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Tibetan Plateau grasslands might
increase sequestration of microbial
necromass carbon under future warming

Check for updates

Qinwei Zhang1,2,6, Xianke Chen1,2,6, Xiaorong Zhou1,2, Xin Nie1,2, Guohua Liu1,2, Guoqiang Zhuang1,2,3,
Guodong Zheng 4, Danielle Fortin5 & Anzhou Ma 1,2

Microbial necromass carbon (MNC) can reflect soil carbon (C) sequestration capacity. However,
changes in the reserves of MNC in response to warming in alpine grasslands across the Tibetan
Plateau are currently unclear. Based on large-scale sampling and published observations, we divided
eco-clusters based on dominant phylotypes, calculated their relative abundance, and found that their
averaged importance to MNC was higher than most other environmental variables. With a deep
learning model based on stacked autoencoder, we proved that using eco-cluster relative abundance
as the input variable of the model can accurately predict the overall distribution of MNC under current
and warming conditions. It implied that warming could lead to an overall increase in the MNC in
grassland topsoil across the Tibetan Plateau, with an average increase of 7.49mg/g, a 68.3%
increase. Collectively, this study concludes that alpine grassland has the tendency to increase soil C
sequestration capacity on the Tibetan Plateau under future warming.

The Tibetan Plateau is more sensitive to climate change than other regions
due to its high altitude, many glaciers, and abundant soil organic carbon
(SOC) storage, among which SOC can regulate climate by restoring carbon
(C) sinks and preventing further CO2 emissions1. Consequently, SOC
sequestration in the Tibetan Plateau’s terrestrial ecosystems is critical in
mitigating climate change. As an important contributor to persistent soil C
pool,microbial necromass carbon (MNC) accounting for up to 30%–87%of
SOC2. One way that MNC is thought to accumulate is through the pro-
duction and stabilization of microbial residues while achieving long-term
sequestration in the soil due to its mineral stabilization3. As such, MNC can
play an integral role in maintaining and potentially enhancing the seques-
tration of SOC in ecosystems like the Tibetan Plateau. Therefore, estimating
the overall changes in theMNCunderwarming climate conditions can help
us explore the variations in the soil C sequestration capacity andC storage in
the Tibetan Plateau under climate change.

Previous studies have proven that the mean annual temperature
(MAT) indirectly affects MNC by affecting the aridity index (AI) and net
primary productivity (NPP)4, and the plant C input andmineral protection
are the most important driving forces of the MNC in the surface soil of
alpine grasslands5. Emerging research revealed that some complex controls
on MNC accrual and its role in long-term SOC storage. For example,

warming can accelerate microbial metabolism, potentially increasing
microbial turnover rates and necromass carbon accrual6. However, warm-
ing may also lead to increased decomposition rates of SOC, thereby posing
potential challenges to the storage of SOC inwarmer future scenarios7.With
regard to the impact of warming onMNC,most previous research has been
limited to small-scale experiments at field experimental stations, especially
the influence of warming on the distribution of MNC on the Tibetan Pla-
teau. Liang et al.8 observed a significant decrease in the quantity ofmicrobial
residue during a 9-yearwarming experiment in aCalifornia grassland.Ding
et al.9,10 found that warming increased the contribution of microbial residue
to the SOC in the 0–50 cm soil layer in an alpine meadow. Jia et al.11 found
that the quantity of 13C-microbial residues used by topsoil microorganisms
after warming did not significantly change. It can be seen that the complex
effects of multiple environmental factors on the C sequestration processes
mediated by the necromass which resulted in uncertain distribution results
of MNC, especially the evaluation of regional scale MNC is seriously
insufficient. Therefore, a comprehensive understanding of the overallMNC
distribution on the Tibetan Plateau under warming is of great significance
for comprehending soil C dynamics under regional warming.

