 11). However, when
SULT1A1 expression was reduced in MCF7–BRCA1+/− cells,
there was a 14% (p= 1.17 × 10−2) decrease in proliferation
compared with the transfection control after 72 h of growth
(Fig. 3d, Supplementary Data 11).

Because BRCA1-deficient cells are hypersensitive to DNA
damaging agents and have an impaired DNA damage repair

response20,21, we investigated whether knockdown of SULT1A1
expression altered the amount of damage caused by the DNA
damaging agents 4-hydroxyestradiol (4-OHE2) and Mitomycin C
(MMC) using the well-established comet and γH2AX and 53BP1
immunostaining assays. Analysis using comet assays, showed that
treatment with 4-OHE2 (F(1, 8)= 5.79, p= 4.28 × 10−2; Fig. 3e,
Supplementary Data 11) and MMC (F(1, 8)= 5.73,
p= 4.36 × 10−2; Fig. 3f, Supplementary Data 11) increased comet
tail moment length in MCF7–BRCA1+/− cells. There also was
evidence that transfection with siSULT1A1 reduced the average
comet tail moment length for both 4-OHE2 (F(1, 8)= 9.76,
p= 1.41 × 10−2; Fig. 3e, Supplementary Data 11) and MMC (F(1,
8)= 5.69, p= 4.43 × 10−2; Fig. 3f, Supplementary Data 11)
treated MCF7–BRCA1+/− cells. Assessing the effect of SULT1A1
knockdown in MCF7–BRCA1+/− and MCF7–C1 cells using the
γ-H2AX and 53BP1 immunostaining assay gave rise to analogous
results (Fig. 3e–h). Although there was evidence that treatment
with 4-OHE2 increased the average number of co-localised DNA
damage foci (F(1, 8)= 24.36, p= 1.14 × 10−3; Fig. 3g, Supple-
mentary Data 11) in MCF7–BRCA1+/− cells, the reduction in the
number of foci caused by the siSULT1A1 transfection did not

Fig. 1 Characterisation of SULT1A1. a Genomic viewer (UCSC) of the SULT1A1 gene locus with copy number variants; deletion (red) and duplication
(blue). b Dosage effect in breast tumours with SULT1A1 copy number variants. CNVs copy number variants.

ns

ns
ns

ns
ns

ns

ns
nsns

*

***

Fig. 2 Characterisation of MCF7–WT, and isogenic MCF7–C1, and MCF7–BRCA1+/− cell lines. a Sequence of heterozygous pathogenic BRCA1
c.2432_2433del variant introduced by CRISPR-Cas9. b Relative proliferation of MCF7–WT and clonally expanded CRISPR-Cas9 MCF7–C1 and
MCF7–BRCA1+/− cells for 72 h post seeding. Relative expression of c BRCA1, d ESR1, e CYP1A1, and f SULT1A1 for MCF7–WT, MCF7–C1 and
MCF7–BRCA1+/− cells. 4-OHE2 4-hydroxyestradiol, MMC Mitomycin C, Error bars= standard error of the mean; ns= p > 0.05; *p < 0.05; **p < 0.01;
***p < 0.001; n= 3 independent biological replicates; unpaired two-sided t-test.
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reach statistical significance (F(1, 8)= 5.02, p= 5.5 × 10−2).
Additionally, for the MMC treated MCF7–BRCA1+/− cells there
was a significant interaction between the siSULT1A1 transfection
and MMC treatment (F(1, 8)= 5.80, p= 4.3 × 10−2; Fig. 3h,
Supplementary Data 11). This effect was significant for MMC
treated MCF7–BRCA1+/− cells (F(1, 4)= 8.44, p= 4.4 × 10−2)
but not the vehicle control (F(1, 4)= 0.06, p= 8.19 × 10−1).
There was no evidence that siRNA transfection or drug

treatments affected the average comet tail moment or the number
of γ-H2AX and 53BP1 foci for the MCF7–C1 cells. Example
images of comet and γ-H2AX and 53BP1 immunostaining assay
are shown in Supplementary Figs. 3–6.