Here we conducted sampling across a span of ~20° longitude (Fig. S1)
and estimated the MNC by measuring amino sugars2,12. Subsequently, we
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created a comprehensive MNC dataset based on amino sugars. To deter-
mine the climatic, plant-related, and soil physicochemical indexes of the
samples, we used a combination of laboratory measurements and an
environmental factor database. 16S rRNA gene data13,14 was used to predict
the relative abundances of thedominant eco-clusters15. This studypioneered
the use of a quantitative index combining environmental factors and
microbial communities to explore its predictive effect onMNC.We further
ascertained the soil’s capacity for C transformation by quantifying the
expression of genes related to C degradation and fixation, employing
quantitative polymerase chain reaction (qPCR) as our measurement
method. Afterward, we incorporated multiple factors into a deep learning
model to predict the overall distribution pattern of theMNC in the Tibetan
Plateau under the current conditions and warming. We aimed to focus on
quantifying how MNC stocks change in response to warming across the
region.

Results
Associations of spatial MNC distribution and soil microbial
properties
Across the Tibetan Plateau, the MNC in the alpine grassland topsoil
exhibited distinct spatial patterns from east to west (Fig. 1). The MNC in
the topsoil was 0.2–53 mg/g, with an average of 8.8 mg/g (Fig. S2).
Among them, the MNC of the alpine meadows (average of 14.1 mg/g)
was generally significantly higher than that of the alpine steppes (average
of 3.9 mg/g) (Fig. S2). The microbial biomass based on the 16S rRNA
gene concentration in the alpine meadows was less than 3 × 107 copies/
ng, which was generally lower than that in the alpine steppes (Fig. 1).
Interestingly, a marginal negative correlation was observed between the
MNC and microbial biomass (R2 = 0.41, p < 0.01) (Fig. 1). C fixation and
degradation genes had a secondary correlation with MNC in the topsoil,
and there is no clear rule between C circulating gene and MNC (Fig. 1).
Besides, using PC1 to represent the beta diversity of the microbial
community, it was found that PC1 was significantly positively correlated
with MNC (Fig. S3), and the fitting effect was better (R2 = 0.42,
p = 0.0004), indicating that the dominant microbial community has an
important contribution to MNC.

Based on the habitat preferences of the dominant phylotypes, seven
bacteria eco-clusters and three fungi eco-clusters were defined. The seven
bacteria eco-clusters were as follows: high elevation (Hele), high elevation

and low normalized difference index (Hele&LNDVI), high silt (Hsilt), high
meanannual precipitation (HMAP), high total nitrogen (HTN),HMAPand
low MAT (HMAP&LMAT), and high SOC and low TN (HSOC&LTN).
The three fungi eco-clusters were as follows: high NDVI and low NPP
(HNDVI&LNPP), high NPP and low NDVI (HNPP&LNDVI), and low
thickness (Lthickness) (Fig. S4). The ten eco-clusters had diverse taxonomic
compositions at the bacteria phylum and fungi class level (Fig. 2). Fungi
phylotypes weremore likely than bacteria phylotypes to co-occur with other
phylotypes belonging to the same eco-clusters (Fig. 2). In addition, the
coexistence of phylotypes between different bacteria eco-clusters was more
likely to occur (Fig. 2). The Cubist model was used to predict the various
relative abundance distribution of each eco-cluster based on the different
environmental preferences of the phylotypes (Fig. S5).

Model structure and validation
Random forest (RF) analysis revealed that the NDVI was the most
important variable, followed by the HMAP&LMAT relative abundance.
Hele relative abundance, sand content, and silt content contributed
roughly equally to explaining the variations in the MNC. The variables
rankedafterTNwere considered tobe variableswithnocontribution to the
MNC. Overall, the relative abundances of the bacteria eco-clusters had a
more significant effect on the MNC than that of the fungi eco-clusters
(Fig. 3a). Based on the RF results, the top 19 variables in terms of impor-
tance were selected as the input variables of the model. The models with
input variables containing the relative abundances of the dominant eco-
clusters were labeled CE, and those without were labeled WE. The CE
model included all 19 variables, while the WE model included only 14
variables and did not contain the relative abundance of HMAP&LMAT,
Hele, HSOC&LTN, Lthickness, and Hele&LNDVI. The K-fold cross-
validation results show that the CE model has a better simulation perfor-
mance, with a higher R2 (0.82) and lower root mean square error
(RMSE = 4.16) than the WE model (R2 = 0.75, RMSE = 4.91) (Fig. 3b, c;
Table S1). The hold-out validation of the CE model shows that the MNC
observations are significantly correlated with the fitted values, with a slope
of 0.97 and a Pearson’s correlation coefficient of 0.917 (p < 0.001; Fig. 3d).
The hold-out validation of the CE model is better than that of the WE
model (Fig. 3d, e). The above conclusion further proves that the relative
abundance of the dominant eco-clusters plays a vital role in the prediction
of the MNC.

Fig. 1 | Relationship between MNC and microbial related genes in the Tibetan
Plateau. a Spatial distributions of MNC (n = 96), (b) 16S rRNA gene concentration
(n = 25), (c, d) C fixation and degradation gene, and (e–g) their association with the
currentMNC in the topsoil across the Tibetan Plateau alpine grassland (n = 25). The

M in the x-axis in (e) represents a million. The relative quantification of (f) and (g)
represents the ratio of gene relative quantification to 16S rRNA gene relative
quantification.
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Spatial distribution of MNC currently and under warming
Based on the MNC simulation results of the CE model, we mapped the
geographic distribution of the MNC in the Tibetan Plateau (Fig. 4a).
The MNC is high in the northeast Tibetan Plateau (highest value of

43.73 mg/g) and is low in the west (lowest value of 0.6 mg/g). The MNC
in the Tibetan Plateau alpine grasslands exhibits a positive skewness
distribution, with an average of 10.96 mg/g (Fig. 4d). The distribution is
similar to that of the 96 observation sites. The contributions of the MAT
and MAP to the relative abundances of the eco-clusters evaluated using
the Cubist model shows that the dominant eco-clusters added to the CE
model are sensitive to changes in temperature and precipitation, except
for the Lthickness without the variable explanation of the MAT and
MAP (Table S2). The Hele had the lowest sensitivity, so the influence
of warming on it can be neglected. The independent-sample
Mann–Whitney U test of the site data revealed significant variations in
the relative abundances of the temperature-sensitive eco-clusters over the
entire Tibetan Plateau under RCP8.5 in the 2050 s compared to the
present (p < 0.05) (Table S3). According to the results of the RF analysis,
MAT has little direct effect on theMNC. However, the distribution of the
MNC throughout the entire Tibetan Plateau exhibits apparent changes
under RCP8.5 in the 2050 s vs. current. The hotspot of high MNC
remains in the eastern area, but the scale of the hotspot expands under
warming (Fig. 4a, b). Overall, MNC increases in the entire Tibetan Pla-
teau, but the rate of increase is more considerable in the alpine meadow
than in the alpine steppe (Fig. 4c). The relative abundance of MNC and
HMAP&LMAT in the meadow are positively correlated (Fig. S6). The
average increases in the MNC in the alpine grassland and the alpine
meadow are 6.34 mg/g and 8.68 mg/g, respectively (Fig. 4d). The mean
MNC value increases from 10.96 mg/g to 18.45 mg/g under simulated
warming conditions (Fig. 4d).

Discussion
The microbial uptake of plant-derived C affects the consumption and accu-
mulationofMNC.Thequantitative results illustrated that alpine grassland soil
with a high MNC value tended to have a low bacterial biomass (Fig. 1).
However, the high degree of expression of C degradation genes had no sig-
nificant effect on the accumulation of MNC (Fig. 1). In terms of MNC gen-
eration, we believe that it is not because a larger microbial biomass is more
conducive to the accumulation of MNC; instead, a low microbial biomass
microbiome with a short generation time and survival time may lead to the
accumulation of MNC by means of consistently producing microbial

Fig. 2 | Abundances and compositions of defined eco-clusters and their network
of interactions. a Percentage of OTUs in each bacteria eco-cluster at the phylum level
and fungi eco-cluster at the class level (n = 172). HMAP&LMAT: high MAP and low
MAT, HSOC&LTN: high SOC and low TN, HMAP: high MAP, Hsilt: high silt, Hele:
high elevation, HTN: high TN, Hele&LNDVI: high elevation and low NDVI,
HNDVI&LNPP: high NDVI and lowNPP, Lthickness: low thickness, HNPP&LNDVI:
highNPPand lowNDVI.bBacteria networkdiagramwith bacteria phylotypes as nodes
and their Spearman correlation coefficient as edges. cFungi network diagramwith fungi
phylotypes as nodes and their Spearman correlation coefficient as edges. The density of
the node aggregation represents the proximity of the phylotypes. Each node represents a
phylotype, and each color represents an eco-cluster.