Discussion
Germline CNVs are an important source of genetic variation that
have previously been understudied in relation to breast and
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Fig. 3 siRNA knockdown of SULT1A1 reduces proliferation and DNA damage of MCF7–BRCA1+/− cells but not MCF7–C1 cells. Expression of (a)
SULT1A1 and (b) BRCA1 72 h post transfection. Relative DNA content of transfected (c) MCF7–C1 and (d) MCF7–BRCA1+/− cells 72 h post transfection.
Quantification of transfected DNA damage using the comet assay (e, f) and ϒ-H2AX/53BP1 foci quantification (g, h) for MCF7–C1 and MCF7–BRCA1+/−

cells, with and without siSULT1A1 transfection, 21 h post treatment with 1 μm 4-OHE2 (e and g) or 10 μm MMC (f and h). Significance of differences in
relative expression and DNA content was determined by unpaired two-sided t-test. Gene expression and DNA content of siSULT1A1 transfected cells
normalised to siControl transfected cells. Differences in DNA damage were determined by two-way analysis of variance. Example images of comet and ϒ-
H2AX/53BP1 foci shown in Supplementary Figs. 3–6. 4-OHE2= 4-hydroxyestradiol; MMC=Mitomycin C; Error bars= standard error of the mean;
ns= p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; n= 3 independent biological replicates.
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ovarian cancer risk. Here, we have conducted the largest and most
comprehensive genome-wide association study of CNVs and
breast cancer risk for BRCA1 and BRCA2 pathogenic variant
carriers. We identified putative CNVs in up to 31 putative gene
regions that were associated (unadjusted P < 0.01) with breast
cancer risk for BRCA1/2 pathogenic variant carriers, with CNVs
at 15 of these regions present in a human CNV map10. Although
none of the CNV regions passed significance thresholds when
adjusted for multiple hypothesis testing, we used these results to
prioritise a candidate risk-modifier gene for laboratory analysis
and biological validation. Consistent with observations from the
human CNV map, we validated positive CNV calls overlapping
the SULT1A1 gene, and revealed false positive CNV calls at two
candidate modifier gene regions (LSP1 and TERT). CNV dele-
tions overlapping the lead candidate modifier SULT1A1 showed
decreased breast cancer risk in BRCA1 pathogenic variant car-
riers. In silico analysis of SULT1A1 suggested that deletions
overlapping this gene leads to reduced expression. In vitro ana-
lyses showed that reduced SULT1A1 expression in cells carrying a
heterozygous BRCA1 pathogenic variant led to reduced cellular
proliferation and reduced DNA damage after treatment with
DNA damaging agents.

Both SNP and CNV variants at the SULT1A1 locus have pre-
viously been shown to be associated with SULT1A1 enzymatic
activity. The common SULT1A1 p.(Arg213His) (rs9282861)
polymorphism leading to the SULT1A1*2 variant has been
examined in a series of functional and association studies.
SULT1A1*2 has a two-fold lower catalytic activity and stability
than its high-activity p.Arg213 counterpart (SULT1A1*1), and
has been associated with increased cancer risk in multiple tissue
types22–25. Studies examining the association between the
rs9282861 polymorphism and breast cancer risk have yielded
inconsistent results showing an increase in risk in some
studies26–29 and no association in others30–32. The OncoArray
probe for rs9282861 failed quality control, therefore no genotype
data was available. Interestingly, the rs200802208 Indel located
near SULT1A1 was imputed from these arrays and analyses
showed that the del allele was associated with decreased risk of
breast cancer in BRCA1 pathogenic variant carriers (HR= 0.48,
95%CI 0.29–0.79, p= 4.3 × 10−3)5. rs9282861 is not in 1000 G
reference panel, therefore it is unknown whether this SNP exists
in linkage disequilibrium with rs200802208. CNVs overlapping
SULT1A1 are strongly associated with SULT1A1 activity and
explain more of the observed in vitro variability in SULT1A1
activity than SNPs, with activity proportional to SULT1A1 copy
number33–36. Individuals who are homozygous null for SULT1A1
do not present with any overt phenotypes37. This finding corre-
sponds with results from phenotypic analyses of mouse SULT1A1
knockouts which are viable, and which also lack any outward
phenotype38,39. However, the absence of functional SULT1A1
enzyme in mouse knockouts has been reported to reduce the
number of DNA adducts caused by DNA damaging agents that
are converted to mutagenic metabolites by SULT1A139.