Fig. 3 | RF analysis results and model validation. a Importance ranking of RF
analysis between MNC and environmental variables (n = 96). b CE model and (c)
WE model K-fold cross validation result (n = 96). d CE model and (e) WE model
hold-out validation result (n = 25). The degree of the linear fit of the points in (d, e)
shows the relationship between observed and predicted MNC on a linear scale.

RMSE root mean square error, MSE mean square error. NDVI normalized differ-
ence vegetation index, TP total phosphorus, BD bulk density, MAT mean annual
temperature, cec cation exchange capacity, cf gravel content greater than 2 mm,
MAP mean annual precipitation, NPP net primary productivity, TN total nitrogen,
AI aridity index, TK total potassium.
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residues16. The metabolism of a microbial community (rate of growth, con-
sumption of nutrients, etc.) is dependent on its composition, which includes
species diversity, relative abundance, and the functional traits of the species
present17. From theperspective ofMNCconsumption, thedecomposition rate
of MNC varies between microbial taxa18. In summary, we found that a single
microbial variable, such as microbial biomass and C cycling gene, could not
explain how theMNCaccumulation proceeds. Therefore, we further explored
the joint effect of microbial and environmental variables onMNC through an
integrated concept, eco-clusters15.

Four bacteria and one fungi eco-clusters were found to substantially
affect the MNC using RF analysis (Table S2). The HMAP&LMAT eco-
cluster mainly consists of Actinobacteria and Proteobacteria, both of which
are the main components of the microbial necromass in the soil18. Acid-
obateria and Bacteroidetes are the typical taxa that follow oligotrophic and
copiotrophic lifestyles19, occupying more than half of the Hele. Cyano-
bacteria account formore than 99%of theHSOC&LTN, andHele&LNDVI
even contains more archaea. Collectively, the classification of taxa based on
habitat preference embodies the effect of the environmental factors and
contains the survival strategies of the microbial composition. RF analysis
revealed that some climate factors, such as the MAT, alone do not sig-
nificantly impact the MNC. However, these environmental factors indir-
ectly affect theMNCbyadjustingmicrobial community compositions20.We
also observed that the effect of the bacterial community on the MNC was
greater than that of the fungi. Previous studies have proven that the repla-
cement of cell wall components and the metabolic rate of bacteria occur
more rapidly than that of fungi21,22, and bacterial decomposition is more
responsive to changes in nutrient availability andmay thus play a larger role

in the C cycle23. We speculate that this is because the active renewal of
bacterial cell walls can amplify the bacterial turnover based on the habitat
preference, resulting in the bacteria having a greater effect on theMNC than
the fungi.

RF analysis shows that the variations in the MNC in the different
latitude ranges and regions of the Tibetan Plateau result from the direct and
indirect effects of climate change. More minor changes could indicate a
better buffering capability at the soil level. Significant changes in the relative
abundances of the dominant eco-clusters, will occur by the 2050 s under
RCP8.5 when compared with those at the present time (Table S3). A likely
explanation for this is that climate warming increases the soil buffering
capacity by indirectly influencing the microbial community changes
(Table S3), specifically the adaptability of themicrobes towarming24. Several
studies have reported results similar to our overall prediction of theMNC in
the alpine grassland topsoil on the Tibetan Plateau under climate warming
conditions. After warming, the net increase in the microbial residues in the
surface soil is 23.9%9, and warming significantly increases the microbial
residues inmarshmeadows10. Previous studies have proven thatwarming of
surface soil increases the plant-derived C input and the available microbial
resources25.Microorganisms tend to consumemore organic carbon for their
anabolism, which is more conducive to the accumulation of microbial
residues andmarkedly increases theproportionof residualmicrobial carbon
in the organic carbon pool in the grassland on the Tibetan Plateau9.

An interesting finding was that the MNC will increase more in the
meadow than in the steppe under warming conditions. As has been pre-
viously reported, the MNC is significantly higher in the alpine meadows
than in the alpine steppes5, which was also demonstrated in our study

Fig. 4 | Projected distribution of topsoil MNC in grasslands across the Tibetan
Plateau. a Current, (b) under RCP8.5 in the 2050 s, and (c) their D-values dis-
tribution. d Comparison of topsoil MNC in the alpine steppe (n = 4717), alpine
meadow (n = 6033), and alpine grassland (n = 10,157) (current vs. RCP8.5 in 2050 s)
and their D-values. The alpine grassland map was derived from China’s Vegetation

Atlas (Editorial Committee for Vegetation Map of China, 2001). The grassland
consists of meadows and steppes. The horizontal line and square black dots in each
box represent themedian andmean, respectively. The different colors in the box line
chart denote the different periods (green: current, yellow: under RCP8.5 in 2050 s),
and purple represents their D-values.
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(Fig. 4d). Ding et al.9 reported that the increase in the MNC in the alpine
meadow was related to the increase in the microbial turnover rate under a
warming background. In addition, we found that there were notable dif-
ferences in the dominant phylotypes abundance between the meadow and
steppe. We speculate that the geographic differences in the distribution
patterns of the dominant phylotypes lead to regional differences in the
microbial turnover, which further results in differences in theMNC growth
rate in the two types of alpine grasslandunderwarming conditions (Fig. S5).
Based on the above conclusions, we propose that the dominant phylotypes
in the alpine meadow are more sensitive to warming, and the eco-clusters
adjust their adaptability to warming by changing the relative abundances of
the components of the community, suggesting that the abundances of the
dominant phylotypes canbeused as an indicator to assess andpredict alpine
grassland microbial C storage under climate change.

TheAI is significantly different in alpinemeadows and steppes, with a
boundary threshold of about 0.2726. Aridity has an essential effect on the
accumulation coefficient of MNC in grasslands, which reflects the direct
and indirect effects of soil moisture and precipitation on MNC4. Soil
moisture is considered to be a critical factor driving the accumulation of
MNC under warming conditions27. The higher humidity of the soil in the
alpinemeadow (AM) compared to that in the alpine steppe (AS) results in
higherNandphosphorus (P) utilization rate of the plants and thus a higher
soil nutrient homeostasis28. Fan et al.29 proved that the stoichiometric
stability of the soil microbial biomass is more stable in AM than in AS
through large-scale sampling measurements of MBC and microbial bio-
mass nitrogen (MBN). Fungal residues accounted for a higher proportion
of the SOC than bacterial residues2, accumulating more easily in acidic
soils4,30. The pH of AM soil with a higher AI is lower than that of AS soil
throughout the entire Tibetan Plateau26. Therefore, the soil environment of
the AM is more conducive to the accumulation of MNC. In addition, the
vegetation coverageofAM(NDVI > 0.6) is generally higher than that ofAS
(NDVI < 0.4), and there is a significant positive correlation betweenNDVI
andMNC (Fig. S7). In conclusion, regarding the hydrothermal conditions,
soil homeostasis, plant-derived C input, and microbial survival adapt-
ability of the microbes in the AM are more conducive to biological C
sequestration than those of themicrobes in the arid environment of the AS
and thus achieve effective, long-termC sequestration in the soil.Warming
will accelerate soil C loss31–33, so the regional soilMNC accumulation in the
Tibetan Plateau is considered to be a critical natural solution formitigating
warming. We speculate that the tremendous increase in the MNC in the
AMdue towarming is a protective strategy to increase soil C sequestration
and reduce C loss in the Tibetan Plateau in order to mitigate the negative
impacts of climate change.

Due to the lack of large-scale systematic observations of the MNC in
the Tibetan Plateau, we collected publishedMNC data from 71 sites4,5,9,34–37

and combined themwith our sitemeasurements to create the training set of
the model. In addition, it was inevitable that we could not obtain some
critical factors that have been proven to directly influence the MNC in
previous studies, such as mineral protection related indicators38, actual soil
moisture data39, and aboveground and belowgroundC input fromplants5,40.
In order to make up for the loss of these direct influencing factors, we
adopted the methods of relevant factor replacement, multi-factor interac-
tion, and construction of new comprehensive indicators, combinedwith the
powerful multi-variable learning ability of deep learning, to achieve the
current simulation effect (Fig. 3d). The mineral protection degree of soil
microbial residues is closely related to the soil particle size, and soil
microaggregates also affect the response ofmicrobial physiological activities
to climate change41. Besides, MAP and AI were selected to reflect the pre-
cipitation and drought conditions. We have proven that this is due to the
regional dividing line of theMNC distribution under the influence of water
and heat conditions. The deep learning model can effectively capture the
strength of the nonlinear correlation, therebyweakening the influenceof the
boundary threshold42,43. Besides, the process of ecological cluster division
includes the selection of dominant phylotypes based on hydrothermal
conditions and regional differences in their abundances under the influence