The mechanism by which CNV deletions overlapping
SULT1A1 were associated with lower BRCA1-associated breast
cancer risk may be linked to the production of potentially toxic
catechol oestrogens by the Cytochromes P450 (CYP) enzymes.
SULT1A1 is an important SULT isoform that is expressed widely
in human tissues and plays an important role in the metabolism,
bioactivation, and detoxification of carcinogens, medications, and
steroid hormones33,34. SULT1A1 has established germline com-
mon CNVs and SNPs that are known to alter its activity40.
SULT1A1 is most abundantly expressed in the liver, but is also
expressed in the brain, breast, intestine, and endometrium41–44.
SULT1A1 expression is related to disease state, with plentiful
expression in most breast tumours42,45. In normal breast cells,

BRCA1 regulates oestrogen metabolism and metabolite-mediated
DNA damage by repressing transcription of the oestrogen-
metabolising enzyme CYP1A120,46. However, levels of CYP1A1
are higher in breast cells lacking BRCA1 function and promote
the formation of the carcinogenic 2-hydroxyestradiol (2-
OHE2)20. Further metabolism of 2-OHE2 by catechol
O-methyltransferase (COMT) is thought to have a risk reducing
effect by catalysing the formation of 2-methoxyestradiol (2-
MeOE2), a metabolite which interacts with the tubulin
colchicine-binding site during polymerisation and which has
anticarcinogenic effects by suppressing cell proliferation. In turn,
SULT1A1 is an efficient catalyst of 2-MeOE2 sulfation producing
2-MeOE2-3S, a sulfate conjugate with diminished activity33,47. It
is possible that the decreased risk associated with SULT1A1
deletions for BRCA1 pathogenic variant carriers and the decrease
in cell proliferation and amount of DNA damage for
MCF7–BRCA1+/− with a SULT1A1 knockdown cells may both
be linked to 2-MeOE2 abundance. That is, reduced SULT1A1
activity promotes the accumulation of 2-MeOE2 and slows the
proliferation of breast cells with unbalanced E2 metabolism.
Indeed, the SULT1A1 substrate, 2-MeOE2, has previously been
proposed as a potential preventative agent for breast cancer48. A
similar relationship between CYP1A1 and SULT1A1 activity and
reduced breast cancer risk has been demonstrated previously. In a
study of pairwise combinations of oestrogen metabolism alleles
and breast cancer risk, the SULT1A1*2 genotype was assessed in
combination with a CYP1A1 missense variant (CYP1A1*2 C) that
has increased inducibility to produce catechol oestrogens49. For
European-Americans, carrying the CYP1A1*2 C genotype was
associated with increased breast cancer risk (odds ratio (OR)=
1.71, 95%CI= 1.09–2.67). However, carrying the CYP1A1*2 C
allele in combination with a SULT1A1*2 allele was strongly
protective against developing breast cancer (OR= 0.14, 95%
CI= 0.04–0.56) compared with women carrying only the
CYP1A1*2 C allele. There was no association between the
CYP1A1*2 C (rs1048943) polymorphism and breast cancer risk
in BRCA1 pathogenic variant carriers5. These results further
suggest that the balance between the generation of catecholes-
trogens and catecholestrogen sulfation may be an important
mechanism for modulating breast cancer risk and worthy of
future investigation.

Our study provides strong evidence that deletions overlapping
BRCA1 are associated with a 1.21-fold higher risk of developing
breast cancer. Large deletions in BRCA1 have previously been
shown to be associated with an increased risk of breast cancer risk
(OR= 1.42) compared with carriers of BRCA1 pathogenic single
nucleotide variants or Indels50. Similarly, a series of studies have
reported a higher incidence of CNVs in both BRCA1 and BRCA2
when cases have a family history that includes high-risk features,
such as early-onset disease51,52. Although a mechanism that
explains the higher risk for BRCA1 deletion carriers is unclear,
one possible explanation is that large genomic variants disrupt
key BRCA1 domains or cause nonsense-mediated mRNA decay,
whereas some single nucleotide variants in BRCA1 avoid
nonsense-mediated decay and retain partial function. For exam-
ple, the p.(Arg1699Gln) variant in BRCA1 produces a protein
with ambiguous behaviour in a variety of functional assays and is
also associated with an intermediate risk53,54. Furthermore, var-
iants in both BRCA1 and BRCA2 are proposed to have variant-
specific risks, that coincide with known or hypothesised func-
tional domains and vary by variant type and location1,55. Our
results support the hypothesis that breast cancer risk for women
carrying large deletions in BRCA1 is greater than those patho-
genic single nucleotide variants or Indels, which may have
implications for clinical risk assessment and management of CNV
carriers.
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Despite this being the largest sample size of BRCA1 and BRCA2
pathogenic variant carriers available to date, the low frequency of
CNVs results in limited power for detecting significant associa-
tions after adjusting for multiple comparisons. As a result, a
nominal screening threshold of 0.01 was used which is arbitrary
and is therefore a limitation of the study. Nevertheless, this is the
largest extant dataset available for examining genetic modifiers of
BRCA1 and BRCA2 related risk. While larger studies, such as the
new Confluence project (https://dceg.cancer.gov/research/cancer-
types/breast-cancer/confluence-project), may lead to improved
statistical power to detect CNV associations, evaluating uncom-
mon genetic variation such as CNVs that overlap SULT1A1 and
other potential modifier genes in BRCA1/2 pathogenic variant
carriers will remain a challenge. Furthermore, CNV calling
algorithms have limitations which lead to false CNV calls, thus
highlighting the importance of using ancillary data to prioritise
regions for downstream analyses. Here we show that functional
analysis of a candidate modifier gene using a model cell line is
able to provide additional evidence that SULT1A1 deletions lead
to reduced risk of breast cancer in BRCA1 pathogenic variant
carriers. If verified, future therapeutic intervention studies tar-
geting SULT1A1 in BRCA1 pathogenic variant carriers may lead
to new medical options for reducing breast cancer risk.

In conclusion, our study provides evidence that CNVs con-
tribute to the variability in breast cancer risk among BRCA1 and
BRCA2 pathogenic variant carriers. Characterising pathogenic
variant type in BRCA1, and future screening for deletions over-
lapping SULT1A1, may produce variables to be incorporated with
other modifying factors to develop a more comprehensive model
of breast cancer risk. For example, integrating these genetic data
into the CanRisk Web Tool (https://www.canrisk.org/)56 along
with family history, lifestyle/hormonal risk factors, common
genetic susceptibility variants, and mammographic density, may
further improve breast cancer risk predictions. Such a model may
better inform patient decisions regarding breast cancer risk
management.

Methods
Study cohort. Female BRCA1 and BRCA2 pathogenic variant carriers were from
study centres across North America, Europe, and Australia participating in CIMBA
(Supplementary Data 12), as reported previously4,5. Eligibility criteria for study
participants included: (1) female carriers of BRCA1 or BRCA2 pathogenic variants;
and (2) minimum 18 years of age at recruitment. A complete list of BRCA1 and
BRCA2 pathogenic variants are deposited in the ClinVar database (https://www.
ncbi.nlm.nih.gov/clinvar/submitters/505954/) and a filtered list of those in parti-
cipants that were analysed in this study (post-quality control) is shown in Sup-
plementary Data 13. There were 7725 (50.4%) BRCA1 and 5488 (51.1%) BRCA2
pathogenic variant carriers diagnosed with breast cancer (Supplementary Data 14).
All participants were recruited for research studies using ethically approved pro-
tocols at host institutions.