of mineral conservation15, further indicating the distribution of the MNC
from the perspective of microbial adaptability.

In summary, the constructed CE model emphasizes the original
driving role of themicroorganisms inMNC accumulation process, which is
different from previous models that ignored the role of microorganisms.
The simulation results of the current model are consistent with the actual
situation and have specific guiding significance for changes in soil C storage
in the Tibetan Plateau and also provide ideas for incorporating microbial
effects into the soil C cycle model. Even though the existing datasets can
achieve the desired effect, more MNCmeasurements are needed to further
improve the simulation performance of the model.

Methods
Sampling sites description
Wecollected samples between 2019 and 2021 fromwest to east across about
20° of longitude in theTibetanPlateau (Fig. S1). Six composite sampleswere
collected at each site in the four corners and the middle area of a
10m× 10m quadrat. Soils (0–15 cm) were collected and were sieved
through a 2-mm sieve to remove impurities such as stones and plant roots.
Then, soilswerebagged and stored in an icebox.The remaining147 samples
were collected along a transect spanning ~3500 km across the Tibetan
Plateau during 2013–2014, and the specific sampling method has been
described by Ding et al.13. Later, the observation of MNC from 71 samples
were obtained from seven papers4,5,9,34–37 by searching for the terms “Tibetan
Plateau”, “amino sugar” and “microbial residue carbon” on the Web of
Science (http://apps.webofknowledge.com/).Meadows and steppes account
for most of the alpine grasslands on the Tibetan Plateau, with alpine mea-
dows distributed in the wetter and warmer southeastern region and grass-
lands in the drier northwestern region. The site coverage was relatively
uniform, including 46 meadow and 50 steppe sample sites4.

Sequencing data collection and analysis
The eDNA was extracted using a MinkaGene Soil DNA Kit (Guangzhou
mCHIP BioTech CO). The concentration and purity were measured using
NanoDrop One (Thermo Fisher Scientific,MA, USA). The 16S rRNA gene
amplification primers targeted in the V4 hypervariable region included
515 F (5’-GTGCCAGCMGCCGCGGTAA3’) and 806 R (5’-GGAC-
TACHVGGGTWTCTAAT-3’)44. ITS3 (5’-GCATCGATGAAGAACGCA
GC-3’) and ITS4 (5’TCCTCCGCTTATTGATATGC-3’) were used to
amplify the fungi ITS2 gene45. PCR amplification, sequencing library con-
struction, library quality evaluation, and sequencing are described
previously46. All of the sequence analyses were performed using the Galaxy
pipeline (http://mem.rcees.ac.cn)47.

Characterization of functional genes related to carbon
The total amount and purity of the DNA were measured using a Qubit 4.0
(Thermo Fisher Scientific, Waltham, USA) instrument to ensure that the
DNA concentration was uniformly diluted in the 20 ng/µl. The repre-
sentative bacterial biomass was obtained by measuring the 16S rRNA gene
concentration48. Absolute quantitative information of 16S rRNA gene was
obtained by fluorescence quantitative PCR (Roche, LightCycler480 II). The
qualified DNA samples were added to a 384-well plate (the sample sour-
ceplate), and the primer and quantitative PCR (qPCR) reagent were added
to another 384-well plate (the assay sourceplate). A SmartChipMultisample
Nanodispenser (Takara Biomedical Technology) was used to add the
sample sourceplate and assay sourceplate reagents to the micropores of the
SmartChipMyDesignChip (TakaraBiomedicalTechnology,Clontech) and
a high-throughput qPCR chip, respectively. The qPCR reaction and fluor-
escence signal detectionwere performedusing a SmartChipReal-TimePCR
System (WaferGen Biosystems USA), and the amplification curve and
dissolution curve were automatically generated. According to the Ct values
of eachgene in each sample givenbySmartChipReal-TimePCRSystemand
Canco software, the relative quantitative information of each gene in each
sample was calculated according to the relative quantitative = 10(31−Ct)/
(10/3) formula after the abovequality control.Only the genes detected in the
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three technical repetitions were judged to be positive, and the average value
was calculated as the relative quantification of the gene in the corresponding
samples.