CNV detection and quality control. DNA samples were genotyped using the
OncoArray-500k BeadChip (Illumina) with 533,631 probes, and standard sample
quality control exclusions were performed as previously described for the SNP
genotype analysis17. GenomeStudio (Illumina) was used to export Log R Ratios
(LRRs) and B allele frequencies (BAFs) for each sample as previous described14. A
principal components adjustment (PCA) was run on the LRR to remove noise
using the bigpca package (V1.1)57 in the statistical platform R (V3.5.2)58. CNV
calls were generated using PennCNV59. Probes that failed to cluster using Illu-
mina’s Gentrain algorithm (n= 4857) and probes on the Y chromosome were
removed from these results. Neighbouring CNVs with a gap of <20% of the total
length of the combined CNVs, were merged using the PennCNV clean_cnv.pl
script. For the current study we determined genetic ancestry using a principal
components approach described elsewhere5. A total of 15679 BRCA1 and 10981
BRCA2 pathogenic variant carriers of European ancestry were assessed.

The study cohort was filtered to remove samples that failed study requirements
or quality controls (Supplementary Fig. 7). Samples were removed if they met
criteria listed in Supplementary Fig. 7, or if they met the following criteria:
PennCNV measures of LRR standard deviation (s.d.) > 0.28, BAF drift > 0.01,
waviness factor deviating from 0 by >0.05; LRR outliers > 0.1, BAF s.d. ≥ 0.2, LRR
s.d. ≥ 0.4. Additionally, samples with >100 CNVs were excluded. To reduce false

positive calls, only copy number variants called by five or more probes were
retained for analysis. A total of 857,647 CNVs carried by 15,342 BRCA1 and 10,740
BRCA2 pathogenic variant carriers passed quality control steps and were assessed.

Defining gene-centric CNVs. To identify genomic loci that influence breast cancer
risk for BRCA1 and BRCA2 pathogenic variant carriers, a non-redundant gene-
centric approach was used. Gene regions were derived from the University of
California, Santa Cruz (UCSC) GRCh37/Hg19 gene track (updated: 14 June 2013)
and were restricted to chromosomes 1–22, and chromosome X. In total, 30,336
gene regions with 27,038 unique gene symbols were derived and used in our
analysis. CNVs that overlapped a gene region by one or more base pairs were
identified in a genome-wide scan in R (V3.5.3) using the GenomicRanges package
(V1.4)60. Overall, 374,210 CNVs overlapped one or more of 16,395 unique gene
regions and were retained for statistical analysis.

Breast cancer risk association analysis. The association analyses between breast
cancer risk and copy number deletions and duplications were conducted separately
for BRCA1 and BRCA2 pathogenic variant carriers. Study participants were fol-
lowed from birth until the age at first breast cancer diagnosis, age at ovarian cancer
diagnosis or bilateral prophylactic mastectomy (whichever occurred first), or at the
age at last observation. Only those diagnosed with breast cancer were considered to
be affected. Pathogenic variant carriers with ovarian cancer were considered
unaffected, and censored at ovarian cancer diagnosis.

BRCA1 and BRCA2 pathogenic variant carriers were sampled non-randomly
with respect to their disease status. Therefore, to evaluate associations between
deletions and duplications and breast cancer risk, we analysed these data using a
kinship adjusted score test based on the retrospective likelihood of observing the
CNV conditional on the observed phenotype to account for the non-random
ascertainment61. This model is stratified by country and Ashkenazi Jewish ancestry
but is unable to adjust for covariates. An approximation method yields HR and
95%CI estimates based on this score test61. Instances in which a non-overlapping
deletion and duplication was called in the same gene region were excluded,
however this occurrence was relatively uncommon (<1% of participants were
removed after the analysis of 99.3% of gene regions). Retrospective likelihood
analysis of variants was performed using R (V3.3.1) and bespoke software
(available on request). Conservative significance thresholds were based on the
number of effective tests in this gene-centric CNV study. After excluding gene
regions with no overlapping CNVs, thresholds were as follows: deletions in BRCA1
carriers—p ≤ 0.05/6551= 8 × 10−6; duplications in BRCA1 carriers—p ≤ 0.05/
10240= 5 × 10−6; deletions in BRCA2 carriers—p ≤ 0.05/5094= 1 × 10−5; and
duplications in BRCA2 carriers—p ≤ 0.05/8469= 6 × 10−6. Hypervariable regions
of the genome that are prone to CNV calling errors, including the human leucocyte
antigens, immunoglobulin superfamily, and olfactory receptor genes were excluded
from the final gene lists.

Models to estimate the associations (HRs) of deletions and duplications
simultaneously took the form of a weighted cohort analysis61,62. This method
assigns different weights to unaffected and affected carriers depending on their age
at diagnosis/censoring such that the weighted cohort mimics a true cohort. Weights
were calculated using the most recent birth cohort incidence estimates from
Antoniou et al.18. These models were stratified by country and Ashkenazi Jewish
ancestry, and further adjusted for genotyping array (iCOGS or OncoArray) birth
cohort (<1920, 1920-29, 1930-39, 1940-49, ≥1950). To account for relatedness,
cluster robust variances were estimated using unique family IDs as clusters.

CNV validation. Gene loci found associated with risk were reviewed to identify
CNVs for validation using orthogonal technologies. CNVs were prioritised for
validation if one or more DNA samples were available, the gene locus was asso-
ciated with risk (unadjusted p-value < 0.01), and if they overlapped a gene region
that had been previously associated with breast cancer risk. Copy number assess-
ment was carried out using TaqMan assays for five different copy number variable
regions in three different genes, including one gene (SULT1A1) that also was
assayed with MLPA. Custom primer and probe sequences and pre-designed assays
from Life Technologies used to validate CNVs are listed in Supplementary Data 15.
SULT1A1 MLPA was performed using the SULT1A1 MLPA kit (C1-0217; MRC-
Holland) and analysed using Coffalyser software (v9.4; MRC-Holland), as per the
manufacturer’s instructions.

Three samples also were evaluated using WGS to assess the genome-wide
accuracy of CNV calling. Libraries were prepared for whole-genome sequencing
using the KAPA Hyper PCR Free Library preparation kit (V2.1) and 2 × 150 bp
paired end sequenced on the Illumina HiSeqX platform (Kinghorn Centre for
Clinical Genomics, Australia). Genomic data were processed using a modified
version of the GATK best practise guidelines. Cases were sequenced to an average
of 30-fold depth and CNVs were called using Lumpy and CNVnator
(Supplementary Data 16). Briefly, FastQ files were generated and adaptors trimmed
using Illumina’s Bcl2fastq (V2.16). Reads were aligned to the b37d5 (1000
Genomes Project GRCh37 plus decoy) reference genome using BWA-mem
(V0.7.10-r789)63, followed by Novosort (V1.03.01) to create coordinated-sorted
duplicate marked files. GATK (V3.3) Indel realignment and base quality
recalibration were used to create analysis ready reads64. Single nucleotide variants
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and short insertions and deletions were joint‐called using GATK HaplotypeCaller
in gVCF mode with variant quality score recalibration. Structural variants,
including CNVs, were distinguished from split reads and discordant pairs using
lumpy (V0.2.13)65 and read depth differences using CNVnator (V0.3.3)66.

Dosage effect analysis. Expression and copy number data from the Breast
Invasive Carcinoma67 datasets were downloaded using cBioPortal68. mRNA
expression was calculated as a Z-score from all genes and putative copy number
alterations were calculated using GISTIC.

Cell culture. The MCF7 breast cancer cell line was purchased from the American
Type Culture Collection (ATCC) and maintained in Dulbecco′s Modified Eagle′s
Medium (DMEM) supplemented with 10% (v/v) foetal bovine serum (FBS). Cells
were cultured in a humidified atmosphere of 5% CO2 at 37 °C, and routinely
passaged every 3–4 days. Cells were used up to a maximum of 30 passages.