Measurement and collection of environmental factors
contributing to MNC
To investigate the degrees of influence of the various environmental
factors on the MNC, we collected databases of climate, plant, and soil
physicochemical indicators that included data for the geographical
coordinates of each site. The climatic variables (MAT and MAP) were
obtained from the WorldClim database (http://www.worldclim.org) for
1982–2016, and the aridity index (AI) was obtained from the CGIAR-
Consortium for Spatial Information (CSI) GeoPortal (https://cgiarcsi.
community) for the period 1970–2000. We used the multi-year averages
of the climate variables to explore their effects on the MNC. The plant
variables (NPP and NDVI) were downloaded from the National Aeur-
onatics and Space Administration (NASA) Earth Observations website
(NEO, https://neo.sci.gsfc.nasa.gov/), and we selected the average NPP
and NDVI for the sampling year.

Soil physicochemical indicators, including SOC,TN, TP, and pH,were
measured according topreviouswork46. Before analysis, all soil sampleswere
air-dried, ground, and processed through a 0.15-mmmesh sieve. The other
soil property indicators, including total potassium (TK), silt concentration
(silt)48, clay concentration (clay), sand concentration (sand), gravel con-
centration (cf), soil bulk density (BD), soil thickness (thickness), and cation
exchange capacity (cec) were obtained from the National Earth System
Science Data Center, National Science & Technology Infrastructure of
China. (http://www.geodata.cn). All of the downloaded raster data with a
spatial resolution of 1 km were extracted in ArcGIS 10.7 according to the
specific geographic coordinate information.

Analysis of amino sugars
The soil MNC content was determined by measuring the amino sugars in
the soil. The extraction and determination of the soil amino sugars were
conducted according to themethoddescribedby Indor andMou49,50. Briefly,
0.5 g of air-dried soil samplewasmixedwith 10ml of 6Mhydrochloric acid
and was hydrolyzed at 105 °C for 6 h. The cooled hydrolysis solution was
blown dry using nitrogen at 30 °C to evaporate the excess hydrochloric acid.
Then, the remaining hydrolysis product was dissolved in 2ml of ultrapure
water after filtration and was stored at 4 °C. The hydrolysis products were
derivatized online using ortho-phthaldialdehyde (OPA) andwere separated
using a Hypersil GOLDC18 column (Acclaim120 C18; 4.6mm× 150mm,
3 µm; Thermo Fisher Scientific, Waltham, USA) at 35 °C. Four amino
sugars (Glucosamine (GluN), galactosamine (GalN), muramic acid
(MurA), andmannosamine (ManN)) were determined and analyzed using
a high-performance liquid chromatograph (DionexUltimate 3000, Thermo
Fisher Scientific, USA)with emission and excitationwavelengths of 445 nm
and 330 nm. The total microbial residual carbon was calculated by com-
bining the conversion coefficients of the bacterial and fungal residual carbon
with the amino sugar fraction2.

Identification of ecological clusters
The microorganisms were divided into ecological clusters based on habitat
preferences according to the method of ref. 15. Furthermore, the relative
abundance of each ecological clusterwas calculated. First, the top 10%of the
phylotypes in terms of abundance and presence in more than half of the
sample size were selected from overall operational taxonomic unit (OTU)
analysis51, and named as dominant phylotypes. Secondly, the extracted
dominantphylotypeswere combinedwith all of the environmental variables
using the random forest model analysis to screen out the phylotypes with
habitat preferences with variable explanations of ≥30%. Thirdly, the eco-
logical clusters were identified using semi-partial Spearman correlation and
clustering analysis, and the relative abundance of each ecological clusterwas
calculated separately. The relative error magnitude should be less than 1,
which was used to evaluate the Cubist model fits. Finally, the relative

abundance of each ecological cluster was predicted using the Cubist model
and the environmental variables. Their distribution in the Tibetan Plateau
region was then mapped using the kriging function in ArcGIS 10.7.

Model structure and validation
Random forest analysis was used to screen the input variables of the model.
The top 70% of the environmental factors were selected as the input vari-
ables. The grassland MNC was estimated using stacked autoencoder
networks43, and themodel structurewasdivided into four layers: input layer,
autoencoders (AEs), regressor, and output layer. The input layer was the
target variable MNC and the screened environmental variables. The AEs
were used to generate the model, and its inputs were reconstructed by
extracting the high-level features. The regressor used a neural network to
make predictions using the features extracted by the AEs. The output layer
output the predicted MNC. The model first underwent layer-by-layer
unsupervised pre-training, that is, the environmental variables were input,
the AEs were trained, the high-level features were extracted from the
environmental variables, and the model weights were initialized. After
several model structure adjustments and parameter optimization, the AEs
adopted a three hidden layer structure, including two compression layers
and one release layer. The compression layer compresses the neurons one
latitude at a time, and the release layer releases them one latitude at a time.
The artificial neural network (ANN) in the stacked autoencoder (SAE)
contains a hidden layer with 32 neurons. Themodel was then fine-tuned by
inputting the environmental and target variables and fine-tuning themodel
weights. K-fold cross-validation and hold-out validation were used for the
model validation. Among them, K-fold cross-validation adopts tenfold
cross-validation. The input dataset was equally and randomly divided into
10 subsets. Nine were used as training sets, and one was used as the vali-
dation set. The hold-out validation dataset used 25% of the sample obser-
vations we set aside in advance and did not use in the model training. The
model predictions were linearly fitted to the observations; and the slope,
Pearson’s r value, R2, root mean square error (RMSE), and mean absolute
error (MAE) were selected as themodel evaluationmetrics. All of the above
steps were implemented in Python (3.8.5).

Prediction under future climate scenarios
The climate scenario was RCP8.5, in which the global mean temperature
rises to 5 °Cby2100 relative topreindustrial times. This scenariowasused to
simulate the variation in the MNC in the 2050 s under climate warming
conditions. Based on the previously established Cubist model, we replaced
the climatic variables with the relevant parameters of RCP8.5, and the soil
physicochemical properties were kept consistent with the current values.
We derived the relative abundances of the dominant ecological clusters
under the RCP8.5 future scenario. The Mann–Whitney U test was con-
ducted on each eco-cluster separately to investigate the differences in the
relative abundances of the dominant ecological clusters before and after
warming. The future climate projections under RCP8.5 in the 2050 s
were derived from climate model BCC-CSM1.1 (originated from Beijing
Climate Center, China), which was downloaded from the climate change,
agriculture and food security (CCAFS)-Climate data portal (http://www.
ccafsclimate.org/dataspatialdownscaling/). The predicted relative abun-
dances of the dominant ecological clusters and the related climatic para-
meters underRCP8.5 in the 2050 swere jointly input into the establishedCE
model to output the predicted MNC under warming. Finally, the dis-
tribution pattern of the MNC was visualized using ArcMap 10.7.

Statistics and reproducibility
The correlation between the two groups was analyzed using regression
analysis. Data was considered statistically significant if p < 0.05. Random
forest analysis was performed using the R package ‘ppcor’ and visualized by
R package ‘pheatmap’ in R 3.5.1. R packages ‘Cubist’, ‘gstat’, ‘raster’, ‘sp’,
‘maptools’ and ‘ggplot2’wereused formodelbuilding andmapvisualization
in R 3.5.1. The Mann–Whitney U test used SPSS 22.0, and the data were
considered statistically significant if p < 0.001.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All DNA sequencing data in this study was submitted to the Science Data
Bank (https://cstr.cn/31253.11.sciencedb.06531; https://doi.org/10.57760/
sciencedb.06531), and is publicly available. All other data are available from
the corresponding author upon reasonable request.

Code availability
For data analyses, Python scripts (for layer-by-layer unsupervised pre-
training, model structure adjustments, parameter optimization, and model
validation) are used (https://github.com/Xyzo21/MNC), as detailed in the
“Methods” section of the paper.
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