Development of MCF7–BRCA1+/− cell line. MCF7 cells underwent CRISPR-Cas9
editing to create isogenic cells with and without a heterozygous BRCA1 frameshift
variant resulting in premature truncation of the protein (hereafter referred to as a
pathogenic variant). The guide RNA was designed to target exon 11 of BRCA1 and
disrupt its function (sequence 5'-GCAGCATTTGAAAACCCCAA). MCF7 cells
were transfected with plasmid containing gRNA, Cas9 protein, and puromycin
resistance (Addgene [ID #62988]—pSpCas9(BB)−2A-Puro (PX459) V2.0). Control
cells underwent a parallel transfection protocol with a null guide RNA plasmid.
CRISPR-Cas9 treated cells were clonally expanded and the predicted CRISPR
cleavage site was amplified by PCR (forward 5'- GAAAGGATCCTGGGTGTTTG,
reverse 5'- CTTGTTTCCCGACTGTGGTT,) and was Sanger sequenced to identify
pathogenic variants. Isogenic lines were cultured in DMEM (1:1; Invitrogen) with
10% (v/v) FBS (Invitrogen) and grown in a humidified atmosphere of 5% CO2

at 37 °C.

RNA interference. Cells were seeded at 5000 cells per well in 96-well tissue culture
plates and allowed to adhere overnight. Cells were transfected with 20 µM of
Silencer™ Select siRNA oligonucleotides targeting human SULT1A1 (s13613,
Ambion) or a non-targeting siRNA negative control (Negative Control No.
1 siRNA, Ambion). Cells were transfected using Lipofectamine RNAi max (Invi-
trogen) according to manufacturer’s specifications. After 24 h of transfection media
was replaced with normal growth media.

qPCR. Total RNA was extracted 72 h post transfection using the RNAgem-PLUS
kit (ZyGem) to assess the level of gene knockdown. cDNA was synthesized using
the Superscript III cDNA Synthesis Kit (Invitrogen) and qPCR was performed
using Kapa Probe Fast qPCR Master mix (Kapa Biosystems) on the LightCycler
480 (Roche). The 2−ΔΔCT method was used to quantify mRNA expression levels of
target genes, where HPRT1 was used as an internal reference control. Two well-
characterised samples from 1000 Genomes Project with known copy number status
were used as copy number controls. Gene-specific primers and fluorescent probes
are reported in Supplementary Data 17. Statistical significance was assessed by two-
tailed Student’s t-tests between target genes and the siRNA control. Expression
differences were considered statistically significant if the p-value was <0.05.

Proliferation assay. MCF7 and MCF7–BRCA1+/− cells were seeded at 5000 cells
per well in 96-well, black walled, clear-bottom tissue culture plates (Greiner). Cells
were allowed to adhere overnight before transfection. Media was replaced 24 h post
transfection. Forty-eight hours post media change, cell proliferation was assessed
using the CyQUANT™ Cell Proliferation Assay Kit (Invitrogen) according to the
manufacturer’s instructions. Fluorescence was measured on the Varioskan® Flash
plate reader (Thermo Fisher Scientific) using a filter combination for excitation at
480 nm and emission at 520 nm.

DNA damage assay. Cells were seeded at 50,000 cells per well in 24-well tissue
culture plates. Cells were allowed to adhere overnight and were transfected for 24 h
before media was replaced. A further 24 h after media replacement cells were
treated with 1 µM 4-hydroxyestradiol (4-OHE2, Sigma) or 10 µM Mitomycin C
(MMC, Sigma) for 3 h. Cells were gently washed with PBS and media was replaced
with fresh complete media for a further 21 h before being assayed for DNA
damage.

Immunocytochemistry. Cells were gently lifted from cell culture plates, cytospun
onto slides, and fixed in ice-cold absolute methanol for 5 min. Slides were washed
with PBS and blocked for 30 min with 1% bovine serum albumin in PBS-T (Tween-
20 0.1% v/v). Slides were dual stained for 1 h with the mouse anti-phospho-H2AX
(Ser139) antibody (1:500; ab26350, Abcam) and rabbit anti-53BP1 (1:500; ab36823,
Abcam). Slides were incubated with anti-mouse AlexaFluor 488-conjugated (1:400;
ab150113, Abcam) and anti-rabbit IgG-AlexaFluor 494-conjugated (1:400;
ab150080, Abcam) secondary antibodies, and stained with DAPI for microscopic

examination. Images were taken at 40 × magnification on the Axio Imager.Z1
Microscope (Zeiss). Co-localised ϒ-H2AX and 53BP1 foci were counted in >150
cells from a minimum of ten fields from three independent experiments.

Comet assay. Alkaline comet assays were performed using a comet assay kit
(AbCam). Harvested cells were mixed with low melting agarose and transferred
onto a glass slide covered in a base layer of agarose. Slides were immersed in lysis
buffer for 60 min at 4 °C. Lysis buffer was replaced with alkaline solution (300 mM
NaOH, pH 10, 1 mM EDTA) and samples were kept in the dark for 30 min. Slides
were transferred to an electrophoresis chamber filled with alkaline solution and
electrophoresis was performed for 20 min (1 V/cm). DNA was stained with Vista
Green DNA Dye and images were captured by fluorescence microscopy on the
Axio Imager.Z1 Microscope. Comets were scored using the CellProfiler software
v3.1.869. Tail moments were assessed for >100 cells in three independent
experiments.

Statistical analysis of in vitro data. All in vitro data were expressed as the
mean ± standard error. The normality of data was visualised using the Q–Q plot
and tested using the Shapiro–Wilk normality test. Statistical significance of dif-
ferences between control and test groups were determined by an unpaired Stu-
dent’s t-test or two-way analysis of variance (ANOVA). All statistical tests were two
sided and p-values < 0.05 were considered significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genome-wide association summary statistics are available within the article. CIMBA
phenotype data used in this study from BCFR-AU, BCFR-NC, BCFR-NY, BCFR-PA,
BCFR-UT, BFBOCC, BIDMC, BMBSA, CBCS, CNIO, COH, DEMOKRITOS, DFCI,
FCCC, GEORGETOWN, HCSC, HRBCP, HUNBOCS, HVH, ICO, KCONFAB, KUMC,
MAYO, MSKCC, MUV, NCI, NNPIO, NORTHSHORE, OSUCCG, PBCS, SMC, SWE-
BRCA, UCHICAGO, UCSF, UPENN, UPITT, UTMDACC, VFCTG, and WCP studies
are available in the dbGaP database under accession code phs001321.v1.p1. The complete
dataset is not publicly available due to restraints imposed by the ethical committees of
individual studies. Requests to access the complete dataset, which is subject to General
Data Protection Regulation (GDPR) rules, can be made to the Data Access Coordinating
Committee (DACC) of CIMBA, following the process described on the CIMBA website
(http://cimba.ccge.medschl.cam.ac.uk/projects/data-access-requests/). Submitted
applications are reviewed by the CIMBA DACC every 3 months. CIMBA DACC
approval is required to access data from studies BCFR-ON/OCGN, BFBOCC-LV,
BRICOH, CCGCRN, BRICOH, CONSIT TEAM, DKFZ, EMBRACE, FPGMX, GC-
HBOC, GEMO, G-FAST, HEBCS, HEBON, IHCC, ILUH, INHERIT, IOVHBOCS,
IPOBCS, KOHBRA, MCGILL, NCCS, NRG_ONCOLOGY, OUH, SEABASS, and
UKGRFOCR (see Supplementary Data 12 —for a list of all CIMBA studies). Summary
statistics for each GWAS conducted for this study, can be freely downloaded from the
NHGRI-EBI GWAS catalogue with the accession codes: GCST90134567;
GCST90134568; GCST90134569; and GCST90134570; (https://www.ebi.ac.uk/gwas/).
The source data for all figures are presented in the Supplementary Data file.

Code availability
Code for the retrospective likelihood analysis of variants is available on request.
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